
Minimum Disclosure Routing
for Network Virtualization

Masaki Fukushima Teruyuki Hasegawa Toru Hasegawa
KDDI R&D Laboratories Inc.

Email: {fukusima,teru,hasegawa}@kddilabs.jp

Akihiro Nakao
The University of Tokyo

Email: nakao@iii.u-tokyo.ac.jp

Abstract—Although virtual collocation of Service Providers
(SPs) on top of Infrastructure Providers (InPs) via network
virtualization brings various benefits, we posit that operational
confidentiality has not been considered in this network model. We
extend and apply the Secure Multiparty Computation (SMC)
protocol to solving Minimum Disclosure Routing (MDR), that
is, enabling an SP to route packets without disclosing routing
information to InPs. Our study reveals that MDR can be achieved
securely with marginal latency overhead with regard to the
convergence time in well-engineered routing algorithms. Our
study sheds light on the path for network virtualization to be
used to resolve the challenges for ISPs of today.

I. INTRODUCTION

As multiple access technologies to the Internet become
available to users, such as ADSL, FTTH and 3G/4G wireless,
Internet Service Providers (ISPs) are facing a mixture of
challenges that may seem harder than ever to fulfill concur-
rently, such as (1) extending footprint to cover large user-base
and multiple access means per user, (2) reducing operational
cost, (3) improving network availability, and (4) maintaining
operational confidentiality.

An emerging concept of network virtualization (NV) re-
cently proposed in various projects [1]–[3] is expected to
help ISPs achieve some of the goals, especially (1)-(3), at the
same time. For example, virtual collocation [4], [5] separates
Infrastructure Providers (InPs) that provide multiple isolated
slices of physical resources and Service Providers (SPs) that
utilize slices to operate virtual networks on, in order for the
SPs to cost-effectively extend their network footprint on top of
multiple InPs without investing on physical infrastructure and
to improve network availability by splicing multiple paths [6].

However, the last bullet (4) mentioned above, operational
confidentiality, may be left unresolved even with such a
new concept of NV to the rescue for achieving the diverse
mixture of goals of ISPs. We observe that an ISP often strives
to keep its competitors away from its operational practices
developed to survive business tussle. It is common for the
followers of market-leaders in various businesses to analyze
their strategies/operations and to employ them to catch up [7],
[8]. Free-riding on other ISPs’ operational expertise turns out
to be quite effective since ISPs often cultivate the market in
similar geographical regions [9], [10]. In the German wireless
telecommunication market, followers have taken such a “herd-
ing strategy” to bring severe price-cutting competition and the
profit has plunged by 50% in five years [11]. In the light of

these observations, one must note that NV in fact may have
negative impact on confidentiality of operational information
of SPs, since virtual collocation [4], [5] implies that an InP
runs its own SP service on its top as well as on the other
(competing) InPs that have access to the operational details
of the SP on top of them. For example, virtual collocation
may allow two competing InPs such as AT&T and Verizon to
extend the footprint of their own SP services over the resources
of each other, which, however, endangers the operational
confidentiality of both SPs. Therefore, if NV is to be employed
to satisfy all the goals (1)-(4) of ISPs mentioned previously,
the challenge is to achieve secure network operations of SPs
without disclosing much information to the underlying InPs.

In this paper, taking distributed routing in SP’s virtual
networks as an example, we focus on Minimum Disclosure
Routing (MDR), where an SP overlaid on top of multiple
InPs minimizes disclosure of its routing information of the
virtual network, such as topology and link/path cost, to the
underlying InPs, while the SP’s virtual routers collectively and
securely perform distributed routing computation1. We show
that the MDR problem can be solved through the extension to
Secure Multiparty Computation (SMC) [14], where multiple
parties cooperatively compute a function from each party’s
confidential input. Our feasibility study reveals that the pro-
posed method is supposed to achieve secure routing without
degrading convergence time. Accordingly, we conclude that
our proposed method together with NV fulfills all the contra-
dicting goals of ISPs concurrently.

