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Abstract—Opportunistic mobile networks are a promising way
to offload infrastructure networks, or provide communication
in case of insufficient or non-existent infrastructure coverage.
Understanding of the mobility process that drives such networks
is crucial for design, analysis, and configuration. Generally,
this mobility process is modeled on a plain playground where
devices can move freely; both in case of simulation, and analysis
of real-world traces. Graph-based playgrounds provide more
realistic models but their impact on mobility is insufficiently
understood. We provide a methodology to analyze the impact
of the underlying graph on inter-contact time using methods
from spectral graph theory. We gather the inter-contact times
that both a random and a social mobility model exhibit on
synthetic grid-based graphs and real-world city maps through
simulations and perform fitting to a model for inter-contact time
distribution. We then analyze correlations between parameters
of these distributions and the spectral gap of a graph. Our main
finding is that the graph structure has strong impact on inter-
contact time distribution in both random and social mobility on
grid-based graphs. For real-world city graphs a social mobility
model determines inter-contact time independently of the graph
structure, whereas the graph structure has strong impact on
inter-contact times for a random mobility process.

I. INTRODUCTION

The rapid growth in number of mobile devices like smart-

phones enables new forms of infrastructure-less communica-

tion through opportunistic mobile networks such as Delay Tol-

erant Networks (DTN). Such networks can offload congested

infrastructure networks [1], [2], provide communication when

infrastructure coverage is unavailable [3], [4], and provide

infrastructure-less content dissemination [5].

Mobile opportunistic networks exploit characteristics of

human mobility for routing, which have shown to follow

a power-law distribution in inter-contact time [6], [7], [8].

Based on these observations—which have been analyzed from

mobility traces obtained through real-world experiments—

mobility models have been proposed that can be used for

simulative studies [9], [10]. Typically such mobility models

are applied on a plain playground, allowing mobile devices to

move to an arbitrary destination on a straight line. In reality,

however, movement of mobile devices is restricted by the

street structure of a city.

Inter-contact times provide the most important mobility

characteristic for mobile opportunistic networks; defined in [6]

as “the time elapsed between two successive contact peri-

ods for a given pair of devices”. Chaintreau et al. [6] have

shown analytically that the slope of the inter-contact time

distribution follows a power-law distribution which directly

affects the expected delay in DTNs—and therewith delivery

probability if messages are time-to-live restricted. Rhee et al.

have confirmed through simulations that the inter-contact time

“directly impacts routing delays in DTN” [11]. While some

conjectures on the relationship between inter-contact times and

the underlying graph where mobile devices move on exist,

e. g. [11], to the best of our knowledge there is no sound

theoretical framework to provide evidence for or against the

existence of such relationship.

In this paper, we use results from spectral graph theory to

derive a correlation between graph characteristics and inter-

contact times. Through simulation of a social mobility model

and a random mobility model on synthetic grid-based graphs

and real-world city graphs we gather data on inter-contact

times. Parameters for models of inter-contact time distribution

are acquired by model fitting. We derive that the spectral gap—

determined by the second largest eigenvector of a graph’s

random walk—directly determines inter-contact times for cer-

tain types of graphs and mobility models and analyze the

correlation between the spectral gap and the parameters of

the inter-contact time distributions. Our main findings are:

• Inter-contact times are strongly influenced by grid-based

graph structure in random and social mobility models.

• Real-world city maps do not exhibit sufficient difference

in structure to effectively influence inter-contact time of

a social mobility model. Difference in structure is strong

enough to influence a random mobility model.

In Section II we present city- and grid-graphs with the graph

model we use. Simulations of mobility models on the graphs

are described in Section III. In Section IV we perform model

fitting to determine the parameters for the mobility model

based on simulative data. Analysis through random walks and

spectral graph theory is provided in Section V to derive a

simple graph metric that we use in Section VI for correlation

with parameters from model fitting. Related work is given in

Section VII, summary and concluding remarks in Section VIII.

II. CITY AND GRID GRAPHS

We have selected ten metropolitan cities—shown in Figure 1

and listed in Table I—for our analysis that cover a large

set of different street graph structures. Our data is based on

OpenStreetMap1 and has undergone conversion by custom

tools2 for analysis and simulation. For geographic extraction

1http://www.openstreetmap.org
2http://www.tm.kit.edu/∼mayer/osm2wkt
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TABLE I: Analyzed cities and their graph metrics (area 2 ×
2 km, length L(), degree d(), spectral gap 1− λ2).

