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Abstract—This paper describes an experimental study of the
overlay topologies of real-world Bittorrent networks, focusing
on the activity of the nodes of its P2P topology and especially
their dynamic relationships. Peer Exchange Protocol (PEX)
messages are analyzed to infer topologies and their properties,
capturing the variations of their behavior. Our measurements,
verified using the Kolmogorov-Smirnov goodness of fit test and
the likelihood ratio test and confirmed via simulation, show
that a power-law with exponential cutoff is a more plausible
model than a pure power-law distribution. We also found that
the average clustering coefficient is very low, supporting this
observation. Bittorrent swarms are far more dynamic than has
been recognized previously, potentially impacting attempts to
optimize the performance of the system as well as the accuracy
of simulations and analyses.

I. INTRODUCTION

Among P2P applications, Bittorrent is the most popular. In

2008, P2P transfer dominated Internet traffic and Bittorrent is

the most popular P2P protocol. P2P traffic is still growing,

though recent studies suggest that its growth is slower than

that of Internet traffic as a whole [1] [2].

Many properties of Bittorrent, such as upload/download

performance and peer arrival and departure processes, have

been studied [3], but only a few projects have assessed the

topological properties of Bittorrent. The Bittorrent system is

different from other P2P systems. The Bittorrent protocol does

not offer peer traversal and the Bittorrent tracker also does

not know about topologies since peers never send information

to the tracker concerning their connectivity with other peers.

While a crawler can be used in other P2P networks, such

as Gnutella, in Bittorrent we cannot easily use a crawler to

discover topology, making direct measurement of the topology

difficult.

In this paper we describe our study of Bittorrent networks,

where real-world Bittorrent swarms were measured using a

rigorous and simple method in order to understand the Bittor-

rent network topology. To our knowledge, our approach is the

first to perform such a study on real-world Bittorrent network

topologies. We used the Bittorrent Peer Exchange (PEX)

messages to infer the topology of Bittorrent swarms listed on a

Bittorrent tracker claiming to be the largest Bittorrent network

on the Internet [4] [5], instead of building small Bittorrent

networks on testbeds such as PlanetLab and OneLab as other

researchers have done. We also performed simulations using
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Fig. 1. Simplified view of our approach. Left: At time t=1, the actor gets a
PEX message from peer A and learns that peer A is connected to peer B and
C. At t=2, the actor gets PEX messages from peers C and A. The actor learns
that now peer A is connected to peer D. Thus the actor knows the properties
of peer A at t=1 and t=2.

the same approach to show the validity of the inferred topology

resulted from the PEX messages by comparing it with the

topology of the simulated network.

In addition to demonstrating the validity of our measure-

ment methods, we show that a power-law with exponential

cut-off distribution is a better model than a pure power-law

distribution. In terms of the clustering property, we show Bit-

torrent networks is more of a random network than a scale-free

network. While these results may contradict earlier findings,

our simulations also demonstrated the same phenomenon.

The rest of this paper is organized as follows. We first

briefly explain the Bittorrent PEX, followed by the experiment

methodology to infer Bittorrent network topologies using PEX.

In the analysis, this paper looks into the power-law distribution

and an alternative distribution to power-law. This paper also

inspects the clustering property.

II. BITTORRENT PEER EXCHANGE

Bittorrent is a P2P application designed to distribute large

files with a focus on scalability and efficiency. When joining

a swarm, a Bittorrent application contacts a tracker, which

responds with an initial peer set of randomly selected peers,

possibly including seed and leecher IP addresses and port

numbers. PEX is a mechanism introduced in Bittorrent to

discover other peers in the swarm, in which two connected
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peers exchange messages containing a set of connected peers.

With PEX, peers only need to use the tracker as an initial

source of peers.

It appears that most clients began to introduce PEX in

2007 [6]. However, there is no PEX specification, only a kind

of informal understanding among Bittorrent client developers.

Therefore there are differences, e.g., for some Bittorrent clients

derived from rasterbar libtorrent [7], the PEX message can

only contain a maximum of a hundred IP address and port

pairs. In other Bittorrent clients, the number of IP address and

port pairs is decided based on the size of the PEX message.

This implementation difference may affect the ultimate behav-

ior of the network.

III. METHODOLOGY AND EXPERIMENT DESIGN

We used PEX to collect peer neighbors information (see

Figure 1) and then we describe the network formed in terms

of properties such as node degree and average clustering.

