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Abstract—Compact routing algorithms have been presented as
candidates for scalable routing in the future Internet, achieving
near-shortest path routing with considerably less forwarding state
than the Border Gateway Protocol. Prior analyses have shown
strong performance on power-law random graphs, but to better
understand the applicability of compact routing algorithms in
the context of the Internet, they must be evaluated against real-
world data. To this end, we present the first systematic analysis
of the behaviour of the Thorup-Zwick (TZ) and Brady-Cowen
(BC) compact routing algorithms on snapshots of the Internet
Autonomous System graph spanning a 14 year period. Both
algorithms are shown to offer consistently strong performance on
the AS graph, producing small forwarding tables with low stretch
for all snapshots tested. We find that the average stretch for the
TZ algorithm increases slightly as the AS graph has grown, while
previous results on synthetic data suggested the opposite would
be true. We also present new results to show which features of
the algorithms contribute to their strong performance on these
graphs.

I. INTRODUCTION

Internet growth will ultimately lead to scalability problems
for the Border Gateway Protocol (BGP) in the default-free
zone of the network [1]. The fragmentation of the remaining
IPv4 address space and the increasing use of IPv6 suggest
future massive growth in the routing and forwarding state
required to sustain Internet routing. To achieve long-term
scalability of the network in the face of this growth will either
require introducing further layers of indirection (such as var-
ious edge/core split schemes, e.g., LISP [2]), or investigating
new routing paradigms such as compact routing.

Compact routing algorithms abandon the goal that traffic
traverses shortest paths by trading off routing state for path
stretch, where path stretch is generally a multiplicative mea-
sure of deviation from shortest path. Two widely studied com-
pact routing algorithms are the Thorup-Zwick (TZ) algorithm
[3] and the Brady-Cowen (BC) algorithm [4]. TZ defines an
upper bound of multiplicative stretch-3; BC, however, defines
an upper bound of additive stretch d, where d is a configurable
parameter (discussed in Section III-B). Results from prior
work using power-law random graphs have shown that these
algorithms can achieve very low average multiplicative path
stretch of around 1.1 [5]-[7]. This suggests that the actual
performance of these algorithms on Internet graphs, thought
to exhibit a power-law degree distribution [8], may also be
considerably better than the theoretical upper bounds.

In this paper, we investigate the behaviour of the TZ and BC
algorithms by systematically evaluating their performance on
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snapshots of the Autonomous System (AS) graph derived from
RouteViews data over the 14 year period from 8 November
1997 to 8 November 2010, inclusive. We use two snapshots
per year, each 6 months apart and totalling 27 snapshots of the
AS graph, to provide a representative coverage of the Internet
as it has evolved.

Our contributions are as follows: 1) we present the first
systematic study of the performance of the TZ and BC
algorithms on the AS graph, in terms of forwarding table
sizes and the distribution of path stretch values, to demonstrate
that these algorithms can perform as well on the AS graph as
suggested by previous studies on power-law random graphs; 2)
we present an analysis of the TZ landmark selection algorithm,
to better understand why this algorithm performs so well on
the AS graph, according to Thorup and Zwick’s metrics, and
to highlight why these metrics might not be appropriate for
practical Internet routing; and 3) we present an analysis of the
contribution of various components of the BC algorithm to its
performance.

The remainder of this paper is structured as follows. Sec-
tion Il covers background material and related work; Sec-
tion III outlines the TZ and BC compact routing algorithms.
Section IV presents our analysis of forwarding table sizes, path
stretches, and the behaviour of the TZ landmark set algorithm.
Section V covers some related work on Internet measurement,
and Section VI concludes the paper.

II. BACKGROUND & RELATED WORK

Typically, shortest path routing protocols are used in net-
works to minimise hop counts between nodes. BGP is the
common protocol used to exchange and propagate the routing
advertisements that allow inter-domain routing on the Internet.
BGP allows local policy enforcement, but it is otherwise
a path-vector protocol used to compute the shortest policy-
compliant AS path length to all destinations.

