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Abstract—In his 1969 paper, Granger proposed a statistical
definition of causality between stochastic processes. It is based on
whether causal side information helps in a sequential prediction
task. However, his formulation was limited to linear predictors.
We describe a generalized framework, where predictions are
beliefs and compare the best predictor with side information to
the best predictor without side information. The difference in the
prediction performance, i.e., regret of such predictors, is used as
a measure of causal influence of the side information. Specifically
when log loss is used to quantify each predictor’s loss and an
expectation over the outcomes is used to quantify the regret,
we show that the directed information, an information theoretic
quantity, quantifies Granger causality. We also explore a more
pessimistic setup perhaps better suited for adversarial settings
where minimax criterion is used to quantify the regret.

I. INTRODUCTION

In his 1969 paper [1], Granger proposed a framework for

identifying statistically causal relationships between stochastic

processes, based on sequential prediction. It has been widely

adopted in a number of research fields, including economics,

biology, and social sciences [2], [3]. His framework is [1]:

“We say that Xt is causing Yt if we are better able

to predict Yt using all available information than if

the information apart from Xt had been used.”

This was motivated by earlier work by Wiener [1]. Granger

formulated this framework using linear regression models of

stochastic processes [1]. While this version of the framework

has been widely adopted in econometrics and other disciplines

[3], there have been attempts to extend it to nonlinear pro-

cesses. The directed transfer function, for example, extends the

framework into the spectral domain [3]. However, all known

formulations of Granger’s principle are designed for specific

classes of processes.

Granger’s principle is based on how much causal side

information helps in a sequential prediction task. There is a

large body of research on sequential prediction [4], [5]. Some

researchers have focused on predicting stochastic processes,

often with modeling assumptions, but there has been increas-

ing focus on sequential prediction of general sequences, a

problem known as “on-line” prediction. In this setting, the

outcome sequence could be generated stochastically, deter-

ministically, or even generated sequentially by an adversary

[4]. Much of the work in this field has focused on comparing

performance of a predictor to the best “expert” from a group

of experts. Before the predictor makes a decision, he learns

what each of the experts predict.
Although there has been significant advances in the field of

sequential prediction, there has been little work characterizing

how much side information (knowledge of the Xt process)

helps. The works that examine problems with side information,

such as [4], [6], [7], compare a predictor with side information

to a group of experts with the same side information. Also,

most works assume both the predictor and experts will use the

side information in the same manner [4].
In this paper, inspired by Granger’s philosophy, we develop

a generalized framework for measuring causal influences char-

acterized by how much side information helps in sequential

prediction. We focus on the setting where experts assign

probabilities to outcomes. (This setting reveals the experts’

certainties on all outcomes, not just one.) The goodness of

prediction is measured with log loss. The comparison of

the performance, i.e., regret of the best predictor with side

information to the best predictor without side information is

used as our causality metric. When the comparison of regret

is done taking an expectation over all possible outcomes,

we show that directed information, an information theoretic

quantity, captures Granger viewpoint on definition of causality.

We first consider a two process problem and then generalize

it. Moreover, we explore Grangers principle in the minimax

setting, where the performance of the predictor with side

information is compared to the predictor without it for the

worst-case outcome.

II. NOTATION

A. Sequential Prediction
We first introduce notation for sequential prediction.

• There are two, competing decision makers (or predictors)

f and q from classes of predictors F and Q, respectively,

who sequentially predict an outcome sequence y1, y2, . . .
composed of elements from an outcome space Y . For

simplicity we consider discrete Y .

• At time i, the decision makers make predictions fi and qi
respectively in a decision space D for the next outcome
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yi. To make this decision, both have access to the past

outcomes yi−1 = (y1, . . . , yi−1) and qi additionally has

access to causal side information xi = (x1, . . . , xi). (The

causal property is that at time i, the side information for

the future is not revealed.)

• The “goodness” of the predictions is measured by a

nonnegative loss function l : D×Y → R+. The decision

makers incur losses l(fi, yi) and l(qi, yi) respectively.

