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Abstract—Follower networks such as Twitter and Digg are
becoming popular form of social information networks. This
paper seeks to gain insights into how they evolve and the
relationship between their structure and their ability to spread
information. By studying the Douban follower network, which
is a popular online social network in China, we provide some
evidences showing its suitability for information spreading. For
example, it exhibits an unbalanced bow-tie structure with a
large out-component, which indicates that the majority of users
can spread information widely; the effective diameter of the
strongly connected component is shrinking as the user base
grows, which facilitates spreading; and the transitivity property
shows that people in a follower network tend to shorten the
path of information flow, i.e., it takes fewer hops to spread
information. Also, we observe the following users’ behaviors, a
user’s following activity decays exponentially during her lifetime
and the following behaviors differ according to the age of the
account. These findings provide a deep understanding on the
evolution of follower networks, and can provide guidelines on
how to build an efficient information diffusion system.

I. INTRODUCTION

In recent years, social networking sites(SNS) such as Face-
book, Twitter, MySpace, LinkedIn, Flickr and Orkut, have
become major social exchange platforms and are changing the
way we interact with others. With the help of SNSs, people can
contact friends, write online diaries, share information, track
the latest news and so on. The popularity of SNSs has also
attracted many researchers to study their topological properties
[1], [2], evolution [3]–[5], user behaviors [6], [7] and the
network dynamics [8].

In this paper, we study the Douban social network [9],
a popular Chinese Web 2.0 website providing an exchange
platform for reviews and recommendations on movies, books
and music. Similar to Twitter and Digg, Douban is a “follower
network” in which users can broadcast short messages to their
followers. A distinct feature of a following relationship is that
the person being followed can provide useful information to
all his/her followers. In this way, information can flow from
publishers to followers in a direction opposite to the following
direction (or following relationship). Since the following rela-
tionship is directed, people who have following relationships
may not know each other at all, and this is very different from
the friendship relationship in other online social networks, say,

Facebook.
We seek to understand the evolution of follower networks.

In particular, how does a follower network evolve? What
is the relationship between network structure and informa-
tion spreading? How do people establish their follower net-
works? These are questions of fundamental importance as
their answers would provide a better understanding of follower
networks, and allow social networking service providers to
improve their systems so to attract more users, and make
their applications more scalable, or to help advertisers select
potential targets and carry out effective advertisement, or to aid
researchers to have a deeper understanding of users’ following
activities and construct an accurate model to characterize
users’ behaviors.

To facilitate our studies, we represent the Douban fol-
lower network as a time varying directed graph G(t) =
(V (t), E(t)), t = 0, 1, · · · , where V (t) and E(t) are the set of
vertices and edges at time t respectively. A node u ∈ G(t) can
represent a user or an organization. A directed edge et = (u, v)
represents a following relationship: that node u follows node
v at time t. Here, v is a publisher of u while u is called a
follower of v.

In general, a follower network differs from other kinds
of existing networks in SNSs. First, follower network is
different from friendship network such as Facebook, where
relationships are undirected or symmetrical. In a follower
network, relationships are usually directed and asymmetrical.
Furthermore, the establishment of a following relationship is
easier than that of a friendship, which must be confirmed
by two parties. Secondly, a follower network differs from a
citation network where papers rarely cite all other papers and
old papers cannot cite new papers, and information only flows
from old nodes to new nodes with rare reciprocity edges.
Third, a follower network differs from a contact network
such as Flickr, which is directed and has bidirectional edges,
however it is not designed for information spreading like
follower networks.

In this paper, we study the evolving properties of the
Douban follower network. We summarize the results as fol-
lows.
• First, we find that the degree distribution has both power-law
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and log-normal features. The Pearson correlation coefficient
of the in-degree and out-degree of nodes is about 0.6, which
indicates that nodes that have more publishers tend to have
more followers. The unbalanced bow-tie structure with a
large out-component and a small in-component indicates that
follower networks have the potential to spread information
efficiently.
• Second, we find that both the in-degree and out-degree
show the effect of preferential attachment. They also exhibit
transitivity features that provide evidence that the Douban
follower network has the tendency to shorten the path of
information diffusion.
• Third, during the lifetime of each user, the following activity
decays exponentially with the age of a user. Users of different
age groups show different following activities. Younger users
are more likely to actively follow others, while older users are
more likely to be followed.