Shortest-path routing requires the retention of considerable
state: it has been proven that any universal routing algorithm
which guarantees multiplicative path stretch of less than 3
has a lower bound on the state required at each node of
Q(n?) [9] where n is the number of nodes in the graph.
However, algorithms with an upper bound on multiplicative
path stretch of 3 exist that permit sublinear forwarding state
growth at all nodes. The TZ algorithm achieves worst-case
multiplicative stretch 3 with a per-node upper bound on space
of O(n*/%1og?n).
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Previous work [5] has evaluated compact routing algorithms
on power-law random graphs with node degree distributions
obeying a power-law, such as the classical Barabasi-Albert
model of preferential attachment [10]. Degree distribution
alone does not fully describe the Internet graph, however, and
ignores topological features such as the clustering evident in
AS topologies; it is therefore desirable to test the TZ and BC
algorithms on real Internet graphs. Both algorithms were tested
on two Internet topology snapshots derived from different
sources in [7], but these solitary snapshots do not capture the
growth or variation in complexity of the AS graph over the
years.

To understand the behaviour of compact routing on the
Internet graph, we evaluate these algorithms against a series
of AS graph topologies derived from full BGP routing tables
from the same source spanning 14 years. These tables contain
the AS paths that BGP advertisements traversed en-route to the
collector. Using these paths, we construct a set of adjacencies
between ASes, creating a connected graph. Our aim here is to
evaluate these algorithms on real-world graphs spanning many
years. We further discuss our data in Section V.

IIT. COMPACT ROUTING ALGORITHMS

In this section, we describe the two compact routing algo-
rithms we evaluate in this paper. Both algorithms as described
require total knowledge of the graph to label nodes appropri-
ately before routing can take place, but that is not to say they
could not be decentralised in future.

A. Routing using the Thorup-Zwick Algorithm

Given a graph G = (V, E), the TZ algorithm [3] selects a set
of nodes A C V to act as landmarks, and restricts forwarding
tables at all nodes to contain only the set A and a partial
view of the rest of the network. A node w is retained in the
forwarding table of node v where u,v € V if u is in the
cluster C,, as specified in Equation 1, where d(u,v) is the
shortest-path distance between w and v, and D(u, A) is the
shortest-path distance between u and the closest node in the
landmark set A.

Cy = {u € Vl]d(v,u) < D(u, A)} (1)

The TZ landmark selection algorithm operates as follows.
The landmark set A is populated with an initial set of nodes
drawn from V' with uniform probability 2/ (n log n)/n, where
n = |V|. Next, the algorithm uses Equation 1 to construct
a cluster for each node, and then derives a set of nodes
W C V whose clusters are larger than the upper bound of
4nlog'/? n/\/n, specified in [3]. The algorithm then sets A
to be the union of A and W, and repeats until the cluster for
each node is smaller than the limit. The forwarding table of
each node v holds entries for the union of C, and A.

Packet forwarding under the TZ algorithm requires three
pieces of information: the identifier of the destination node,
the identifier of the destination’s landmark node, and the next
hop from the landmark to the destination. The forwarding
algorithm at each node attempts to match on the destination,

and forwards the packet toward the destination’s landmark
if the destination is not found. If the packet arrives at the
landmark, then the landmark node uses the next hop infor-
mation in the packet header to forward the packet toward the
destination. The landmark is used by the forwarding algorithm
at intermediate nodes only when the destination is not known.

It is important to understand that paths traversed by packets
do not necessarily include the landmark. Indeed, paths that
use the landmark imply that the longest possible TZ path has
been taken. It is possible, and expected, that packets arrive
at an intermediate node which has, through the clustering
process, retained a reference to the packet’s destination prior
to reaching the landmark. Shortest paths are always used from
the source toward the landmark until a route to the destination
is found, at which point the shortest path is used from that
node to the destination itself. Thus, stretch is only inflicted if
the path toward a destination’s landmark takes the packet off
the shortest path from source to destination.

Building clusters according to Equation 1 means that for
each node v, any node u adjacent to v will not be included
in v’s forwarding table if w is itself adjacent to a landmark.
Previous analysis modifies the basic algorithm to insert entries
to all adjacent nodes into forwarding tables after the landmark
selection and clustering phase [6]. In this paper we look
primarily at performance with all direct neighbour links in use,
but we also evaluate the performance gains of this modification
to the algorithm in Section IV-A.