• Denote the cumulative losses for f and q as

Ln(f, y
n) � 1

n

n∑
i=1

l(fi, yi) and

Ln(q, y
n, xn) � 1

n

n∑
i=1

l(qi, yi).

• We are interested in characterizing the regret:

Rn(f, q, y
n, xn) � Ln(f, y

n)− Ln(q, y
n, xn) (1)

between the “best” decision makers f ∈ F and q ∈ Q.

fi is a function of yi−1 and qi is a function of xi−1 and

yi−1. With appropriate F and Q, the regret quantifies

how much the side information helps on average over

time.

B. Information Theory

Now we introduce some information theoretic notation.

• Let Xn, Y n, and Zn be three, discrete stochastic pro-

cesses with joint distribution PXn,Y n,Zn(xn, yn, zn).
• We denote the space of all possible distributions on these

processes as P(Xn × Yn ×Zn).
• The entropy of Y n is [8]:

H(Y n) � EPY n [− logPY n(Y n)] .

• The causally conditional entropy of Y n causally condi-

tioned on Xn is (Ch 3 in [9]) :

H(Y n‖Xn)

� EPY n,Xn

[− logPY n‖Xn(Y n‖Xn)
]

=

n∑
i=1

EPY i,Xi

[− logPYi|Y i−1,Xi(Yi|Y i−1, Xi)
]

• For two distributions PY n and QY n on Yn, the Kullback-

Leibler divergence between PY n and QY n is [8]

D(PY n‖QY n) � EPY n

[
log

PY n(Y n)

QY n(Y n)

]
.

D(PY n ||QY n) ≥ 0 with equality iff PY n ≡ QY n .
• For two distributions PY n,Xn and QY n,Xn on Yn ×

Xn, the conditional Kullback-Leibler divergence between

PY n|Xn and QY n|Xn is [8]:

D
(
PY n|Xn‖QY n|Xn

∣∣PXn

)
� EPXnEPY n|Xn

[
log

PY n|Xn(Y n|Xn)

QY n|Xn(Y n|Xn)

∣∣∣Xn

]
.

• The directed information from Xn to Y n is

I (Xn → Y n)

�
n∑

i=1

EPXn,Y n

[
log

PYi|Y i−1,Xi(Yi|Y i−1, Xi)

PYi|Y i−1(Yi|Y i−1)

]
= H(Y n)−H(Y n‖Xn).

This was formally introduced by Massey [10]. Massey’s

definition was motivated by Marko’s work [11]. Related

work was independently done by Rissanen [12].

• The causally conditioned directed information from Xn

to Y n causally conditioned on Zn is [9]

I (Xn → Y n‖Zn)

�
n∑

i=1

EPXn,Y n,Zn

[
log

PYi|Y i−1,Xi,Zi(Yi|Y i−1,Xi,Zi)

PYi|Y i−1,Zi(Yi|Y i−1,Zi)

]
= H(Y n‖Zn)−H(Y n‖Xn, Zn).

III. SETUP

The overall goal is to characterize how much side informa-

tion helps in sequential prediction. For this, we will develop

a general framework in which the best possible predictor

f ∈ F without side information competes with the best

possible predictor q ∈ Q with causal side information. For

this we consider decision spaces and loss functions which are

meaningful and not restrictive.

First consider the decision space. A general type of pre-

diction problem involves the decision makers sequentially

predicting probabilities, or “beliefs,” of the next symbol [4],

[5]. Predicting belief functions, for which the decision maker

must assign a confidence to each possible outcome, is much

more informative than just seeing the single outcome the

decision maker thought was most likely. At time i, the decision

makers will each predict a probability vector, assigning a

probability to each of the possible outcomes

fi = { fi(y) }y∈Y and qi = { qi(y) }y∈Y .

The assignments are nonnegative and normalized. The decision

space is the set of all probability measures on Y: D = P(Y).
The decision makers will choose their decisions fi and qi
using different information. fi will be a distribution of yi
conditioned on the past outcomes yi−1 and qi a distribution

also conditioned on side information xi.