The outline of this paper is as follows. We give a detailed
description of Douban and the associated dataset in Section II.
We analyze the network evolution and present its properties.
Section IV and V present our analysis of the growth mecha-
nisms and people’s following behavior respectively. In Section
VI, we discuss related works Section VII concludes.

II. DATASET DESCRIPTION

A. Douban and its follower network

Douban [9] is a Chinese Web 2.0 web site providing user
review and recommendation services for books, movies and
music. Douban was launched on March 6, 2005. It is also the
largest online database for Chinese language books, movies
and music. The users of Douban are mainly white collar
workers and students who enjoy reading books, listening
to music and watching movies. People use Douban to find
favorable books, movies and music based on recommendations
of other users. In short, Douban provides user services mainly
by its powerful recommendation system.

Users are connected by the Douban follower network. Users
can follow other users or be followed by others freely, i.e.,
user A can follow user B without the permission from B.
Both followers and publishers are listed on a user’s personal
homepage and can be viewed by others without privacy
restrictions. This follower/following mechanism is similar to
Twitter and Digg.

There are approximately 6 million accounts in Douban as
of August 14, 2009. Our Douban network dataset contains all
users since its establishment till August 14, 2009. There are
around 1.6 million accounts which have at least one publisher
or follower. For each account, we know its registration date
which is accurate up to the “day” granularity. For each edge,
we know the exact creation time which is accurate up to the
“second” granularity. Although Douban users can remove their
publishers or followers freely, we believe this is rare and we do
not consider its effect here. Detailed statistics of the Douban
follower network are shown in Table I.

TABLE I
BASIC INFORMATION OF THE DATASET.

Time interval 2005-03-06∼2009-08-14
Nodes 1, 614, 288
Edges 14, 573, 170
Nodes in largest SCC* 807, 619(50.03%)
Edges in largest SCC 13, 277, 614(98.81%)
Nodes in largest WCC** 1, 595, 100(98.81%)
Edges in largest WCC 14, 558, 294(99.90%)
Reciprocity edges 10, 100, 854(69.31%)
90% effective diameter 6.55
Average clustering coefficient 0.10
Average in/out-degree 9

* The Strongly Connected Component (SCC), a directed
subgraph in which any two nodes can reach to each other.

** The Weakly Connected Component (WCC), a directed
subgraph in which any two nodes can reach to each other
without considering direction of edges.

B. Accounts arrival process and account activity

We consider the accounts arrival process which describes
how new accounts arrive (are created) over time. This will
shed light on the popularity of a SNS. Figure 1a illustrates
the number of accounts (nodes) versus time while Figure 1b
illustrates the number of edges versus the number of nodes.

In Douban, the number of accounts increases exponentially
during the first 25 months with a function 76632(e0.07t − 1),
and then linearly with a function −878766 + 49359t. The
number of edges versus the number of nodes shows a linear
growth at first, and then exponential growth as there are
more nodes in the network. This transformation is due to
the change of account activity. Not all accounts are active
after registration. We say an account is active if it creates at
least one following relationship during a given time interval,
otherwise it is inactive. We define account activity as the
fraction of active accounts of a given time interval.

In Figure 1a, we also plot the monthly account activities of
Douban. One observes a big jump in account activity at the
36th month. This is due to the surge in popularity of Douban
at that time (around the beginning of 2008). We will show
how this increased account activity affects some network level
properties in the next section.
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Fig. 1. The nodes and edges arrival process. The 1st month is Mar. 2005
and the 54th month is Aug. 2009.

III. EVOLUTION OF THE DOUBAN FOLLOWER NETWORK

In this section, we study how different network level prop-
erties of the Douban follower network, such as the degree
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distribution, degree correlation and component structure prop-
erties evolve over time so as to better understand its evolution.

A. Evolution of the degree distribution

Figure 2 illustrates the degree distributions of four snap-
shots: From the beginning of 2005 to the end of year 2006,
2007, 2008 and 2009 respectively. Both the in- and out-degree
distribution reflect heavy-tail features and show both power-
law and log-normal characteristics. It is difficult to say which
is more dominant because there has been a long-standing
debate about how to distinguish power-law from log-normal
[10]. From the dataset, it looks like that the log-normal is more
dominant because the CCDF plot is not a pure strict straight
line. In the next section, we will show that there does exist
preferential attachment effect which could lead to the power-
law degree distribution.