The rest of the paper is organized as follows. Section II
defines the problem and Section III proposes the solution.
Section IV evaluates the proposal and Section V discusses
the important issues. Section VI introduces the related work.
And finally Section VII briefly concludes.

II. PROBLEM

A. A Walk-through Scenario

We consider the network virtualization shown in Figure 1
where a service provider (SP) is operating a slice (i.e., a
virtual network) on top of four infrastructure providers (InPs)
Ie, If , Ig, and Ih. For the sake of discussion, we introduce a
term subslice to denote a part of a slice on top of each InP,

1Note that disclosure of link and path cost leads to disclosure of further
information such as link bandwidth [12], [13].

This paper was presented as part of the 14th IEEE Global Internet Symposium (GI) 2011 at IEEE INFOCOM 2011

978-1-4244-9920-5/11/$26.00 ©2011 IEEE 875

Subslice e Subslice f

Subslice g
Subslice h

SPh’s slice

src dst
e1

e2

f2

g1 g2
h2

h1

Physical linkPhysical node

Virtual intra-subslice linkVirtual internal router

Virtual inter-subslice linkVirtual border router

End node (customer) Path from src to dst

InPs’ physical networks

InP Ie
InP If

InP Ig
InP Ih

f1

Fig. 1. An example virtualized network environment (an SP operating over
four InPs)

in other words, a set of virtual routers and virtual links each
InP is hosting. For example, in Figure 1, the subslice e is
a part of the SP’s slice on top of InP Ie. Virtual routers on
the borders of the subslices are interconnected at two peering
locations (e1, f1, g1) and (f2, g2, h2), as is often the case with
the Internet of today [9], [15].

Suppose in this example that the SP is actually operated by
InP Ih that is a business competitor to the rest of InPs, Ie, If ,
and Ig. The SP (SPh) purchases virtual routers and virtual
links from these three InPs, builds a slice running an arbitrary
networking protocol, and provides end-to-end services to its
customers src and dst.

Suppose SPh is willing to implement the shortest-path
routing, that is, to route a packet from src in the subslice
e to dst in the subslice h through the path with the smallest
hop count. For the sake of simplifying routing, we set the
hop-count between routers within a peering location such as
e1, f1, g1 to zero since they are typically collocated [9], [15].
For example, the shortest path from src to dst is 7 hops (7
virtual intra-subslice links) via e2, e1 through the subslice f
and via h2, h1.

Now, SPh faces a fundamental problem that its virtual
routers must calculate the shortest path while disclosing only
the encrypted or fragmented topology information that cannot
be reconstructed into something meaningful to the other InPs,
e.g., how e1 finds that this packet should exit from e to f rather
than to g without obtaining raw hop-counts of virtual links
in the other subslices f, g, h. Unless SPh could not assure
the confidentiality of its operational information, it would not
utilize virtualized network resources from its competitors.

B. Minimum Disclosure Routing (MDR)

As shown in Section II-A, an SP may encounter MDR
problem, where each virtual router needs to obtain its next hop
information without disclosing any such confidential routing
information to its underlying InPs.

MDR is formulated as the problem of distributed compu-
tation that (1) takes local topology information as an input

from each virtual router, which is a set of distances (e.g., hop-
counts, link-weights, etc.) of the virtual links to its neigh-
bors, (2) exchanges only the encrypted or fragmented routing
information among virtual routers as intermediate results of
computation, which is computed from the local topology
information, (3) gives next-hop information as an output to
each virtual router.

As a result, an InP hosting a subslice can obtain only
the local topology information and next hop information of
the subslice it is hosting. It cannot obtain local topology
information and next hop information of the other subslices
and any routing information.

C. Threat Model

Any solution to a security problem needs clear definition of
the threat model to assume. Thus, for MDR, we assume that
an InP be a curious-but-honest adversary in security jargon,
i.e., an adversary that may passively collect information but
will not actively attack the system.

We assume that an InP can observe any information (includ-
ing software, data and protocol messages) stored at any virtual
router it is hosting. This is because, technically, an InP has
access to any information stored in registers, memory, storage
on its top. However, we assume the InP will not maliciously
add, modify or remove any such information since such active
attacks can be traced by the SP. Besides, we assume that two
or more InPs may not collude to expose the SP’s confidential
routing information.