Any set of sequential predictions on the outcome se-

quence {fi(yi|yi−1)}ni=1 has a corresponding joint f(yn) =∏n
i=1 fi(y

i|yi−1). Likewise, any joint distribution on the out-

come sequence f(yn), through marginalizations, can be used

to form sequential predictions:

fi(yi|yi−1) =
f(yi)

f(yi−1)
.

Thus, the class of sequential predictors F could be any subset

of probability distributions on the whole outcome sequence

F ⊆ P(Yn).
However, this is not quite the case with the class Q

which has access to side information. Any set of sequential
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predictions on the outcome sequence with causal knowledge

of the side information {qi(yi|yi−1, xi)}ni=1 can be combined

to form a causally conditioned distribution (Ch. 3 in [9]) on

the yn sequence:

q(yn‖xn) =

n∏
i=1

qi(y
i|yi−1, xi). (2)

Any causally conditioned distribution q(yn‖xn) can be equiv-

alently deconstructed to form sequential predictions

qi(yi|yi−1, xi) =
q(yi‖xi)

q(yi−1‖xi−1)
.

Thus, the class of sequential predictors Q could be any subset

of causally conditioned distributions Q ⊆ P(Yn‖Xn). How-

ever, note that the outcome sequence need not have a causal

dependence on the side information, so not all distributions

in P(Yn × Xn) have corresponding causally conditioned

marginal distributions in P(Yn‖Xn). This limitation is due

to the qi’s only having causal access to the side information.

For prediction problems where the predictions are probabil-

ity assignments, a widely used loss function is the “log-loss,”

also called “self-information loss” [4], which for probability

assignment p = {p(y) : y ∈ Y} and outcome y ∈ Y,

l(p, y) = − log p(y).

This has meaningful interpretations in areas such as data

compression, gambling, and portfolio theory [4], [5]. In se-

quential data compression, if a stochastic sequence Zn is

sequentially generated from a distribution PZ(z), then the

“ideal” codelength of a symbol z is − logPZ(z) [8]. This

code, known as the Shannon code, achieves the minimum

expected total codelength for any uniquely decodable code [8].

Log loss is commonly used to characterize the growth rate in

wealth in sequential gambling and in portfolio theory [4], [8].

Log loss also has the property that it can break up products

of terms (such as products of conditional probabilities) into

a summation of those terms. We will now investigate the

expected regret between the best decision makers (in expecta-

tion), where the predictions are probability measures.

In characterizing how much causal side information helps

in sequential prediction, we consider the regret between the

best predictor with side information to the best predictor

without. “Best” can be defined in a number of ways. The

best f ∈ F could be specified as the one that minimizes

its loss argmin
f∈F

Ln(f, y
n). In this case, there is a different

“best” f for each outcome sequence yn. Alternatively, if the

outcome sequence is stochastic, best could be the f ∈ F which

minimizes its expected loss argmin
f∈F

EPY nLn(f, Y
n). In this

case, there is a single f . Likewise, best could be the f whose

worst-case loss is minimal, argmin
f∈F

maxyn∈Yn Ln(f, y
n).

For these, the choice of f only depends on the class F .

Alternatively, it could also depend the other class Q. For

instance, best could be the f which has the least worst-case

regret when compared to the q ∈ Q which minimizes the loss

Ln(q, y
n, xn):

argmin
f∈F

max
yn∈Yn,xn∈Xn

max
q∈Q

Ln(f, y
n)− inf

f∈F
Ln(q, y

n, xn).

There are a variety of settings that could be considered. We

will focus on three. The first will be the setting where best

for both F and Q will be the f and q respectively which

minimize the expected loss with respect to their classes. The

second is a minimax-type setting. The best q ∈ Q will be

the one that for any particular outcome and side information

sequence, has smallest loss. The best f ∈ F will be the one

which has least regret compared to the best q for the worst

outcome and side information sequences. The third is similar

to the second, except instead of worst-case side information,

it will be in expectation over side information.