B. Routing using the Brady-Cowen Algorithm

The BC algorithm [4] aims to improve on the worst-case
performance of the TZ algorithm, specifically in power-law
graphs. It provides an upper bound on additive path stretch
of d hops, i.e., maximally d hops longer than the shortest
path. Using the highest-degree node as the root, d specifies the
diameter of a core of nodes at most d/2 hops from this root;
nodes outside the core constitute the fringe. The algorithm
then operates as follows. First, a primary spanning tree is
constructed on the full graph from the root. One spanning
tree is then constructed on each connected region contained
within the fringe. We refer to BC using the union of these two
sets of trees in Section IV-A as the simplest BC variant, bcn.

Next, the algorithm identifies the minimal set of edges
within the fringe that must be removed to make the fringe
acyclic, and constructs for each edge e a full spanning tree
that includes e itself. We refer to the union of the resulting set
of trees and bcn as a second variant, bce. In the evaluation of
the BC algorithm in [4], if fewer than five edges are identified,
then edges in the fringe are chosen randomly from which
additional spanning trees are constructed to create five trees.
The number five is not explained in [4]. We refer to this third
variant of the algorithm as bch.

Increasing the d parameter reduces the size of the set of
edges identified for bce, but increases stretch. In this paper
we set d = 6 as the largest value that identifies additional
edges for the bce variant on our snapshots. We explore the
properties of d on AS graphs further in [11].
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Once all trees have been constructed, each node in each
tree is given a Peleg distance label [12] and a TZ tree
label (described in [3], and different to that described in
Section III-A). Forwarding from a node u to a node v requires
the following: » compares its own Peleg distance label against
v’s distance label to determine the tree with the fewest hops
to v, then forwards packets using v’s TZ tree label. All
intermediate nodes use only the tree labelling.

IV. EXPERIMENTAL ANALYSIS

Both algorithms pre-process a full graph according to the
outlines described above to generate the appropriate node
labelling to permit compact routing. After pre-processing the
AS graph snapshots with both algorithms, we can determine
all forwarding table sizes, and all BC path lengths. However,
TZ labelling contains no distance information and the path
stretch incurred by TZ is dependent on the forwarding state
held at intermediate nodes between source and destination.
Computation of distances under the TZ algorithm is not so
trivial as to compute for two nodes u and v the sum of d(u, l,)
and d(l,,v), where [, indicates the correct landmark to use to
reach v. Accordingly, we simulate the forwarding algorithm to
determine the number of hops between source and destination
pairs. Further, paths under the TZ algorithm are not necessarily
symmetrical. That is, d(u,l,) then d(l,,v) may be different
in length to d(v,1,,) followed by d(l,, ), and so with the TZ
algorithm we test both directions.

The complexity of comparing routes between all possible
pairs of nodes grows as O(n?), where n is the number of
nodes, and it becomes computationally infeasible to simulate
the TZ forwarding algorithm on the larger graphs. Rather than
exhaustively test routing between all pairs of nodes, we base
our TZ results on representative subsets of the paths in each
snapshot. We restrict the size of our sample sets by selecting,
uniformly randomly, 1% of all nodes in each snapshot, and
determine the stretch from each of those nodes to all other
nodes in the graph. By selecting uniformly randomly, there
is no bias toward high-degree nodes or low-degree nodes,
and landmark nodes can also be chosen. These sample sizes
are large enough that the range of observed stretches is
representative of the full graph, and also large enough that
we are likely to have observed a representative number of
maximum-stretch paths. To help confirm that our results are
consistent, we determine the path stretches for all pairs of
nodes for the smallest of our graphs, 8 November 1997.

As the TZ algorithm builds landmark sets from an initial
random selection of nodes, the algorithm is not deterministic.
Stretch results may vary given different landmark sets. To
accommodate this, we generate a representative sample of 50
landmark sets for each snapshot, and simulate forwarding on
5 of these. The 5 sets are chosen according to the size of the
50 landmark sets, so that we evaluate with varying landmark
set sizes from smallest to largest.

Routing under the BC algorithm is deterministic, so path
stretch values can be directly determined without simulation.
We use this information to compute all-pairs BC distances.
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Fig. 1. Effect of variations in each algorithm on multiplicative path stretch.

A. Path Stretch

In this section, we discuss the stretch behaviour of the
different algorithms, to confirm that they perform well on these
graphs. In particular, we show first the behaviour of the minor
variants of the two algorithms already identified in Section III.