Besides collecting data from real Bittorrent networks, we ran

simulations similar to these of Al-Hamra et al. [8]. In these

simulations, we assumed that peer arrivals and departures

(churn) follow an exponential distribution as explained by Guo

et al. [3]. For simplification, we assumed that nodes are not

behind a NAT. Since we are only interested in the construction

of the overlay topology, we argue that our simulations are

thorough enough to explain the overlay properties.

Temporal graphs have recently been proposed to study

real dynamic graphs, with the intuition that the behaviour of

dynamic networks can be more accurately captured by a se-

quence of snapshots of the network topology as it changes over

time. An instantaneous snapshot is taken at an exact time point,

thus capturing only a few nodes and links. In this paper, we

study the network dynamics by continuously taking network

snapshots with the duration τ as time evolves, and show them

as a time series. A snapshot captures all participating peers

and their connections within a particular time interval, from

which a graph can be generated. The snapshot duration may

have minor effects on analyzing slowly changing networks.

However, in a P2P network, the characteristics of the network

topology vary greatly with respect to the time scale of the

snapshot duration [9]. We consider τ = 3 minutes to be a

reasonable estimate of minimum session length in Bittorrent

[10].

A. Graph Sampling

Suppose that a Bittorrent overlay network is a graph G(V,E)
with the peers or nodes as vertices and connections between

the peers as edges. If we observe the graph in a time series,

i.e., we take samples of the graph, the time-indexed graph is

Gt = G(Vt ,Et). We define a measurement window [t0, t0 + τ ]
and select peers at random from the set:

Vt0,t0+∆ =
t0+τ⋃

t=t0

Vt . (1)

Stutzbach et al. [11] showed that Equation (1) is only ap-

propriate for exponentially distributed peer session lengths but
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Fig. 2. CDF plot of number of peers for every swarm during measurement
with 104 to 1400 time samples for each torrent. This clearly shows high
variation in the number of peers in every swarm, due to churn in Bittorrent
networks.

we know from existing measurements that Bittorrent networks

peer session lengths have very high variation [3]. Equation (1)

focuses on sampling peers instead of peer properties. To cope

with that problem we must be able to sample from the same

peer more than once at different points in time [11]. We may

rewrite our desired sample as

vi,t ∈Vt , t ∈ [t0, t0 + τ ]. (2)

The number of peers in a swarm that is observed by our client

is our population. The sampled peers set is the number of peers

that exchange PEX messages with our client. Our sampled

peers set through PEX messages exchange can observe about

70% of the peers in a population. This observation is consistent

with [12].

B. Experimental Methodology

We joined the top 35 TV series torrents from the piratebay,

which claims to be the biggest torrent tracker on the Internet.

Almost all of these torrents were in steady-state phase, which

is more dominant than bootstrapping and decay phase of

Bittorrent’s lifetime. We used a modified rasterbar libtorrent

[7] client that is connection greedy, where the client tries to

connect to all peers it knows without a limit on the number

of connections, and the client logs PEX messages received

from other clients. PEX messages from old versions of Vuze

Bittorrent clients contain all of peers they connected to in the

past, hence these clients should be removed from the data.

Removal of some peers in data processing is valid in terms

of sampling with dynamics, see equation (2). In terms of

connectivity, two popular Bittorrent clients: uTorrent and Vuze,

by default try to connect to peer candidates randomly without

any preference, thus we have random data sets. This implies

that our data set is independent of measurement location and

the number of measurement locations.

C. Data Analysis Background

Many realistic networks exhibit the scale-free property [13],

though we note that “scale-free” is not a complete description

of a network topology [14] [15]. It has been suggested that
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Bittorrent networks also might have scale-free characteristics

[16]. In this paper, we test this hypothesis.

In a scale-free network, the degree distribution follows a

power-law distribution. A power-law distribution is quite a

natural model and can be generated from simple generative

processes [17], and power-law models appear in many areas

of science [13] [17].

A power-law distribution can be described as

Pr[X ≥ x] ∝ cx−α
. (3)

where x is the quantity of distribution and α is commonly

called the scaling parameter. The scaling parameter usually

lies in the range 1.8 < α < 3.5. In discrete form, the above

formula can be expressed as:

p(x) = Pr(X = x) =Cx−α
. (4)

This distribution diverges on zero, therefore there must be a

lower bound of x, called xmin > 0, that holds for the sample

to be fitted by a power-law. If we want to estimate a good

power-law scaling parameter then we must also have a good

xmin estimation.