IV. BEST EXPERTS IN EXPECTATION

A. Two processes

Consider an outcome sequence Y n and side information

sequence Xn which are both stochastic and generated accord-

ing to the distribution PXn,Y n . Our goal is to characterize

the expected regret between the best predictor without side

information and the best predictor with side information.

“Best” is in terms of having the minimal expected cumulative

loss. The best f ∈ F for some F ⊆ P(Yn) is

f∗ = argmin
f∈F

EPY n [Ln(f, Y
n)] .

Likewise, the best q ∈ Q for some Q ⊆ P(Yn‖Xn)is

q∗ = argmin
q∈Q

EPXn,Y n [Ln(q,X
n, Y n)] .

We now consider the value of the expected cumulative regret.

It turns out to be the directed information plus divergences

which act as correction terms.

Lemma IV.1. The expected cumulative regret between the best
predictors, f∗ and q∗ is

EPXn,Y n [Rn(f
∗, q∗, Xn, Y n)]

=
1

n
I (Xn → Y n) +

[
n∑

i=1

D
(
PYi|Y i−1‖f∗

i |PYi

)

−
n∑

i=1

D
(
PYi|Y i−1,Xi−1‖q∗i

∣∣PY i−1,Xi−1

)]
(3)

Proof: By linearity of expectation,

EPXn,Y n [Rn(f
∗, q∗, Xn, Y n)]

= EPY n [Ln(f
∗, Y n)]− EPXn,Y n [Ln(q

∗, Xn, Y n)](4)

=

n∑
i=1

EPY i [l(f
∗
i , Yi)]−

n∑
i=1

EPXi,Y i [l(q
∗
i , Yi)] (5)

where f∗
i is allowed to depend on Y i−1 and q∗i is allowed to

depend on both Y i−1 and Xi. Consider the sum on the left
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in (5). Note that

n∑
i=1

EPY i [l(f
∗, Yi)] (6)

=

n∑
i=1

EPY i−1EPYi|Y i−1

[− log f∗
i (Yi)

∣∣Y i−1
]

(7)

=
n∑

i=1

EPY i−1EPYi|Y i−1

[
log

PYi|Y i−1(Yi|Y i−1)

f∗
i (Yi)

∣∣∣Y i−1

]

+H(Yi|Y i−1) (8)

= H(Y n) +

n∑
i=1

D
(
PYi|Y i−1‖f∗

i

∣∣PY i−1

)
(9)

Now consider the sum on the right in (5).

n∑
i=1

EPY i,Xi [l(q
∗, Yi)]

=

n∑
i=1

EPY i−1,XiEPYi|Y i−1,Xi

[− log q∗i (Yi)
∣∣Y i−1, Xi

]

=
n∑

i=1

EPY i−1,XiEPYi|Y i−1,Xi

[

log
PYi|Y i−1,Xi(Yi|Y i−1, Xi)

q∗i (Yi)

∣∣∣∣∣Y i−1, Xi

]

+H(Yi|Y i−1, Xi) (10)

= H(Y n‖Xn) +

n∑
i=1

D
(
PYi|Y i−1,Xi‖q∗i

∣∣PY i−1,Xi

)
. (11)

Combining (9) and (11) gives (13).

In Lemma IV.1, we considered arbitrary classes F ⊆ P(Yn)
and Q ⊆ P(Yn‖Xn). Now we consider the specific case

where f can be any joint distribution on the outcome sequence

and q any causally conditioned distribution on the outome

sequence: F = P(Yn) and Q = P(Yn‖Xn). In this case,

we find that the divergence correction terms vanish, and the

expected regret is precisely the directed information.

Theorem IV.2. If F = P(Yn) and Q = P(Yn ‖ Xn),
then f∗

i ≡ PYi|Y i−1 , q∗i ≡ PYi|Y i−1,Xi , and the expected
cumulative regret has value

EPXn,Y n [Rn(f
∗, q∗, Xn, Y n)] =

1

n
I (Xn → Y n) . (12)

Proof: The expected cumulative loss of f∗ is

min
f∈F

EPY n [Ln(f, Y
n)]

= min
f∈F

H(Y n) +

n∑
i=1

D
(
PYi|Y i−1‖fi

∣∣PY i−1

)
.