The threat model defined above implies that none of the
existing routing algorithms such as RIP and OSPF can achieve
MDR, because they require the virtual routers to send/re-
ceive confidential routing information (e.g., the distance to
a destination) between different subslices and thus disclose it
to underlying InPs. Most importantly, even if an SP naı̈vely
encrypts confidential routing information, the SP needs to store
the encryption key on top of InPs’ memory and storage in
order for a virtual router to decrypt the encrypted information.
Therefore, the InP also has access to the key and can decrypt
the encrypted information.

III. PROPOSED SOLUTION

Our approach to achieving MDR is to extend the generic
SMC by defining a new primitive to transfer a secret in
addition to the standard primitives so that our extended SMC
may be applied to a distributed routing problem such as MDR.

A. Secure Multiparty Computation (SMC)

SMC is defined as cooperative computation of a function
where multiple parties provide inputs and cooperatively cal-
culate outputs of the function, while keeping each party’s input
and output invisible from the other parties. SMC requires that
any intermediate results of the computation must not be dis-
closed to each party, since they might contain the information
that may infer the other party’s input and output. Although the
requirement of SMC appears infeasible to satisfy, surprisingly,
there exist several generic SMC protocols [14], [16], [17] if

876

every pair of the parties has a communication channel between
them (i.e., if the parties have full-mesh connectivity.)

In the generic SMC protocol [17], each party first protects
its own input by using the secret sharing scheme [18]; a
scheme to encode a secret input into multiple shares and
distribute the shares among the parties. Any single party
cannot recover the secret unless a certain subset of the other
parties disclose their shares to this single party for decoding.
Then, they compute the function while all the intermediate
computation results are also shared among them, which re-
quires exchanging messages between every pair of parties.
Finally, they recover the final output of the function.

B. Overview of Solution

From a viewpoint of SMC, MDR is an SMC problem that
multiple “virtual routers” (hereafter referred to as “routers”)
need to compute a function that takes local topology infor-
mation as an input from each router and gives next hop
information as an output to each router. However, the generic
SMC protocol cannot be applied to MDR due to a chicken-
or-egg problem—the generic SMC protocol requires full-mesh
connectivity between the routers, while routing is a problem
to logically establish such full-mesh connectivity.

Also, MDR can be viewed as a distributed routing problem,
which can be often divided into the local router problems.
Exercising this insight, we consider decomposing MDR into
local router computations, each of which is performed in a
set of fully-connected border routers located within the same
peering location, namely, defined as inter-subslice clique (or
simply referred to as clique). By definition, the border routers
in such a clique can perform the generic full-mesh version
of SMC protocol to solve the local problems. Furthermore,
since each border router in a clique is from a different InP,
running SMC among the border routers in the clique ensures
none of the underlying InPs may obtain the inputs (i.e., routing
information) from the other InPs.

In a nutshell, we solve MDR by running a distributed rout-
ing algorithm in a logical topology called clique-level topology
shown in Figure 2. Formally, a clique-level topology is a
multigraph of cliques, where a pair of cliques is connected by
clique-level link(s) if it is connected by intra-subslice path(s).
Each clique-level link between a pair of cliques represents the
shortest intra-subslice path between two routers, each at the
different clique. Also, the topology includes stubs (i.e., end
nodes) and clique-stub links connecting these stubs to cliques.
Each clique-stub link represents the shortest intra-subslice path
connecting a stub to a border router in the same subslice.

C. Primitive Operations in Extended SMC

In order to run a distributed routing algorithm in the clique-
level topology, we extend the SMC protocol in two-fold and
define four primitives for a clique of routers to invoke.