We use maximum likelihood to estimate the scaling parame-

ter α of power-law [13]. This approach is accurate to estimate

the scaling parameter in the limit of large sample size. For the

detailed calculations of both xmin and α , see Appendix B in

[13].

IV. EXPERIMENT RESULTS

The CDF of the number of peers for every swarm during

measurement is shown in figure 2. It is clear that the number of

peers has high variability due to churns in Bittorrent networks.

A. Power-law Distribution of Node Degree

We want to know the power-law distribution of the mea-

sured Bittorrent networks, and we do not know a priori if

our data are power-law distributed. Simply calculating the

estimated scaling parameter gives no indication of whether

the power-law is a good model. To test the applicability of

a power-law distribution, we use the goodness-of-fit test as

described by Clauset et al. [13]. First, we fit data to the

power-law model and calculate the Kolmogorov-Smirnov (KS)

statistic for this fit. Second, we generate power-law synthetic

data sets based on the scaling parameter α estimation and the

lower bound of xmin. We fit the synthetic data to a power-

law model and calculate the KS statistics, then count what

fraction of the resulting statistics is larger than the value for

the measured data set. This fraction is called the p value. If

p ≥ 0.1 then a power-law model is a good model for the data

set, and if p < 0.1 then power-law is not a good model.

As mentioned before, a good estimation for xmin is important

to get a overall good fit. Too small an xmin will cause a fit only

to the body of the distribution. Too high an xmin will cause a

fit only to the tail of the distribution. Figure 3 illustrates the

fit for snapshots of torrent1 and torrent3. For torrent1, setting

xmin = 2 leads to α = 2.11, while xmin = 1 gives α = 2.9. For
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Fig. 3. Node degree fit for snapshots of two torrents, with three fits shown
in log scale. Torrent1: for xmin = 1 , α = 2.9, and p = 0.01. For xmin = 2 ,
α = 2.11, and p = 0.01. Torrent3: for xmin = 1, α = 2.1, and p = 0.1.
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Fig. 4. CDF plot of p value of K-S statistics. It shows that across our entire
set of Bittorrent snapshots, around 45% of the time a power-law distribution
is not a good fit for the data. The inset figure shows the CDF plot p value
for each torrent. The dash line on p value = 0.1 is the threshold.

torrent1, xmin = 1 visually does not give a good fit, while for

torrent3, setting xmin = 1 leads to a visually good fit.

Figure 4 shows the CDF for p values for all data sets. This

figure shows that from the K-S statistics point of view, around

45% of the time, Bitorrent networks do not follow a power-law

model.

However these data sets must be interpreted with care. The

usage of the maximum likelihood estimators for parameter

estimation in power-law is guaranteed to be unbiased only in

the asymptotic limit of large sample size, and some of our

data sets fall below the rule of thumb for sample size, n =
50 [13]. In the goodness-of-fit test, a large p value does not

mean the power-law is the correct distribution for data sets,

because there may be other distributions that match the data

sets and there is always a possibility that small value of p the

distribution will follow a power-law even though the power-

law is not the right model [13]. We address these concerns

next.

B. Alternative Distributions

Even if we have estimated the power-law parameter properly

and the fit is decent, it does not mean the power-law model
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and p value > 0.1. There are no points in area 1 and area 2, meaning that
the power-law model is not a better model for all data; instead 42% of the
points lie in area 3 and 58% of the points lie in area 4.

is good. It is always possible that non-power-law models are

better than the power-law model. We use the likelihood ratio

test [18] to see whether other distributions can give better

parameter estimation. We only consider a power-law model

and a power-law with exponential cut-off model as examples

to show model selection. Model selection for power-law model

and power-law with exponential cut-off is a kind of nested

model selection problem. In a nested model selection, there

is always the possibility that a bigger family (power-law) can

provide as good a fit as the smaller family (power-law with

exponential cut-off). In likelihood ratio test, we must provide

the significance value (ρ value). For concrete explanation and

real-world examples, we refer the readers to [13].

Under the likelihood ratio test, we compare the pure power-

law model to power-law with exponential cut-off, and the

ρ value here helps us establish which of three possibilities

occurs: (i) ρ > 0.1 means there is no significant difference

between the likelihood of the data under the two hypotheses

being compared and thus neither is favored over the other; if

we already rejected the pure power-law model, then this does

not necessarily tell us that we also can reject the alternative

model; (ii) ρ < 0.1 and the sign of LR = negative means that

there is a significant difference in the likelihoods and that the

alternative model is better; if we have already rejected the

pure power-law model, then this case simply tells us that the

alternative model is better than the bad model we rejected;

(iii) if ρ < 0.1 and the sign of LR = positive means that there

is a significant difference and that the pure power-law model

is better than the alternative; if we have already rejected the

pure power-law model, then this case tells us the alternative

is even worse than the bad model we already rejected.