Consider for each i that fi ≡ PYi|Y i−1 . Then

D
(
PYi|Y i−1‖fi

∣∣PY i−1

)
= 0.

By the nonnegativity of KL divergence, and since H(Y n) does

not depend on f , f∗
i ≡ PYi|Y i−1 is the minimizer and the

expected cumulative loss of f∗ is H(Y n).

The expected cumulative loss of q∗ is

min
q∈Q

EPY n,Xn [Ln(q,X
n, Y n)]

= min
q∈Q

H(Y n‖Xn) +

n∑
i=1

D
(
PYi|Y i−1,Xi‖qi

∣∣PY i−1,Xi

)
.

Consider for each i that qi ≡ PYi|Y i−1,Xi . Then

D
(
PYi|Y i−1,Xi‖qi

∣∣PY i−1,Xi

)
= 0.

By the nonnegativity of KL divergence, and since H(Y n‖Xn)
does not depend on q, q∗i ≡ PYi|Y i−1,Xi is the minimizer and

the expected cumulative loss of q∗ is H(Y n‖Xn).

Since

n∏
i=1

f∗
i (yi) =

n∏
i=1

PYi|Y i−1(yi|yi−1) = PY n(yn),

we can write the predictor f∗ over the whole outcome se-

quence as the joint f∗(yn) = PY n(yn). Similarly, since

n∏
i=1

q∗i (yi) =
n∏

i=1

PYi|Y i−1,xi(yi|yi−1, xi) = PY n‖Xn(yn‖xn),

we can write the predictor q∗ over the whole outcome with

causal access to the side information as the causally condi-

tional distribution q∗(yn‖xn) = PY n‖Xn(yn‖xn).

In Theorem IV.2, since F and Q were both as large as pos-

sible, this suggests that the directed information characterizes

how much causal knowledge of the side information helps, and

thus captures Granger’s principle when sequentially predicting

one sequence with sequential access to another.

B. More than two processes

We now examine a generalization where there are more than

two processes. Now, both decision makers have causal access

to an additional side information sequence zn ∈ Zn. At time

i, the predictions are fi(yi|yi−1, zi) and qi(yi|yi−1, xi, zi).
Let PXn,Y n,Zn denote the joint distribution. This scenario is

a fuller generalization of Granger’s statement, as “all other

knowledge” besides the past Yi’s can be represented in the

Zn process.

“Best” is still in terms of having the minimal expected

cumulative loss. The best f ∈ F for some F ⊆ P(Yn‖Zn)
is

f∗ = argmin
f∈F

EPY n [Ln(f, Y
n, Zn)] .

Likewise, the best q ∈ Q for some Q ⊆ P(Yn‖Xn,Zn) is

q∗ = argmin
q∈Q

EPXn,Y n,Zn [Ln(q,X
n, Y n, Zn)] .

We now consider the value of the expected cumulative regret.

It turns out to be the causally conditioned directed information

plus divergences which act as correction terms.
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Lemma IV.3. The expected cumulative regret between the best
predictors, f∗ and q∗ is

EPXn,Y n,Zn [Rn(f
∗, q∗, Xn, Y n, Zn)]

=
1

n
I (Xn → Y n‖Zn) +

[
n∑

i=1

D
(
PYi|Y i−1,Zi‖f∗

i |PYi,Zi

)

−
n∑

i=1

D
(
PYi|Y i−1,Xi,Zi‖q∗i

∣∣PY i−1,Xi,Zi

)]
(13)

The proof is similar to the proof of Lemma IV.2.

We now consider the specific case that the classes of

predictors is as large as possible: F = P(Yn‖Zn) and

Q = P(Yn‖Xn,Zn).