City |V | |E| ∅ L(e) ∅ d(v) 1− λ2

Cairo 1 024 1 580 63 m 3.08 0.000648
Chennai 822 1 255 70 m 3.05 0.001153
Karlsruhe 2 902 4 853 26 m 3.34 0.000569
Los Angeles 480 775 119 m 3.22 0.002909
Manhattan 1 032 1 852 64 m 3.58 0.001651
New Dehli 387 590 101 m 3.04 0.004383
Richmond 569 927 87 m 3.25 0.001998
San Francisco 792 1 287 73 m 3.25 0.002200
Tokyo 1 888 2577 31 m 2.72 0.000853
Venice 4 750 6459 21 m 2.71 0.000324

we selected the city center and cut a 2 × 2 km square area

of the city. Post-processing steps have been performed to

remove small unconnected partitions and map-data errors, and

conversion for simulation and analysis.

We model the city street graph G = (V,E) as follows: street

crossings are vertices V and street parts between crossings are

edges E. A complete street st ∈ S is made up of multiple

street parts st = {eq, . . . , ep} = {(vi, vj), . . . , (vk, vl)}. The

length of a street part ei is denoted L(ei), and the length of

the complete street st as L(st) =
∑

ei∈st
L(ei). We focus

on street parts rather than complete streets as they provide

a clearer definition through the graph’s edges. Table I shows

different graph-related properties of the city graphs, we will

come back to these later in Section VI.

Besides city street graphs we use synthetic grid-based maps.

A k×k grid is a graph G = (V,E) with V = {1, . . . , k}2 and

E = {((i, j) , (i′, j′)) : |i − i′| + |j − j′| = 1}, i. e. a vertex

has edges to its one-hop neighboring vertices. We name a

k × k grid simple k-grid in the following, and k the grid-id.

Note, that equal to the city graphs we always use a 2× 2 km

area for the grids, i. e. the grids are always laid out in the

same spatial relation with respect to the outer vertices, but with

different density of the grid. Therefore, the distance between

two adjacent vertices in a k-grid is always 2 km/(k − 1).

III. SIMULATION

Our reason to perform simulation over pure modeling for

analysis of mobility on graphs is twofold: First, movement

speed of devices and spatial layout of the graph is inherently

considered in simulations. Second, communication range of

devices and resulting effects become naturally apparent. While

such effects can be analytically captured, the methodology

quickly becomes unmanageable. We perform simulation of

mobile devices that can only move on a given graph to

gather the mobility behavior on different city- and grid-

graphs, in combination with two mobility models based on

social behavior and random movement. As simulator we

use ONE [12], as social mobility model Small World in

Motion (SWIM) [10], and as random mobility model random

walk as described in Section V. ONE can simulate a large

number of mobile devices through mobility models on graphs,

and is normally used for DTN evaluation. SWIM is a social

mobility model where devices select their next destination

based on distance to their home location, and the number of

other devices they have met in specific locations. It has been

shown in [10] that SWIM can generate realistic inter-contact

time distributions of power-law and exponential decay that

have been observed in real-world traces [6], [7]. Our main

interest is in the pair-wise inter-contact time behavior of the

mobile devices, i. e. the time it takes until the exact pair of

devices comes into contact again. Therefore, the number of

devices in the simulation is irrelevant, but a minimum of two

devices required. However, to gather more inter-contact time

samples we use 50 devices in the simulation. Furthermore,

SWIM requires a certain number of devices to build up its

social context. In both mobility models devices randomly

select their movement speed uniformly from [1, 3] m
s . SWIM

is configured with α = 0.1 to get a strong power-law slope (cf.

Figure 6c), waiting-time slope 1.45, and waiting-time cut-off

12 h (see [10]). Two devices are in contact when the distance

between them is equal or less than the communication range

of 50 m. The simulation performs a warmup phase of 7 days

and actual measurement of inter-contact behavior in the 7 days

following the warmup. During warmup the device distribution

in random walk becomes stationary, and SWIM can build up

its social context.

We perform simulations for each city and grid listed in

Table II. Each graph is simulated with 10 independent seeds

with both SWIM and random walk. The complimentary cu-

mulative distribution function (CCDF) of inter-contact times is

calculated for each seed and mean values are obtained. In case

a seed’s CCDF does not contain a sample of a required inter-

contact time value we perform linear interpolation to allow

for calculation of mean values over the 10 seeds3. Therefore,

for each combination of graph (cities ∪ grids) and mobility

model (SWIM ∪ random walk) we get a CCDF inter-contact

time distribution based on mean over 10 seeds.