First, we identify the following three primitives for solving
local problems in a clique consisting of L parties (i.e., L border
routers). In the following, [x] = ([x]1, . . . , [x]L) denotes L

3

4

2
dst

Clique-level link

Inter-subslice clique

Clique-stub link

End node

e1

f1

g1

h2

f2

g2

2

Clique c1 Clique c2link kf

link kg

(1) [2] = SHARE(2)

(2) [3] = SHARE(3) (3) TRANSFER(kf, [2])

(4) [5] = COMPUTE(+, [3], [2])

(5) [kf] = COMPUTE(<, [5], [6])

(6) kf = RECOVER([kf])

src

Fig. 2. The clique-level topology of the slice shown in Figure 1. The
operations (1) to (6) are described in Section III-D

shares of a secret x (e.g., a distance value), generated by the
secret sharing scheme [18].

• [x] = SHARE(x) is for sharing a secret x among the
clique. It takes the secret x as an input from one of the
L parties, and gives the shares [x] = ([x]1, . . . , [x]L) of
the secret x as outputs to the L parties. Each share [x]`

is held by a different party.
• [y] = COMPUTE(F, [x]) is for computing a secret

y = F (x) by the generic SMC protocol [17] from a
publicly known function F and another secret x shared
among the clique. It takes the shares [x] of the secret
x as inputs from the L parties, and gives other shares
[y] of the computed secret y as outputs to the L parties.
Each party learns nothing regarding the secrets x, y and
intermediate computation results.

• x = RECOVER([x]) is for recovering a secret x shared
among the clique. It takes the shares [x] of the secret x
as inputs from the L parties, and gives the secret x as an
output to the L parties.

Second, we design another primitive to transfer a secret
shared among a clique to its neighboring clique in the clique-
level topology.

• TRANSFER(link, [x]) is for transferring a secret x
shared among this clique to a neighboring clique via link.
It takes the shares [x] of the secret x as inputs from the
L parties in this clique, and gives other shares of the
same secret x as outputs to the parties in the neighboring
clique.

D. Walk-through Scenario Revisited

We revisit the same example in Section II-A to sketch our
idea to solve MDR (i.e., how the border router e1 obtains next
hop information) by using Figure 2 and the primitives defined
in Section III-C.

First, as shown in Figure 2 (1), the border router h2 shares
the secret distance 2 of the clique-stub link to dst by invoking
SHARE among the clique c2. This distance 2 should be
invisible from the other subslices e, f, g because it includes
the distances of links in the subslice h. Also, in Figure 2 (2),
f1 shares the secret distance 3 of the link kf among the clique
c1.

Then, in Figure 2 (3), these secret distances are flooded
in the clique-level topology by advertising them between the

877

neighboring cliques. For instance, the clique c2 advertises
the secret distance 2 originated from h2 to the neighboring
clique c1 by invoking TRANSFER to kf . During this flooding
process, the secret distances of links along the flooding path
are added to the secret distance. For instance, in Figure 2
(4), the clique c1 adds the secret distance 3 of kf to the
secret distance 2 advertised via kf by invoking COMPUTE
and obtains an accumulated secret distance 5 from the clique
c1 to dst via kf . Likewise, the clique c1 obtains a secret
distance 6 from the clique c1 to dst via kg (not shown in
Figure 2).

Finally, in Figure 2 (5), the clique c1 is ready to compare
two secret distances, 5 and 6, advertised via kf and kg respec-
tively by invoking COMPUTE, and in Figure 2 (6), obtain a
secret next hop information kf . By invoking RECOVER, the
border routers in the clique c1 (including e1) find that kf is
the link to their next hop for dst.

E. Formal Solution

We describe our solution to the shortest path MDR in a
generic clique-level topology consisting of N cliques and M
destinations. This problem is addressed by a protocol that runs
a distance vector routing algorithm between cliques, while
each secret distance is invisible from underlying InPs by our
primitives as follows.

A clique has K clique-level links and S (S ≤ M) clique-
stub links. We consider constructing a clique-level routing
table for a given clique, r = (r1, . . . , rM), where rm takes the
link ID k ∈ {0, . . . , K} of the link to the next hop clique for
each destination m ∈ {1, . . . , M}. Link ID k ∈ {1, . . . , K} is
mapped to each of K clique-level links and k = 0 is reserved
for S clique-stub links, where rm = 0 indicates that the pack-
ets for the destination m should be forwarded from this clique
to the direct clique-stub link (i.e., the shortest intra-subslice
path) to m. Each of its clique-level link k ∈ {1, . . . , K} has
length dk, and its clique-stub link to each destination m has
length em. (em = ∞ if there is no such clique-stub link to
m.)