Figure 1(a) shows average TZ multiplicative path stretches,
with and without full adjacencies. Adding missing adjacen-
cies into forwarding tables leads to a minor improvement in
performance, though this gain has narrowed over time. This,
we believe, is due to the sublinear growth of the landmark set
relative to the full network, and the corresponding reduction
in nodes directly adjacent to a landmark. Given that full
adjacencies always offer best performance, for the remainder
of this paper we use this variant of the algorithm. The average
multiplicative stretch in November 2010 is around 1.09.

Figure 1(b) shows the average BC multiplicative path
stretches for the three variants of the algorithm from Sec-
tion III. There is a clear reduction in stretch when extra trees
are added in bch in addition to the primary tree set, bcn, but
we can see with d = 6 that bce often offers no improvement.
The performance gain observed here is simple to understand:
additional spanning trees use more of the underlying links in
the network, offering multiple paths to all destinations. Despite
the extra links, BC performance declines slightly over time
and is more variable than TZ, we believe because BC is still
confined to forwarding within a small set of spanning trees.

We show actual multiplicative stretch distributions for each
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(c) BC multiplicative stretches.

Fig. 2.

of our TZ tests in Figure 2(a). We show the results from
multiple tests on each snapshot. We see that the vast majority
of paths do not exhibit any stretch at all (i.e., are shortest-
path); across all tests on the November 2010 snapshot, 70.2%
of paths are shortest paths. 4.95% exhibit multiplicative stretch
of less than 1.25; 26.54% exhibit multplicative stretch of less
than 1.5, and a further 3.17% exhibit multplicative stretch
between this and 2.0. Fewer than 0.01% of paths exhibit
stretch higher than 2.0. It is important to realise that, given
the upper bound of multiplicative stretch-3, this performance
is exceptional. We see in Figure 2(b) that the path stretch is
generally only one additional hop on the shortest path: 26.6%
of paths in November 2010 have one additional hop; 3.14%
have two additional hops.

It is claimed in [5] that the average stretch with TZ
decreases as the network size increases, for power law random
graphs. Our results suggest the opposite is true on Internet
graphs, that average stretch has increased slightly. Most of
this increase appears to come from single additional hops. This
result emphasises the importance of testing these algorithms
against real-world data.

In Figure 2(c), we show the multiplicative stretch for our
BC tests. The results here are more variable, as expected from
Figure 1(b), but in all tests the majority of paths are stretch-1
(63.21% for November 2010), and a very small proportion are
above multiplictive stretch-2.0 (0.37% for November 2010).
Correspondingly, Figure 2(d) shows that most stretch is in-
curred by one single hop.
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(d) BC additive stretches.

The multiplicative and additive stretch behaviour of TZ and BC across all snapshots.

By setting the parameter d = 6, BC guarantees a maximum
additive stretch of 6 hops. We observe additive stretch of 6
between only 381 pairs of nodes (out of over 650 million). This
additive bound means 6 additional hops which, for adjacent
nodes, means the maximum multiplicative stretch is 7. In
November 2010, We observe 5,260 paths with multiplicative
stretch higher than three. The majority of these would be
eliminated if we were to deviate from BC’s tree-based la-
belling algorithm and use a different form of labelling for
direct neighbours.

On all of the TZ tests we ran, only two tests featured paths
with five additional hops. In all other cases, four additional
hops was the maximum additive strech.

B. Forwarding Table Sizes

Figure 3(a) shows average forwarding table sizes at all
nodes for each of the TZ (with full adjacenceis) and BC (bch)
experiments we ran. The upper line on this graph is n, the
number of participating ASes in the Internet for each snapshot.
This has grown from 3030 in November 1997, to 36255 in
November 2010.

In this time, the average size of TZ forwarding tables
on these snapshots has risen from 41.13 to 162.59 entries,
the latter equivalent to 0.45% visibility of the full graph.
This, given the proportion of shortest paths discovered by the
TZ algorithm, is extremely small. We show a representative
distribution of forwarding table sizes for one of the landmark
sets generated for the November 2010 snapshot in Figure 3(b).
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Fig. 3. Forwarding table growth.

As these forwarding tables retain all adjacencies, the largest
of our forwarding tables are dictated by node degree, and the
upper bound on the forwarding table size of a node w € V
becomes, maximally, d,, + | A|+ |C.,|, where d,, is the degree
of w. Given the degree distribution of the network [8], it is
not surprising that over all of the tests we ran on November
2010, only 0.0332% of nodes had forwarding tables containing
more than 1,000 entries, and 91.19% have forwarding tables
containing 180 entries or fewer.