IV. MODEL FITTING

To compare the inter-contact time samples obtained through

simulation—and especially the resulting CCDF—we fit the

CCDF to a model that describes the distribution with few

parameters. In case of the random walk the CCDF exhibits

a power-law with light slope and a smooth transition to

exponential decay [7]. We can therefore model the inter-

contact time distribution of random walk through:

frandom(x; a, b, c) ∝ (a · x)−b · e−c·x (1)

In case of SWIM we observe a much sharper transition from

a strong power-law to fast exponential drop. This point of

transition equals the waiting-time cut-off configured in SWIM

for 12 h (cf. Section III). Karagiannis et al. name this point

the characteristic time and observe it to be roughly at around

half a day in real-world traces [7]; which is in conformance

with our simulative results. As our domain size is always of

2×2 km, this transition point is fixed, resulting from the results

3CCDF values obtained through simulation are very dense on the x-axis and
interpolation only necessary on very small intervals between two consecutive
inter-contact CCDF samples
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Fig. 1: Analyzed cities with different structure.

TABLE II: Fitted parameters for fsocial and frandom.

Graph
fsocial frandom

a b c a b c

Cairo 0.000783607 0.963154 7.95380e-05 0.0249191 0.188735 1.73322e-05

Chennai 0.000779349 1.017460 8.47130e-05 0.0246315 0.151380 2.48902e-05

Karlsruhe 0.000617476 0.908340 7.12970e-05 0.0828945 0.207072 1.71114e-05

Los Angeles 0.000605725 0.998871 7.83111e-05 0.0200450 0.117289 2.39147e-05

Manhattan 0.000574250 0.953481 7.42306e-05 0.0592803 0.133647 2.55311e-05

New Delhi 0.000724826 1.006620 8.27994e-05 0.0185846 0.118119 2.45804e-05

Richmond 0.000945855 1.047200 9.22114e-05 0.0302184 0.115665 2.87775e-05

San Francisco 0.000664028 0.926872 7.39762e-05 0.0781781 0.108321 2.77447e-05

Tokyo 0.000680040 0.926988 7.45703e-05 0.0721026 0.175421 1.95030e-05

Venice 0.000584729 0.970573 7.58040e-05 0.1543270 0.194487 1.43148e-05

2-grid 0.000624391 2.003310 0.000149482 9.58866e-31 0.00443573 0.000419252

6-grid 0.000481603 1.189150 9.45409e-05 0.004409590 0.02759450 0.000102957

10-grid 0.000445598 0.989106 7.50485e-05 0.019350700 0.04522340 6.43708e-05

20-grid 0.000478028 0.809583 5.98201e-05 0.071597300 0.06736260 3.70200e-05

30-grid 0.000502961 0.730251 5.36672e-05 0.118217000 0.08630160 2.72394e-05

40-grid 0.000524959 0.673379 4.92007e-05 0.189731000 0.09852650 2.17265e-05

80-grid 0.000556867 0.750844 5.58158e-05 0.264449000 0.16189100 1.42985e-05

160-grid 0.000618753 0.855551 6.71766e-05 0.740786000 0.22075700 8.82597e-06

of Cai et al. [13]. Therefore, we model the inter-contact times

distribution of SWIM through a piecewise function:

fsocial(x; a, b, c) ∝
{

(a · x)−b if x < 12 hours

e−c·x if x ≥ 12 hours
(2)

In the following we name the parameters that require fitting

as “shift” a, “power-law slope” b, and “exponential” c.
For fitting frandom and fsocial to the inter-contact times CCDF

obtained through simulations we perform least-squares fitting.

Parameters obtained for frandom and fsocial are given in Table II.

In Section VI we will correlate these parameters to properties

of the graph that can be obtained easily and therewith analyze

whether the underlying graph or the mobility model is the

dominating force for the resulting inter-contact distribution.

V. RANDOM WALKS AND SPECTRAL GRAPH ANALYSIS

In the following we use random walks on graphs modeled

by Markov chains to correlate the properties of the underlying

graph to the mobility behavior (see [14] for an excellent

introduction and survey on random walks). Note that the

random walk analysis does not describe the spatial layout of

the graph and therewith does not account for movement speed

of devices and communication range, for this we performed

simulations in Section III. We can, however, analyze graph

properties and their relation with mobility much better and will

correlate the analytical results with simulation in Section VI.