Note that there is a noticeable change-point on the out-
degree distribution curve of 2005-2008 at 1000, and the
distribution shows a fast decline after this point. This is due
to Douban’s limitation that a person could only follow 1000
people at most before April 2008. But later this restriction is
removed.
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Fig. 2. Evolution of the degree distribution. The y-axis is the Comple-
mentary Cumulative Distribution Function(CCDF) representing the probability
P (X > x).

B. Evolution of the degree correlation

In follower networks, the number of followers is a direct
indicator of how famous people are. People can’t force others
to follow him, however there is a strong correlation between
the number of publishers (out-degree) and the number of
followers (in-degree). As the heat map shows in Figure 3a,
from which we observe that the majority of the nodes are
distributed around y = x. This indicates that users in a
follower network are likely to have a comparable followers
and publishers, or people have more publishers are also likely
to have more followers. In order to show how this property
is invariant over time, we compute the Pearson correlation
coefficient between nodes’ in-degree and out-degree of graph
G(t) at each time instance t.

The value of Pearson correlation coefficient lies between -1
and 1, with 1 (-1) implies a positive (negative) correlation of
two variables. We find that the Pearson correlation coefficient
of Douban is always positive as shown in Figure 3b and fluc-
tuates around 0.6 before the 35th month. After the change in

account activity at month 36, it drops to 0.2 but subsequently
increasing monotonically.
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Fig. 3. Degree correlation of Douban follower network

C. Evolution of the component structure properties

Douban follower network is dominated by a giant weakly
connected component (WCC), which takes account of more
than 90% of the entire graph. The largest WCC is characterized
by a bow-tie structure [11], which is illustrated in Figure
4a. The middle component, labeled by “SCC”, is the largest
strongly connected component (SCC), in which any two users
can reach each other. Along the following relationship direc-
tion, users in the in-component, labeled by “In”, can reach
users in the other two components. While users in the out-
component, labeled by “Out”, cannot reach users in the other
two components. In other words, there does not exist a path
with following relationships. So users in “Out” can’t reach
users in “SCC” or “In”. Users in different components play
different roles in information spreading. Note that a message
can propagate in a follower network via retweeting, e.g., a user
can re-post a message from people he/she follows. Therefore,
the direction of information flow is opposite to the following
relationship direction. So if a message is generated by a user
who is in the out-component, it will have greater chance to
spread to other users than a message generated by a user who
is in the in-component.

The size of these three components as shown in Figure 4b.
We find that the fractions of nodes in these three components
are different. Generally, the size of the SCC component is
the largest while the size of the in-component is the smallest.
Because information spreading occurs in an opposite direction
of following relationships, this unbalanced bow-tie structure
indicates that the majority of users in Douban follower network
have the potential to spread information widely.

Because the SCC is the largest component, and serves the
role of a relay between in- and out-component, its diameter
will affect the speed of spreading. From our measurement, we
discover that as the network grows, the effective diameter of
the SCC actually decreased, as shown in Figure 4c. Effective
diameter [3], [12] is defined as the smallest distance such that
at least 90% of the connected node pairs can be reached,
which is considered to be more a robust measure than the
standard diameter of graph and can reflect the truth of network
diameter evolution. Note that in [3], [5], authors also reported
the phenomenon of effective diameter shrinkage.
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(a) Bow-tie structure of the Douban
follower network and the fraction of
each component in the final graph.
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(c) Diameter of the largest SCC.

Fig. 4. Evolution of component structure.

IV. GROWTH MECHANISMS

In this section, we seek to understand the underlying
mechanisms that drive the growth of a follower network. In
particular, we want to see whether the network’s growth is
due to preferential attachment [13], [14] which can generate
power-law characteristics in the degree distributions. We also
analyze the transitivity feature, which characterizes the fol-
lowing relationships between three users.

A. Preferential attachment

As shown in Figure 2, one may argue that the degree
distribution is more like a log-normal than power law. In here,
we show that there exists a preferential attachment effect.