Corollary IV.4. If F = P(Yn‖Zn) and Q = P(Yn ‖
Xn,Zn), then f∗

i ≡ PYi|Y i−1,Zi , q∗i ≡ PYi|Y i−1,Xi,Zi , and
the expected cumulative regret has value

EPXn,Y n,Zn [Rn(f
∗, q∗, Xn, Y n, Zn)]

=
1

n
I (Xn → Y n‖Zn) (14)

This result suggests that the causally conditioned directed

information characterizes Granger causality in the setting

where average regret is considered.

V. MINIMAX CASE

Previously we considered the expected regret between the

best predictors, where best meant minimizing the expected

loss with respect to the class. We now consider an alternative

setting, where best for the class Q is the one that minimizes

loss for a paticular outcome and side information sequence:

arg inf
q∈Q

Ln(q, y
n, xn). The best for the class F is the one

whose worst case regret with respect to the best q ∈ Q is

least. If the worst case side information is considered, this

corresponds to

arg inf
f∈F

max
yn∈Yn

[
Ln(f, y

n)− inf
q∈Q

Ln(q, y
n, xn)

]
. (15)

The previous setting, where expectations were considered, is

meaningful when the outcome and side information sequences

are stochastic. Considering the worst case performance is

meaningful in adversarial cases. For example, if the outcome

sequence is decided by an adversary, who can observe the

predictor’s decisions at each step, the adversary would decide

on the outcome that resulted in the predictor having largest

loss.

This will be similar to the traditional minimax sequential

prediction problem [4], where a predictor p competes against

a class of predictors F :

inf
p

max
yn∈Yn

[
Ln(p, y

n)− inf
f∈F

Ln(f, y
n)

]
.

Note that in this setting, though, p and the predictors in class

F have the same information. In (15), however, the predictors

in Q have the additional knowledge of the side information.

Thus, in this setting, the regret value could convey some

(causal) relationship between the side information sequence

and the outcome sequence.

The difference in loss between a predictor f ∈ F which

does not have access to side information and the “best”

predictor (one with smallest loss) arg inf
q∈Q

Ln(q, y
n, xn) with

access to side information is the regret:

R(f, yn, xn) � Ln(f, y
n)− inf

q∈Q
Ln(q, y

n, xn). (16)

Note that

− inf
q∈Q

L(q, yn, xn) = − inf
q∈Q

− log q(yn‖xn)

= log sup
q∈Q

q(yn‖xn) = log qML(y
n‖xn)

where qML(y
n‖xn) denotes the maximum likelihood of yn

causally conditioned on xn for the class Q. Thus

R(p, yn, xn) = − log p(yn) + log qML(y
n‖xn). (17)

Note that we will not consider the case that Q = P(Yn‖Xn)
because for any outcome sequence yn ∈ Yn, there is a

distribution that assigns probability one to that sequence and

probability zero to all others [5]. In this case, qML(y
n) = 1

uniformly.

We now introduce a lemma which will be used in later

proofs. It characterizes the “normalized maximum likelihood”

predictor as the minimax optimal predictor [4].

Lemma V.1. The f ∈ F = P(Yn) that minimizes

inf
f∈F

max
yn∈Yn

[− log f(yn) + log g(yn)] (18)

for some function g : Yn → R
+ is

f∗(yn) =
g(yn)∑

zn∈Yn g(zn)
. (19)

Proof: The proof is to first show f∗ achieves uniform re-

gret over all sequences. We refer to [− log f(yn) + log g(yn)]
as the regret. The second step is to show that any other

distribution f ′ does worse than f∗ for some outcome yn, and

thus the worst case regret of f ′ is larger than that of f∗. Let

φ =
∑

zn∈Yn g(yn) denote the normalization constant.