Figure 5 shows a p value vs ρ value scatter plot, divided

into three areas. Area 1: ρ value < 0.1 and p value > 0. Area

2: ρ value > 0.1 and p value < 0.1 Area 3: ρ value > 0.1

and p value > 0.1 This figure shows that 52% of the samples

lie in area 1, thus an alternative model may be plausible for

these samples.

Now we plot p value vs LR as shown in figure 6 for ρ < 0.1.

We divide the figure into four areas: area 1, area 2, area 3,

and area 4 with green lines as borders to see how sparse the

points in each area. Area 1: LR=positive sign and p value

< 0.1. Area 2: LR=positive sign and p value > 0.1. Area 3:

LR=negative sign and p value < 0.1. Area 4: LR=negative

sign and p value > 0.1. In this figure, 58% of the samples lie

in area 3 and 42% lie in area 4, while there are no samples in

areas 1 and 2, which means that the alternative model is better.

Although in the case p value < 0.1 we reject power-law as

the plausible model, the alternative model is still better than

the power-law model. We believe that these results are caused

by peers that are not willing to maintain large numbers of

concurrent connections (high node degree). These observations

clearly demonstrate that comparing the model to other models

is a very complex task in highly dynamic networks.

C. Clustering Coefficient

Clustering describes the topology robustness. It has practical

implications; for example, if node A is connected to node B

and node B to node C, then there is a probability that node

A will also be connected to node C, improving the robustness

of the network against the failure of a connection. Clustering

is quantified by a node clustering coefficient as follows:

cv =
2T (v)

deg(v)(deg(v)−1))
(5)

and for the whole graph the clustering coefficient is

C =
1

n
∑
v∈G

cv. (6)

A larger clustering coefficient represents more clustering at

nodes in the graph, therefore the clustering coefficient ex-

presses the local robustness of the network. The distinction

between a random and a non-random graph can be measured

by clustering-coefficient metrics [19]. A network that has a

high clustering coefficient and a small average path length

is called a small-world model [19]. Newman [20] mentions

that virus outbreaks spread faster in highly clustered networks.
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In Bittorrent systems, a previous study [21] mentioned the

possibility that Bittorrent’s efficiency partly comes from the

clustering of peers. Figure 7 shows the CDF clustering coeffi-

cient value of our data sets. Only one torrent exhibits clustering

coefficient less than 0.1 for about 40% of the snapshots,

while for the other torrents, more than 70% are less than

0.1. This low clustering coefficient observation is the same

as that observed by Dale et al. [16]. Considering only the

low clustering coefficient, the Bittorrent topologies seem to

be close to random graphs.

V. CONFIRMATION VIA SIMULATION

Here we use simulations to compare the overlay topology

properties based on our real-world experiments. We set the

maximum peer set size to 80, the minimum number of neigh-

bors to 20, and the maximum number of outgoing connections

to 80. In our simulation, the result is quite easy to get since

we are on a controlled system; we can directly read the

global topology properties from our results. We also have

the simulated PEX messages. We compare the global overlay

topology properties as the final result from the simulator with

the overlay topology that we get from PEX on the same

simulator. Figure 8 shows the α estimate and p value both

for the global result and the PEX result from our simulator.

It clearly shows that global result and the PEX result from

the simulator produce very low p values. We calculate the

Spearman correlation for both α values from the global result

and the PEX result. The Spearman rank correlation coeffi-

cient is a non-parametric correlation measure that assesses

the relationship between two variables without making any

assumptions of a monotonic function. The Spearman rank

correlation test gives 0.38 ≤ ρ ≤ 0.5, which we consider to

be moderately well correlated.

VI. RELATED WORK

Bittorrent protocol performance has been explored exten-

sively [3] [22] [23] [24]. The rarest first algorithm was

discussed in [22], average download speed was discussed in

[23], peer arrival and departure process was discussed in [3]

and the effect of distributon of the peers on the download
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PEX method can be used to estimate α .

job progress was discussed in Y.Tian et al. [24]. The huge

numbers of peers sending P2P download requests to random

targets on the Internet and anti-P2P companies injecting bogus

peers through PEX were discussed in Z.Li et al. [25]. Higher

upload-to-download ratios in Bittorrent darknet were discussed

in C.Zhang et al. [26]. Although we know that the topology

can have a large impact on performance, to date only a few

papers have addressed the issue. Urvoy et al. [27] used a

discrete event simulator to show that the time to distribute

a file in a Bittorrent swarm has a strong relation to the

overlay topology. Al-Hamra et al. [28], also using a discrete

event simulator, showed that Bittorrent creates a robust overlay

topology and the overlay topology formed is not random.