Recall that we model the graph where mobile devices move

as G = (V,E). A random walk on G starts at vertex v0 ∈ V
and is at vt in the t-th step. In each step the random walk

selects a neighboring vertex with probability 1/d(vt); d(vt)
being the degree of vertex vt. Pt(i) is the probability of

the random walk of residing on vi at step t. The sequence

of random locations (vt : t = 0, 1, . . .) is a Markov chain.

AG is the adjacency matrix of the street graph G, and D a

diagonal matrix with the i-th diagonal element set to 1/d(i).
M = DAG = (pij)i,j∈V is the transition probability matrix

of the Markov chain. The t+1’th step of the random walk is

defined through Pt+1 = MTPt, and Pt = (MT )tP0. I. e.

the probability distribution Pt of the random walk can be

calculated through the initial distribution and the transition

probabilities obtained from G. If Pt = MTPt, the probability

distribution is stationary and π = Pt is called steady-state.

The mixing time is the number of steps t until Pt reaches π,

therefore it measures how fast the random walk converges to

a limiting distribution.

The hitting time H(i, j) is the expected number of steps a

random walk takes starting from i requires until j is reached,

and κ(i, j) = H(i, j) + H(j, i) is called the commute time.

Based on this we can introduce the return time: the expected

number of steps a random walk requires until it returns to its

origin (sometimes called recurrence time in literature). Pólya

showed 1921 in [15] that the probability of retuning to the

starting point converges to 1 as t → ∞ for a random walk on

a d-dimensional lattice with d = 1 and d = 2, but converges

to a value < 1 for d ≥ 3 (e. g. p(3) = 0.340537 . . . as shown

later by Watson, 1939). Note, that the graph structures we

analyze are 2-dimensional, i. e. d = 2, and our graphs are

finite, therefore a return time is guaranteed to exist. Since our

goal is, however, to draw conclusions on the opportunistic

networks, we are not interested in the return time of a single

random walk, but rather in the inter-contact time between two

random walks, as describe above. From a stochastic point of
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Fig. 2: Eigenvalues of grid-ids 10, 30, 50, 70 (top to bottom)

on log scale. Leftmost impulse is eigenvalue λ2 that bounds

the other eigenvalues. Leftmost white area is the spectral gap.
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Fig. 3: Correlation of grid-id and spectral gap on log-log scale.

view, however, Grinstead and Snell mention in [16, p. 17] that

on regular graphs, given a vertex (0, 0) ∈ V , “The paths of

two walkers in two dimensions who meet after n steps can be

considered to be a single path that starts at (0, 0) and returns

to (0, 0) after 2n steps. This means that the probability that

two random walkers in two dimensions meet is the same as the

probability that a single walker in two dimensions ever returns

to the starting point”. We can therefore transform our analysis

of inter-contact time to the analysis of return time. This is

inline with the derivation of return time and inter-contact time

for random walk on a circuit in [7], where return time and

inter-contact time only differ by a constant factor. We conclude

from [16, p. 17] and [15] that on a 2-dimensional graph two

random walkers are sure to meet again after a contact, i. e.

inter-contact time is sure to exist and can be modeled through

return time, based on hitting time.

For a regular graph the return time equals |V | (see [14]).

Therefore, for a k-grid (with wrapped borders to keep reg-

ularity) where |V | = k2 the return time is 1/
√
k = k−0.5:

a power-law correlation between grid-id and return time; we

come back to this in Section VI. In face of finite graphs, special

structures expose a strong heavy tail in inter-contact times

from random walks, e. g. circles or lines [7]. Cai and Eun

showed that the exponential drop of the inter-contact time is

due to the bounded and therewith finite domain [13], i. e. the

finite number of vertices for a random walk. Karagiannis et al.

first reported on this dichotomy of power-law and exponential

decay in [7], confirming and refining the findings of Chain-

treau et al. [6] who were the first to report on the power-law

nature of inter-contact times.