Since each edge in a follower network has a direction, we
divide preferential attachment into preferential creation and
preferential reception to study which nodes are more likely
to create edges and which are more likely to receive edges.
Preferential creation, denoted by pcre(d), is the probability
that a node with attribute d creates an edge. Preferential
reception, denoted by prec(d), is the probability that a node
with attribute d receives an edge. The attributes of a node can
be its in-degree, out-degree and total degree. We extend the
preferential attachment metric for an undirected network in
[4], and pcre(d) and prec(d) are expressed as follows:

pcre(d) ∝
∑|E|

i=1 1(ei = (u, v) ∧Attrti−1(u) = d)∑|E|
i=1 |{u : Attrti−1(u) = d}|

, (1)

prec(d) ∝
∑|E|

i=1 1(ei = (u, v) ∧Attrti−1(v) = d)∑|E|
i=1 |{u : Attrti−1(u) = d}|

, (2)

where ei = (u, v) is the i-th edge(order by creation time)
of the graph pointing from u to v. ti is the creation time of
ei. Attrt(u) represents the attribute of node u at time t. The
indicator function 1(B) = 1 if condition B is true, otherwise
1(B) = 0.

We find that the attributes “in-degree”, “out-degree” and
“total degree” all exhibit some form of preferential attachment
property and the both probabilities have a form of dα. In
Figure 5 we only show the results of preferential creation for
out-degree and preferential reception for in-degree. The others
are similar but with different value of α. After a normalization
to make sure that

∑
d pcre(d) = 1 and

∑
d prec(d) = 1,

the values of α are shown in Table II. The attributes, out-
degree for preferential creation and in-degree for preferential
reception have the largest exponents, which indicate that
preferential creation is more sensitive to nodes’ out-degree and
preferential reception is more sensitive to nodes’ in-degree.
Furthermore, both exponents are very close to 1, indicating
that preferential attachment does exist during the growth of
the Douban follower network.
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Fig. 5. Preferential attachment

TABLE II
THE VALUE OF α VERSUS NODE ATTRIBUTE.

dα In-degree Out-degree Total degree
pcre(d) 0.7078 0.9523 0.8240
prec(d) 0.9506 0.7299 0.8332

B. Transitivity features

In social networks, friends of my friends are likely to be
my friends. This is known as the transitivity phenomenon [15].
When relationships are asymmetrical as in a follower network,
we want to find out whether transitivity exists.

A closed following triad is a following relationship between
three people ordered by time. Since each edge has two possible
directions, there are eight types of closed following triads,
which are shown in Figure 6a. In a random network, if the
probabilities of each following direction between any two
persons are equal, then the eight types of closed following
triads should have equal or comparable probabilities. We
explore whether this is true for the Douban network. If not,
then we examine which types of triads are more likely.

We extract all of the closed following triads of the first
35 months. Figure 6b illustrates their respective probabilities
and we observe that they occur with different frequencies.
Generally, T1 and T5 have higher percentage than others
while T7 is the least likely. This indicates that relation in
a follower network has the transitive property [16]. If we
use R to denote the relation in a follower network, and aRb
represents that a follows b, then transitivity implies that for
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Fig. 6. Closed following triads and evolution of their fractions.

three users x, y and z, if xRy and yRz, we have xRz. Since
T7 violates this transitivity property (i.e., it has C → A instead
of A → C), that is why it occurs with the least frequency. In
contrast, T1 and T5 satisfy the transitivity property so they
occur with higher frequencies.

Another reason why T1 gets the largest fraction may be
because the establishment of the edge (C,A) can shorten the
information path length: instead of information flowing from
A to B and then to C, information now flow from A to C
directly. This indicates that users in a follower network have
a tendency to shorten the information flow path.

The difference between T1 and T5 is that the targets of
C are B’s publishers in T1 and followers in T5. The larger
fraction of T1 implies that users are more likely to follow the
publishers of a user than followers. This raises an interesting
question: Are publishers more attractive than followers? To
answer this we randomly choosing 1000 users and calculating
the probability that the user chooses followers or publishers to
follow. We carry the experiment for 50 times and obtain the
result that probability in choosing publishers is 9.1% higher
than choosing followers. This indicates that publishers are
more attractive than followers in a follower network.

V. FEATURES OF PEOPLE’S FOLLOWING ACTIVITY

Let tr(u) denote the registration time of user u in the net-
work. After this time, a user becomes active: either following
other users or being followed. We use following activity to
quantify a user’s activity. We study various features of users’
following activity and characterize user behavior after he/she
joins a follower network.
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Fig. 7. Features of users’ following activity.