They also show that peer exchange (PEX) generates a chain-

like overlay with a large diameter. Dale et al. [16], in an

experimental study on PlanetLab, show that in the initial stage

of Bittorrent a peer will get a random peer list from the

tracker. They found that a network of peers that unchoked

each other is scale-free and the node degree follows a power-

law distribution with exponent approximately 2. Dale et al.

[16] also showed that the path length formed in Bittorrent

swarms averages four hops and Bittorrent swarms have low

average clustering coefficient. However, little work has been

done on determining that topology in the real world. Our

results agree with previous research [16] in some areas and

disagree in others, perhaps for two reasons. First, power-law

claims must be handled carefully. Many steps are required to

confirm the power-law behavior, including alternative model

checking, and we must be prepared for disappointment since

other models may give a better fit. Second, our methodology

relies on real work measurement combine with simulation

for validation. We are using real swarms from a real and

operational Bittorrent tracker. This real-world measurement

will reflect different types of clients connected to our swarm,

and each client has a different behavior. We also face difficult-

to-characterize network realities such as NAT and firewalls.

Our ability to reproduce key aspects of the topology dynamics

suggests that these factors have only limited impact on the

topology, somewhat to our surprise.
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VII. CONCLUSION AND FUTURE WORK

We have investigated the properties of Bittorrent overlay

topologies from the point of view of the peer exchange pro-

tocol using real swarms from a real and operational Bittorrent

tracker on the Internet. We obtain instantaneous snapshots of

the active topology of the Bittorrent network over a month.

We cope with the dynamics of the overlay by sampling peer

properties. Our results agree in some particulars and disagree

in others with prior published work on isolated testbed exper-

iments on Bittorrent, suggesting that more work is required

to fully model the behavior of real-world Bittorrent networks.

Unlike [16], we find that the node degree of the graph formed

in a Bittorrent swarm can be described by a power law with

exponential cut-off, and the observation of a low clustering

coefficient implies Bittorrent networks are close to random

networks. Some areas of improvement that we have identified

for future work are: more correlation analysis of the number

of peers with α and p value, continued characterization with

NATed peers, wider likelihood ratio test with other models

and comparing the results with simulation for global graph

properties such as distance distribution and spectrum. We hope

to incorporate these properties into a complete dK series for

the evolution of a real-world Bittorrent overlay as it evolves

over time [15]. We conclude that further work throughout the

community is necessary to continue to improve the agreement

of simulation and controlled experiment with the real world,

and that such work will impact our understanding of Bittorrent

performance and its effects on the Internet.

ACKNOWLEDGEMENTS

We thank Daniel Stutzbach for help on graph sampling,

Aaron Clauset for help on loglikelihood test and power-law

Matlab code, Sue Moon and Joe Touch for suggestions.

REFERENCES

[1] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and F. Jaha-
nian, “Internet inter-domain traffic,” ACM SIGCOMM Computer Com-

munication Review, vol. 40, no. 4, pp. 75–86, 2010.

[2] C. Index, “Forecast and methodology, 2009–2014,” White paper, CISCO,

June, vol. 2, 2010.

[3] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang, “Measure-
ments, analysis, and modeling of bittorrent-like systems,” in Proceedings

of the 5th ACM SIGCOMM conference on Internet Measurement.
USENIX Association, 2005, p. 4.

[4] ThePirateBay, available on http://www.thepiratebay.org.

[5] C. Zhang, P. Dhungel, and K. Di Wu, “Unraveling the bittorrent
ecosystem,” IEEE Transactions on Parallel and Distributed Systems,
2010.

[6] Bittorrent client comparison, available on http://en.wikipedia.org/wiki/
Comparison of BitTorrent clients.

[7] A. Nordberg, “Rasterbar libtorrent,” available on http://www.rasterbar.
com/products/libttorrent.

[8] A. Al-Hamra, N. Liogkas, A. Legout, and C. Barakat, “Swarming
overlay construction strategies,” in Computer Communications and Net-

works, 2009. ICCCN 2009. Proceedings of 18th Internatonal Conference

on. IEEE, 2009, pp. 1–6.