The BC forwarding table sizes shown in Figure 3(a) are
even smaller, as they are based on the number of trees each
node is contained within. Given that each node is a member of
the primary spanning tree, any other spanning trees generated
across the full graph, and possibly one smaller tree connecting
nodes in the fringe, the forwarding tables generated by BC
show little variance. These forwarding tables are constant in
size until 2010 owing to the use of d = 6 and the algorithm’s
reliance on a minimum of five spanning trees in addition to
the primary tree. The 2010 snapshots make use of additional
trees, indicating network growth outwith the core region that
the algorithm has made use of. These forwarding tables for
November 2010 contain 14 entries in over 99% of nodes, and
15 entries in the remainder.

C. Remarks on the Choice of TZ Landmarks

The performance of the TZ algorithm relies on the be-
haviour of the landmark selection process, in particular how

it behaves on its second or later iterations.

We show in Figure 4 the frequency with which a node
was selected in the 50 landmark sets generated for each
snapshot. We overlay each snapshot’s recurrence rate onto the
same plot. We observe that the likelihood of the landmark
selection algorithm selecting a node is heavily influenced by
node degree, to the extent that some nodes were selected in
every one of our tests. This is an unintuitive result, as the first
iteration of this algorithm randomly selects nodes from the
graph irrespective of node degree.

However, Equation 1 states that the cluster for each node
u contains all nodes nearer to u than to any members of the
landmark set. Since high-degree nodes are intrinsically ‘near’
to much of the network, they are disproportionately likely to
have clusters large enough to break the constraints specified
in the equation, so they are therefore often selected for the
second round of the landmark selection algorithm. The node
degree explains the frequency of selection.

We believe this aids the stretch performance of the al-
gorithm. As stated in Section III-A, if the path toward a
destination’s landmark does not deviate from the shortest path
to that destination, no stretch will be inflicted. As high degree
nodes are connected to a large proportion of the network,
many paths already naturally use these nodes for transit as the
shortest path toward a destination. This is beneficial: this level
of connectedness increases the likelihood that this landmark
is already on a shortest-path to many destinations.

As we treat these snapshots as undirected graphs, this
landmark selection works very well (as is also exploited
by [13]). However, the Internet is not an undirected graph, and
ASes implement various policies over certain links implying
that some ASes may not form part of a valid path between
certain sources and destinations. That is, node degree alone is
not a useful mechanism to select landmarks for the Internet,
and the particular landmarks selected here may not be willing
to operate as such in the real-world.

These landmark sets are small, as shown in Figure 5, sug-
gesting that a similarly-small, policy-compliant set of transit
networks may be discoverable. This set has grown with the
network, as we may expect, and the variation in landmark set
size has grown linearly with the size of the network.

V. ACCURACY OF WORK

Our basis for using AS numbers rather than address prefixes
in this paper is that, after the prefix length (and local, often
manually configured, policy decisions), the AS path length is
the primary routing metric in BGP.

There are some limitations in the data that affects all work
of this nature. The set of passive BGP collectors utilised by
routeviews provide an important source of data, but the data
may not be complete [14], [15]. Links missing from the data
are primarily “peering” links, generally settlement-free (i.e.,
“no-cost”) links between networks with a shared provider to
avoid the costs of using the provider network. We should note
that, as in the TZ work presented here, nothing is lost by
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retaining forwarding state to neighbouring nodes and a partial
view of the rest of the network.

Revealing more of the underlying AS-level structure of
the Internet is an active research area. There is scope for
aggregating more paths from all other repositories, such as
the BGP data RIPE offers access to. There is also other work
on performing active measurement, using traceroute to reveal
paths not visible in the BGP data [16]. Evaluating compact
routing algorithms on augmented graphs such as these is an
important next step.

VI. CONCLUSIONS AND FUTURE WORK

We have shown that these compact routing algorithms do
perform well on the Internet graph, and have continued to
perform well through the massive growth of the network. This
is the first systematic analysis of the TZ and BC algorithms
on the AS graph. As highlighted in Section V, there is further
scope for evaluating the algorithms with more accurate models
of the AS graph, should they become available.

The deployability of these algorithms as network protocols
requires additional work. For example, the TZ algorithm relies
on a global view of the network and grows its landmark set
from an initial random selection of nodes. In the Internet,
a stable set of centrally located transit networks acting as

landmarks would be more beneficial than a set of arbitrarily-
chosen networks. Definition of such a set, and a routing
protocol that uses this set, is left as future work.