We now analyze the properties of the graph that affect the

hitting time, and therewith the return time which we use to

model inter-contact time. Analyzing the spectral properties of

a graph in terms of eigenvalues and eigenvectors, the hitting

and commute times can be calculated. Notably, hitting time

H(s, t), steady-state distribution π, and eigenvalues λk can

be put into relation as follows [14]:

∑

t

π(t)H(s, t) =
n
∑

k=2

1

1− λk
(3)

The second largest eigenvalue λ2 is of high importance due to

the fact that (1) it is closest to 1 and therewith the denominator

smallest and the fraction largest over all k in Eq. 3, (2) it

describes nicely the distribution of the other eigenvalues λk

through an upper bound, as shown in Figure 2. In the following

we exploit the line of arguments that

1) we can reside to return time when modeling inter-contact

time [16, p. 17],

2) the return time is based on hitting time [14],

3) λ2 has strongest impact on hitting time and bounds the

other eigenvalues λk for k > 2 (cf. Eq. 3, [14]).

In the following we use the spectral gap as a correla-

tion for city graphs and grid-based graphs with the inter-

contact times resulting the random and social mobility models.

The spectral gap is defined as 1 − λ2 (cf. denominator in

Eq. 3). Calculation of the spectral gap is directly coupled

with a random walk: Let AG be the adjacency matrix of

G, let D be a diagonal matrix with (D)ii = 1/d(i), and

N = D1/2AGD
1/2 = D−1/2MD1/2. Matrix N has the same

eigenvalues as M = DAG, but is symmetric and allows for

easier calculation. Remember, that M is the transition proba-

bility matrix of the Markov chain. Note, that as N is symmetric

its eigenvalues λk are real and it follows from the Perron-

Frobenius theorem: 1 = λ1 ≥ λ2 ≥ . . . ≥ λn ≥ −1. The

spectral gap is defined through the second largest eigenvalue

as 1− λ2. Note that the spectral gap results from the random

walk on G. Figure 4 shows the spectral gap of the analyzed

cities together with the spectral gap of grid graphs. Here, we

map a city graph to a grid graph based on the spectral gap.

In the following section we use the relation between spectral

gap and inter-contact time—described above and in Eq. 3—

to correlate the spectral gap with parameters obtained for the

mobility model through fitting of simulation data.

VI. CORRELATION BETWEEN GRAPH AND MOBILITY

Based on the simulations performed in Section III we

extracted parameters through model fitting in Section IV

that capture the important metric of inter-contact time with

few comparable variables shape a, power-law slope b, and

exponential c. In the previous Section V an analytical analysis

of random walks on graphs has been performed and shown

that the spectral gap has strong impact on the inter-contact

time and is easy to calculate based on eigenvalue analysis. In

this section we combine these results and show the correlation

between the fitted parameters and the spectral gap.

The most important parameter of inter-contact time is the

power-law slope (parameter b in Eq. 1 and Eq. 2). Chaintreau

et al. showed in [6] how this value affects the forwarding

performance of opportunistic networks and underlined its im-

portance. Figure 5 shows the correlation between spectral gap
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Fig. 4: Spectral gap for cities (bars) and grids (line). Provides

mapping of city to grid graph based on spectral gap.

and power-law slope for all combinations of grid graph and

city graph with social mobility and random mobility. For grid-

based graphs the spectral gap provides a smooth correlation for

the power-law slope, for both the social and random mobility

model. Grid-id on lower x-axis and spectral gap on upper x-

axis have been aligned, and city graphs aligned to the upper

x-axis based on their spectral gap (see Table I). The correlation

for the random mobility model is based on the argumentation

in Section V, the correlation with the social mobility model,

however, is surprising but makes our approach more powerful

and generally applicable. The minimum at grid-id 40 in the

social mobility model results from the transmission range of

devices which is configured to be 50 m (cf. Section III), i. e.

the power-law slope decreases when the grid becomes more

dense, up until the point where distance between two parallel

edges equals the communication range and two devices on

parallel edges can be in contact. Figure 5 further shows the city

graphs, in the order of Figure 4 and aligned on the spectral gap

(upper x-axis). We see that, again, the spectral gap is correlated

to the slope for random mobility on the city graphs (lower

short line), but provides no correlation for the social mobility

model on city graphs (upper short line). We can conclude that

the graph structures of cities are not sufficiently diverse to

impact the mobility model as in the other cases where we see

a clear correlation between spectral gap (based on the graph)

and power-law slope (resulting mobility).

In Figure 6 we show further correlations: for shift a we

have a correlation for grid-based graphs shown in Figure 6a,

but not for city graphs, there the shift is very stable on a single

value. Exponential c can be correlated nicely with spectral gap

in both grid graphs shown in Figure 6b and to some degree

with city graphs. Recall that we easily deduced a power-law

relation between return time and grid-id for random walk in

Section V for regular grid-based graphs with wrapped borders.