A. Following activity during lifetime of a user

We explore the following activity of a user during his/her
lifetime. Let nut denote the number of followers of user u
on the t-th day after tr(u), and p(t) is the probability that a
user follows a person on the t-th day after tr(u). We express
p(t) =

∑
u nut∑

u,t nut
. Figure 7a illustrates p(t) and shows that it

is generally exponentially decreasing. Specifically, we observe
three-phases in a user’s following activity. A burst of activity
occurs during the first 10 days, and then the following activity
becomes stable and for approximately 200 days. Then the
following activity decreases exponentially with a small decay
rate 0.003.

B. Following activity versus account age

We explore following activities of accounts as a function of
age. In particular, we ask whether or not younger accounts are
more likely to follow others than older accounts.

The age of an account u at time t is defined as age(u, t) =
t− tr(u). The probabilities that an account with age a follows
or is followed are denoted by pc(a) and pr(a). They are
calculated as follows,

pc(a) ∝
∑|E|

i=1 1(ei = (u, v) ∧ age(u, ti) = a)∑|E|
i=1 |{u : age(u, ti) = a}|

, (3)

pr(a) ∝
∑|E|

i=1 1(ei = (u, v) ∧ age(v, ti) = a)∑|E|
i=1 |{u : age(u, ti) = a}|

. (4)

We find that accounts with different ages show different
features, as shown in Figure 7b. Both pc and pr show are
large during the first few days after the registration, which
is consistent with the result in Figure 7a. After that, younger
accounts and older accounts exhibit different following activ-
ities. In particular, we have pc(a) > pr(a) for a < 11, and
pc(a) < pr(a) for a > 24. This implies that younger accounts,
whose ages are less than 11 months, have a higher probability
to follow others than be followed. Older accounts, whose ages
are greater than 24 months, have a larger probability of being
followed than following others. This indicates that the main
activities for younger accounts are to establish connections by
actively following others, while older accounts are more likely
to receive followers passively.
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VI. RELATED WORK

The power-law degree distribution and small-world effect
are two well known findings over the past few decades when
researchers study complex networks. Various network models
[17] are proposed to explain why complex networks have these
properties, e.g., the ER model [18], the preferential attachment
model [13], the small-world model [19] and so on. But the
majority of these works are based on static networks or a small
number of snapshots, e.g., the number of nodes is fixed in
the ER model and the small-world model while defining edge
connection or rewiring rules. A. Mislove et al [20] analyze the
growth of Flickr based on 104 daily snapshots of the Flickr
contact network. Y. Y. Ahn et al [1] analyze the evolution
of degree distribution, clustering coefficient and diameter of
Cyworld using three years snapshots of the Cyworld social
network. Static or snapshots of networks can characterize the
macroscopic properties of networks, but they cannot charac-
terize microscopic properties of networks, such as the reasons
for link formation and node connectivity behavior. Several
other researchers analyze the continuous time evolution of
graphs. J. Leskovec et al [3], [4] analyzed the evolution
of several real graphs. They observed that these graphs are
densifying over time and the average distance between nodes
are shrinking. They also analyze the preferential attachment
and locality of edge attachment’s effect. R. Kumar et al [5]
study the structure evolution of Flickr and Yahoo! 360. Their
measurements reveal the segmentation of these networks in
three regions: singletons, isolated communities and a giant
component. There are mainly two differences between our
work and theirs. Firstly, the follower network we consider
is a directed graph and growth mechanisms are inherently
different between directed and undirected networks. Secondly,
follower network is associated with information diffusion
and we analyze the relationship between follower network
structure and information spreading.

VII. CONCLUSION

In this paper, we study the evolution of Douban follower
network. We analyze the network evolution and reveal some
interesting properties, including degree distribution, degree
correlation and component structure properties. Preferential
attachment exists both for in-degree and out-degree and the
features of transitivity do exist, which indicates that there are
biases when people follow others. Also, evolution of follower
network reflects some features of people’s following behavior,
such as the decaying of following activity and differences of
people’s follow behavior with different account age. A deep
understanding of follower network is important because the
follower network is designed for information flow. Our work
reveals some evidences that follower network is suitable for
information spreading. For example, the unbalanced bow-tie
structure with a large out-component, the shrinkage of the
effective diameter, and the features of transitivity show the
shortening of the information flow path length.
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