Policy-based routing, and the ability to make local deci-
sions on link utilisation, or to use preferred links (for cost
purposes, etc), is considered an important aspect of network
management. The algorithms we have evaluated do not make
allowances for policy, though there is still scope for affecting
policy on routes within clusters, and routes toward landmarks.
We also cannot easily evaluate against the path inflation intro-
duced by policy-based routing in BGP, as such information is
generally considered proprietary. It may be possible, however,
to begin evaluating this using publicly available network maps
annotated with inferred AS relationships [17], [18].

We believe that these algorithms offer scope for further
work. If either algorithm can be decentralised for use in a
dynamic network, the potential reduction in forwarding state
is massive. Consider that a full BGP table for November 2010
contains 338,988 IP prefixes and that the TZ algorithm requires
that, on average, nodes retain forwarding entries to 0.45%
of the rest of the network, then a TZ-based protocol would
provide forwarding tables of 1,521 entries on average. This is
a rather simplistic mapping, but the savings are profound. Of
the two algorithms shown here, TZ is the most stable and also
potentially most easily decentralisable. We believe it offers a
genuine future direction for further research.

ACKNOWLEDGEMENTS
This work was supported in part by the UK EPSRC.

REFERENCES

[11 D. Meyer, L. Zhang, and K. Fall, “Report from the IAB Workshop on
Routing and Addressing,” RFC 4984, September 2007.

[2] D. Meyer, “The Locator Identifier Separation Protocol (LISP),” Internet
Protocol Journal, vol. 11, no. 1, March 2008.

[3] M. Thorup and U. Zwick, “Compact routing schemes,” in SPAA, 2001.

[4] A. Brady and L. Cowen, “Compact Routing on Power Law Graphs with
Additive Stretch,” in ALENEX, 2006, pp. 119 — 128.

[5] D. Krioukov, K. Fall, and X. Yang, “Compact Routing on Internet-Like
Graphs,” in INFOCOM, vol. 1, March 2004, pp. 219-229.

[6] D. Krioukov and kc klaffy, “Toward Compact Interdomain Routing,”
CoRR, vol. abs/cs/0508021, 2005.

[7]1 D. Krioukov, ke klaffy, K. Fall, and A. Brady, “On Compact Routing
for the Internet,” in ACM SIGCOMM CCR, vol. 37, no. 3, July 2007.

[8] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law Relation-
ships of the Internet Topology,” in ACM SIGCOMM, 1999, pp. 251-262.

[9] C. Gavoille and M. Gengler, “Space-Efficiency for Routing Schemes of

Stretch Factor Three,” J. Par. Distrib. Computing, vol. 61, no. 5, 2001.

A.-L. Barabasi and R. Albert, “Emergence of Scaling in Random

Networks,” Science, vol. 286, no. 5439, pp. 509-512, Oct 1999.

G. Mooney, “Evaluating Compact Routing Algorithms on Real-World

Networks,” Master’s thesis, Dept. Comp. Sci., Univ. Glasgow, 2010.

D. Peleg, “Proximity-Preserving Labeling Schemes and Their Applica-

tions,” in LNCS, 1999, vol. 1665.

W. Chen, C. Sommer, S.-H. Teng, and Y. Wang, “Compact routing in

power-law graphs,” in 23rd Intl. Symp. Distributed Computing, 2009.

R. Oliveira et al., “The (in)Completeness of the Observed Internet AS-

level Structure,” IEEE/ACM Trans. Networking, vol. 18, no. 1, Feb. 2010.

M. Roughan et al., “Bigfoot, Sasquatch, the Yeti and Other Missing

Links: What We Don’t Know About the AS Graph,” in IMC, 2008.

K. Chen et al., “Where the Sidewalk Ends: Extending the Internet AS

Graph Using Traceroutes From P2P Users,” in CoNEXT ’09, 2009.

“AS relationships,” http://www.caida.org/data/active/as-relationships/.

X. Dimitropoulos et al., “AS Relationships: Inference and Validation,”

ACM SIGCOMM CCR, vol. 37, no. 1, pp. 29 — 40, 2007.

(10]
(11]
[12]
[13]
[14]
[15]
[16]

(17]
[18]

874