First, as an input to the protocol, the clique shares its local
topology information d = (d1, . . . , dK) and e = (e1, . . . , eM)
by invoking [d] = SHARE(d) and [e] = SHARE(e). The
shares [D1] of its own distance vector D1 = (D1

1, . . . , D
1
M)

is initialized to [e], where D1
m is the current shortest distance

to each destination m at the beginning of the step 1.
Then, at each step t (1 ≤ t), the clique transfers Dt

to its neighbors via each clique-level link k = 1, . . . ,K
by invoking TRANSFER(k, [Dt]). In turn, via each link k,
this clique receives the shares [Dt

k] of a neighbor’s distance
vector Dt

k = (Dt
k,1, . . . , D

t
k,M), where Dt

k,m is the current
shortest distance from this neighbor connected via link k to
each destination m at the beginning of the step t. Using these
shares [Dt

1], . . . , [D
t
K] of distance vectors, this clique obtains

the shares of its new distance vector defined as a function

Dt+1 = UpdateDistance(d, e, Dt
1, . . . ,D

t
K)

= (min0≤k≤K Ct
km|m = 1, . . . , M) , (1)

MIN

ADD ADD

1,1

t
D

,1

t

K
D

1
d

K
d 1

e

1

1

t
D

…

……

…

…

K wires

MIN

ADD ADD

1,

t

M
D

,

t

K M
DM

e

1t

M
D

…

…

…

…

…

…

K + 1 wires

M wires

for destination 1 for destination M

Fig. 3. Block-level (not gate-level) circuit representation of UpdateDistance
defined in Eq. (1)

where
Ct

km =
{

em, k=0,
dk+Dt

km
, k 6=0,

by invoking [Dt+1] = COMPUTE(UpdateDistance, [d], [e],
[Dt

1], . . . , [D
t
K]).

Finally, this protocol converges at a step tmax (i.e., the
diameter of the network, which is estimated as at most 10 in
a Tier-1 network [19]). The border routers in the clique obtain
their routing table as an output by computing a function

r = NextHop(d, e, Dtmax
1 , . . . ,Dtmax

K)
=

(
argmin0≤k≤KCtmax

km

∣∣ m = 1, . . . ,M
)
, (2)

by invoking [r] = COMPUTE(NextHop, [d], [e], [Dtmax
1],

. . . , [Dtmax

K]) and recovering r = RECOVER([r]).

IV. FEASIBILITY STUDY

To verify feasibility of the proposed solution described in
Section III-E, we examine extra latency incurred by SMC
protocol is comparable with respect to the convergence time
in typical routing algorithms. At every step of the solution,
each clique of routers invokes COMPUTE on UpdateDistance
implemented by the generic SMC protocol [17]. The SMC
protocol requires each router to exchange messages with every
other router in its clique and to perform computation on the
received messages, thus, incurs extra latency for both compu-
tation and communication compared to non-secure versions of
routing protocols.

The latency of each UpdateDistance function, Tupdate, is

Tupdate = Tcomm + Tcomp (3)

where Tcomm and Tcomp are latencies for communication and
computation, respectively.

Figure 3 shows logic circuit for the function UpdateDis-
tance. Although a function in SMC is represented in a logic
circuit of AND, OR, and NOT gates, each gate involves
communications among routers unlike the usual logic circuits.
Thus, Tcomm depends on the size (the total number of gates)
and the depth (the number of gates computed in sequence due
to their dependency) of the circuit, and is formulated as

Tcomm = size · s/B + depth · P (4)

878

0

20

40

60

80

100

120

0 2000 4000 6000 8000 10000

The number M of routing table entries

K = 12, B = 1 Gbps K = 12, B = 10 Gbps

K = 4, B = 1 Gbps K = 4, B = 10 Gbps

T
u
p
d
a
te

(m
se

c)

Fig. 4. Latency of an invocation of COMPUTE on UpdateDistance

where s is the message size, B and P are the bandwidth
and one-way propagation delay, respectively, of peering links
connecting border routers in a clique. Appendix A shows
size = 74MK and depth = 10 + 9 log(K + 1) hold for
each UpdateDistance.