That f∗ achieves uniform regret over all sequences follows

from:

R(f∗, yn) = − log f∗(yn) + log g(yn) (20)

= − log
g(yn)

φ
+ log g(yn) (21)

= log φ (22)

Now consider any other predictor f ′. Since both f ′ and f∗

are normalized, there is some outcome sequence zn ∈ Yn for

which f ′(zn) < f∗(zn), which implies that − log f ′(zn) >
− log f∗(zn). Thus we have that

R(f ′, zn) = − log f ′(zn) + log g(zn)

> − log f∗(zn) + log g(zn) = R(f∗, zn)

Thus, maxyn∈Yn R(f ′, yn) > maxyn∈Yn R(f∗, yn).
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We now consider the best possible worst case performance

a predictor f ∈ F without side information could do against

a family Q of predictors with side information. We will

consider the specific setting where F = P(Yn). Here the

environment is considered adversarial, such that it will give

the worst possible outcome sequence and the worst possible

side information sequence, where worst means larger regret

for the predictors in F .

Lemma V.2. The f ∈ F = P(Yn) that minimizes

inf
f∈F

max
yn∈Yn

max
xn∈Xn

sup
q∈Q

Rn(f, q, y
n, xn) (23)

is

f∗(yn) =
max

xn∈Xn
qML(y

n ‖ xn)∑
zn∈Yn

max
xn∈Xn

qML(zn ‖ xn)
. (24)

The value of (23) is

1

n
log

∑
zn∈Yn

max
xn∈Xn

qML(z
n ‖ xn).

Proof:

max
xn∈Xn

sup
q∈Q

Rn(f, q, y
n, xn) (25)

= max
xn∈Xn

[− log p(yn) + log qML(y
n ‖ xn)] (26)

=

[
− log p(yn) + log max

xn∈Xn
qML(y

n ‖ xn)

]
(27)

= [− log p(yn) + log g(yn)] (28)

with g(yn) = maxxn∈Xn qML(y
n ‖ xn) and (27) uses that

log is one to one increasing so max log same as logmax. By

Lemma V.1, Lemma V.2 holds.

In the previous setting, we considered the regret with the

worst case side information (the worst case for the predictor

f without it). That is meaningful when the environment is

adversarial and gives both the worst possible outcome and

side information sequence. An alternative setting is where the

environment gives the worst possible outcome sequence, but

the side information is stochastic, and conditionally (but not

necessarily causally) dependent on the outcome sequence with

a distribution PXn|Y n . Here, the average regret over possible

side information sequences is considered.

Lemma V.3. The f ∈ F = P(Yn) that minimizes

inf
f∈F

max
yn∈Yn

EPXn|Y n=yn sup
q∈Q

Rn(f, q, y
n, Xn) (29)

is

f∗(yn) =

∏
xn∈Xn

qML(y
n ‖ xn)PXn|Y n (xn|yn)

∑
zn∈Yn

∏
xn∈Xn

qML(zn ‖ xn)PXn|Y n (xn|yn)
. (30)

The value of (29) is

log
∑

zn∈Yn

∏
xn∈Xn

qML(z
n ‖ xn)PXn|Y n (xn,yn). (31)

Proof:

EPXn|Y n=yn sup
q∈Q

Rn(f, q, y
n, Xn)

= EPXn|Y n=yn [− log p(yn) + log qML(y
n ‖ Xn)](32)

=
[− log p(yn) + EPXn|Y n=yn log qML(y

n ‖ Xn)
]
(33)

Recall the property of logarithms for positive constants

a, b, c, d: a log b+ c log d = log ba + log dc = log badc. Using

this,

EPXn|Y n=yn log qML(y
n ‖ Xn)

=
∑

xn∈Xn

PXn|Y n(xn|yn) log qML(y
n ‖ xn) (34)

= log
∏

xn∈Xn

qML(y
n ‖ xn)PXn|Y n (xn|yn) (35)

= log g(yn) (36)

for

g(yn) =
∏

xn∈Xn

qML(y
n ‖ xn)PXn|Y n (xn|yn).

By Lemma V.1, Lemma V.3 holds.

The values of the minimax regrets in Lemma V.2 and

Lemma V.3 can be interpreted as potentially offering a char-

acterization of how much, from a sequential prediction per-

spective, the side information causally influences the outcome

sequence, and thus a form of Granger causality in adversarial

settings.
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