Figure 3 shows the power-law relation for grid-based graphs

between grid-id and spectral gap. Although our grids are not

completely regular (at the borders) the relation sufficiently

holds for our purpose. We can conclude that the correlation of

return time with spectral gap holds sufficiently for our graphs,
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Fig. 5: Power-law slope of fitted data to grid-id in grid graphs

and spectral gap in city graphs.

and inter-contact time is correlated with the spectral gap—

which supports our line of arguments proposed earlier. For

completeness, we show the power-law slope b with variation

of the α parameter for the SWIM model in Figure 6c.

We conclude that the underlying graph has strong impact

on resulting inter-contact time for random walk mobility on

grid-based graphs and on real-world city graphs. Therefore,

the choice of the graph for simulations is of high importance.

While the social mobility is clearly influenced over different

grid-based graphs, real-world city graphs do not differ suf-

ficiently in structure to influence the inter-contact behavior

of a social mobility model. Specifically, while the city graph

structure does impact the mobility, real-world cities are not

sufficiently diverse to further impact the mobility. Therefore

we can give a positive answer on the assumption of Rhee

et al. who stated in [11] that “[. . . ] these tendencies are likely

caused by human intentions in deciding travel directions [. . . ]

but not by geographical constraints such as roads [. . . ]”.

VII. RELATED WORK

The first work to identify the power-law distribution of inter-

contact times has been performed by Chaintreau et al. based

on analysis of real-world traces [6]. Karagiannis et al. refined

these results in that the distribution of inter-contact times

does not only follow a power-law, but exhibits an exponential

decay, starting from roughly half a day [7]. Furthermore, they

showed that already simple mobility models can exhibit power-

law and exponential decay in inter-contact times, e. g. random

walk on a circle. Cai and Eun found that the time where the

distribution turns exponential is due to the finite domain where

mobile devices move [13]. Several mobility models have been

proposed that can generate the behavior of power-law and

exponential inter-contact times [9], [10]. While work has found

that the impact of the underlying graph where mobile devices

move is of high importance for routing protocols, e. g. [17],

we are to the best of our knowledge the first to provide insight

into the correlation between graph and inter-contact behavior.

Large number of work has been done in the analysis of cities

for understanding how the structure of city impacts social
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Fig. 6: Further correlations: inter-contact time parameters on shift a and exponential c for grid-based graphs (6a, 6b). Power-law

slope b for different α configuration values of SWIM mobility model on map of Karlsruhe, Germany (6c).

development (e. g. slums or crime) in different cities. E. g.

Volchenkov and Blanchard analyze city structures through

random walks to find accessible parts of the city and compare

flow-based properties of the graphs to get an understanding

on social behavior [18]. An excellent overview on city graphs

gives the book by the same authors [19]. Random walks have

been studied in many context, a great survey on random walks

on graphs is given by Lovász in [14].

VIII. CONCLUSION AND OUTLOOK

Understanding mobility is crucial for design, analysis, and

deployment of mobile opportunistic networks. Whereas most

mobility models are defined on a plain playground, a graph-

based playground that restricts movement of devices is more

realistic. We used spectral graph analysis to study the im-

pact of the underlying graph on the mobility behavior using

synthetic grid-based graphs and real-world city street graphs.

Through simulative evaluation of random and social mobility

we gathered data and performed fitting to extract parameters

of inter-contact time distribution. We analyzed the impact of

the graph structure from an analytical point of view and found

that the spectral gap has a strong correlation to the parameters

of the inter-contact time distribution.

While we studied impact on inter-contact time, other mo-

bility measures are of importance, e. g. the graph structure

can influence the frequency of contacts, which impacts the

probability of multi-hop paths.
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[12] A. Keränen, T. Kärkkäinen, and J. Ott, “Simulating Mobility and DTNs
with the ONE,” Journal of Communications, vol. 5, no. 2, pp. 92–105,
Feb. 2010.

[13] H. Cai and D. Y. Eun, “Crossing Over the Bounded Domain: From Ex-
ponential to Power-law Inter-meeting Time in MANET,” in Proceedings

of ACM International Conference on Mobile Computing and Networking

(MobiCom), Montreal, QC, Canada, Sep. 2007, pp. 159–170.
[14] L. Lovász, “Random Walks on Graphs: A Survey,” Combinatorics, Paul
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