For each of these gates in the circuit, each router performs
a set of computations on small integer operands. Since, as
shown in Figure 3, the circuit in question can be decomposed
per each destination, we can leverage parallel computation as
follows. Tcomp can be multiplicatively reduced as follows,

Tcomp = size · Tgate/nparallel (5)

where Tgate is the time required for computation per gate and
nparallel is the degree of parallelism.

We evaluate the latency Tupdate derived from the equation
(3) with typical SP’s network configurations. Figure 4 shows
Tupdate as functions of the number of routing table entries,
M . As the SMC protocol is performed by an inter-subslice
clique (i.e., peering routers collocated together within a single
city area [9], [15]), and thus P is set to 1 millisecond. Since
such short peering links have large bandwidth, B is set to 1
Gbps and 10 Gbps. The degree K depends on the topology
of SP’s slice. According to actual measurement results [20],
we set K = 12 (average degree of backbone routers) and
K = 4 (average degree of POPs). The message size s needs
to be 3 bits, since the secret sharing scheme [18] encodes
one bit of secret into shares of size roughly log L bits and
we suppose L = 6 as the number of tier-1 InPs that the SP
operates on. According to [21], a recent commodity 1.35 GHz
GPGPU can perform computation for each gate (5 additions,
4 multiplications and one modulo 2) in 57 clocks, which is
Tgate = 42 nanoseconds on each core, and since it has 240
cores, nparallel = 240. Memory bandwidth is not considered
since it is much larger than network bottleneck.

From Figure 4, we observe that the latency overhead Tupdate

is sub-hundred milliseconds for a large routing table with up
to 10k entries. As a result, the proposed solution will converge
within a second because it requires as many number of
invocations of UpdateDistance as the diameter of the network,

2Computation for each gate is rather simple because the SMC protocol un-
der our consideration is an information-theoretic scheme, not a cryptographic
scheme.

which is estimated as at most 10 in a Tier-1 network with 471
routers [19]. Since the convergence time of well-engineered
OSPF is in the order of sub-seconds [22], we conclude that
the convergence time in the proposed solution is comparable to
that in typical routing algorithms, thus, the proposed solution
is secure, yet, no worse than the existing routing algorithms
in terms of convergence time.

V. DISCUSSION

A. Correctness of MDR
For the sake of brevity, instead of providing the formal

proof of the correctness of MDR calculation, this section
discusses an intuitive sketch of the proof. Our approach can
be viewed as running a secure version of the Bellman-Ford
algorithm in a network of the cliques of routers. Information
on such a clique can never be reverse-engineered by any single
InP, since inputs/outputs of each clique is securely separated
via SHARE/RECOVER, the local computation is conducted
securely via COMPUTE, and the communication between
neighboring cliques is secured via TRANSFER. Correctness
and security of COMPUTE, SHARE and RECOVER are
provided in SMC [14] and the correctness of routing is
attributed to that of the standard Bellman-Ford algorithm [23].

B. Security of MDR
Any solution to a security problem needs thorough analysis

of the security level it provides. We suppose that semi-honest
InPs try to reverse engineer the SP’s routing by mounting
two types of attacks on the proposed solution. First, adver-
saries may attempt to decode confidential information from
its shares stored on top of semi-honest InPs. Obviously, this
attack is impossible because the secret sharing scheme [18]
used in the solution is information-theoretically secure under
our assumption that there is no collusion between two or
more InPs. Second, side channel attack may be launched that
exploits information such as timings of computation/message
transmission and message size. In the proposed solution, all
the primitive invocation sequence and timing are fixed and
computational time and message size are constant. In other
words, timing and message size of our protocol only depend
on the size of the network (M and tmax), which are constant
thus not confidential. As a result, the proposed solution has
no side channel that leaks values of confidential inputs (d and
e) to a semi-honest InP.