[9] D. Stutzbach, R. Rejaie, and S. Sen, “Characterizing unstructured
overlay topologies in modern p2p file-sharing systems,” Networking,

IEEE/ACM Transactions on, vol. 16, no. 2, pp. 267–280, 2008.

[10] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer
networks,” in Proceedings of the 6th ACM SIGCOMM conference on

Internet measurement. ACM, 2006, pp. 189–202.

[11] D. Stutzbach, R. Rejaie, N. Duffield, S. Sen, and W. Willinger,
“Sampling techniques for large, dynamic graphs,” in INFOCOM 2006.

25th IEEE International Conference on Computer Communications.

Proceedings. IEEE, 2007, pp. 1–6.
[12] D. Wu, P. Dhungel, X. Hei, C. Zhang, and K. Ross, “Understanding

peer exchange in bittorrent systems,” in Peer-to-Peer Computing (P2P),

2010 IEEE Tenth International Conference on. IEEE, 2010, pp. 1–8.
[13] A. Clauset, C. Shalizi, and M. Newman, “Power-law distributions in

empirical data,” SIAM review, vol. 51, no. 4, pp. 661–703, 2009.
[14] J. Doyle, D. Alderson, L. Li, S. Low, M. Roughan, S. Shalunov,

R. Tanaka, and W. Willinger, “The robust yet fragile nature of the
internet,” Proceedings of the National Academy of Sciences of the United

States of America, vol. 102, no. 41, p. 14497, 2005.
[15] P. Mahadevan, D. Krioukov, K. Fall, and A. Vahdat, “Systematic topol-

ogy analysis and generation using degree correlations,” in Proceedings

of the 2006 conference on Applications, technologies, architectures, and

protocols for computer communications. ACM, 2006, pp. 135–146.
[16] C. Dale, J. Liu, J. Peters, and B. Li, “Evolution and enhancement of

bittorrent network topologies,” in Quality of Service, 2008. IWQoS 2008.

16th International Workshop on. IEEE, 2008, pp. 1–10.
[17] M. Mitzenmacher, “A brief history of generative models for power law

and lognormal distributions,” Internet mathematics, vol. 1, no. 2, pp.
226–251, 2004.

[18] Q. Vuong, “Likelihood ratio tests for model selection and non-nested
hypotheses,” Econometrica: Journal of the Econometric Society, vol. 57,
no. 2, pp. 307–333, 1989.

[19] D. Watts and S. Strogatz, “Collective dynamics of small-world net-
works,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.

[20] M. Newman, “Properties of highly clustered networks,” Physical Review

E, vol. 68, no. 2, p. 26121, 2003.
[21] A. Legout, N. Liogkas, E. Kohler, and L. Zhang, “Clustering and sharing

incentives in bittorrent systems,” in Proceedings of the 2007 ACM

SIGMETRICS international conference on Measurement and modeling

of computer systems. ACM, 2007, pp. 301–312.
[22] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Rarest first and choke

algorithms are enough,” in Proceedings of the 6th ACM SIGCOMM

conference on Internet measurement. ACM, 2006, pp. 203–216.
[23] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “A measurement study

of the bittorrent peer-to-peer file-sharing system,” Delft University of

Technology Parallel and Distributed Systems Report Series, Tech. Rep.

Technical Report PDS-2004-007, 2004.
[24] Y. Tian, D. Wu, and K. Ng, “Modeling, analysis and improvement for

bittorrent-like file sharing networks,” in INFOCOM 2006. 25th IEEE

International Conference on Computer Communications. Proceedings.
IEEE, 2007, pp. 1–11.

[25] Z. Li, A. Goyal, Y. Chen, and A. Kuzmanovic, “Measurement and
diagnosis of address misconfigured p2p traffic,” in INFOCOM, 2010

Proceedings IEEE. IEEE, 2010, pp. 1–9.
[26] C. Zhang, P. Dhungel, Z. Liu, and K. Ross, “Bittorrent darknets,” in

INFOCOM, 2010 Proceedings IEEE. IEEE, 2010, pp. 1–9.
[27] G. Urvoy-Keller and P. Michiardi, “Impact of inner parameters and

overlay structure on the performance of bittorrent,” in INFOCOM 2006.

25th IEEE International Conference on Computer Communications.

Proceedings. IEEE, 2007, pp. 1–6.
[28] A. Al Hamra, A. Legout, and C. Barakat, “Understanding the properties

of the bittorrent overlay,” CoRR abs/0707.1820, 2007.

916