C. OSPF
Although our method can be naturally applied to RIP, its

application to OSPF is not so straightforward. In fact, our
primitives are generic enough to be applied to any distributed
algorithm, but should it be naively applied, it is suboptimal,
since the SMC for Dijkstra’s algorithm is costly. Alternatively,
since OSPF area border routers exchange distance vectors
but not link state information, our solution can be applied
to the inter-area distance vector routing in OSPF. However,
this approach suffers from the same performance problem as
discussed in [24]. Applicability of our method to OSPF is left
for our future work.

879

VI. RELATED WORK

Security issues in network virtualization have just begun
attracting attentions. Keller et al. [25] have identified the prob-
lem of accountability in hosted virtual networks. In contrast,
our work addresses confidentiality and is complementary to
the accountability and discusses fundamental security require-
ments in virtualized environments.

A few proposals exist for confidentiality of topology in-
formation in conventional inter-domain networking [26], [27],
where several operators need to cooperatively provide end-to-
end paths. These studies have not adopted any sophisticated
computation techniques like SMC and simply hide the infor-
mation not necessary for the computation or disclose some of
confidential information required for the computation.

A large body of work in SMC studies distributed compu-
tation without disclosing each party’s confidential information
[14], [16], [17]. Unfortunately, the generic SMC protocols
including [16], [17] and specific SMC protocols (e.g., privacy-
preserving shortest path [28] and inter-domain routing between
ASes [29]) are not applicable to distributed routing since they
assume every pair of the parties has a communication channel
between them, while distributed routing is to establish such
logical channels. We break down the problem into smaller lo-
cal SMC problems that require only the local communications.
To the best of our knowledge, our work is the first to extend
and apply the SMC protocol to distributed routing.

VII. CONCLUSION

We posit that operational confidentiality is crucial for en-
abling virtual collocation of SPs on top of InPs via network
virtualization (NV) for the real business scenarios. We focus
on Minimum Disclosure Routing (MDR) to enable an SP
to route packets without disclosing routing information to
InPs and propose that the extension to the generic Secure
Multiparty Computation (SMC) achieves MDR securely. Our
study reveals that the proposal is feasible since the extra
latency overhead incurred in the convergence time in our
secure routing protocol is within sub-seconds in large Tier-
1 ISP networks and is comparable to the convergence time in
well-engineered intra-domain routing algorithms. Our solution
presented in this paper sheds light on the path for network
virtualization to be used to resolve all the challenges for ISPs
of today, (1) footprint, (2) cost, (3) availability, and especially
(4) operational confidentiality, concurrently.

REFERENCES

[1] “GENI: Global Environment for Network Innovations,” http://www.geni.
net/.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation
in campus networks,” SIGCOMM CCR, vol. 38, no. 2, pp. 69–74, 2008.

[3] A. Nakao, R. Ozaki, and Y. Nishida, “CoreLab: An Emerging Network
Testbed Employing Hosted Virtual Machine Monitor,” Proc. ROADS
’08, December 2008.

[4] N. Feamster, L. Gao, and J. Rexford, “How to Lease the Internet in Your
Spare Time,” ACM SIGCOMM Computer Communications Review, pp.
61–64, January 2007.

[5] N. Chowdhury and R. Boutaba, “Network virtualization: state of the
art and research challenges,” IEEE Communications magazine, vol. 47,
no. 7, pp. 20–26, 2009.

[6] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala, “Path splicing,”
ACM SIGCOMM CCR, vol. 38, no. 4, pp. 27–38, 2008.

[7] D. McLoughlin and D. Aaker, Strategic Market Management: Global
Perspectives. John Wiley & Sons, 2010.

[8] G. Saloner, A. Shepard, and J. Podolny, Strategic management. John
Wiley, 2001.

[9] W. Norton, “The evolution of the US Internet peering ecosystem,” The
31st NANOG meeting, 2004.

[10] “Steel in the Air, AT&T/Cingular Cell Tower Lease Renego-
tiation,” http://www.steelintheair.com/Cingular-and-ATT-Wireless-Cell-
Tower-Lease-Negotiations.html.

[11] P. Nattermann, “Best practice does not equal best strategy,” The McK-
insey Quarterly, vol. 2, no. 2000, pp. 22–31, 2000.

[12] W. Parkhurst, Cisco OSPF command and configuration handbook.
Cisco Press, 2002.

[13] F. Chung, M. Garrett, R. Graham, and D. Shallcross, “Distance real-
ization problems with applications to Internet tomography,” Journal of
Computer and System Sciences, vol. 63, no. 3, pp. 432–448, 2001.

[14] O. Goldreich, Foundations of Cryptography, volume 2, Basic Applica-
tions. Cambridge University Press, 2004.

[15] Qwest Business, “Qwest Network Maps,” http://www.qwest-business.
com/demos/network-maps.html.

[16] O. Goldreich, S. Micali, and A. Wigderson, “How to play any mental
game,” in Proc. of ACM STOC. ACM, 1987, pp. 218–229.

[17] M. Ben-Or, S. Goldwasser, and A. Wigderson, “Completeness theorems
for non-cryptographic fault-tolerant distributed computation,” in Proc.
of ACM STOC. ACM, 1988, pp. 1–10.

[18] A. Shamir, “How to share a secret,” Communications of the ACM,
vol. 22, no. 11, pp. 612–613, 1979.

[19] R. Fukumoto, S. Arakawa, T. Takine, and M. Murata, “Analyzing and
modeling router–level Internet topology,” LNCS, vol. 5200, pp. 171–182,
2008.

[20] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measuring ISP
topologies with Rocketfuel,” IEEE/ACM Transactions on networking,
vol. 12, no. 1, pp. 2–16, 2004.

[21] M. Papadopoulou, M. Sadooghi-Alvandi, and H. Wong, “Micro-
benchmarking the GT200 GPU,” Computer Group, ECE, University of
Toronto, Tech. Rep., 2009.

[22] P. Francois, C. Filsfils, J. Evans, and O. Bonaventure, “Achieving sub-
second IGP convergence in large IP networks,” ACM SIGCOMM CCR,
vol. 35, no. 3, pp. 35–44, 2005.

[23] N. Lynch, Distributed algorithms. Morgan Kaufmann, 1996.
[24] M. Thorup, “OSPF areas considered harmful,” Private paper, 2003.
[25] E. Keller, R. Lee, and J. Rexford, “Accountability in hosted virtual

networks,” in Proc. of VISA. ACM, 2009, pp. 29–36.
[26] J. Vasseur and A. Farrel, “Preserving topology confidentiality in inter-

domain path computation using a path-key-based mechanism,” RFC
5520, April 2009.

[27] “3GPP TS 23.228 V5.15.0,” June 2006.
[28] J. Brickell and V. Shmatikov, “Privacy-preserving graph algorithms in

the semi-honest model,” LNCS, vol. 3788, p. 236, 2005.
[29] S. Machiraju and R. Katz, “Verifying global invariants in multi-provider

distributed systems,” in Proc. SIGCOMM HotNets, 2004, pp. 149–154.

APPENDIX

The size and the depth of the UpdateDistance circuit is
calculated as follows. Each wire in the circuit carries a distance
value at most 16 (as in RIP) and thus encoded into five bits.
Each ADD block (a five-bit adder) is a sequence of five one-bit
full adders (each with size 5 and depth 2), and thus has size 25
and depth 10. Since we have M · K ADD blocks in parallel,
the upper half of the circuit has size 25MK and depth 10.
Each MIN block (a minimum selector with K + 1 inputs) is
a log(K + 1)-deep binary tree of K minimum selectors with
two inputs (each with size 49 and depth 9), and has size 49K
and depth 9 log(K + 1). Because we have M MIN blocks in
parallel, the lower half of the circuit has size 49MK and depth
9 log(K+1). In total, the entire circuit of UpdateDistance has
size = 25MK + 49MK and depth = 10 + 9 log(K + 1).

880

