
Stabilizing BGP Routing without Harming
Convergence

Xiaoqiang Wang
School of Computer

National University of Defense Technology

Changsha, China

wangxiaoqiang@nudt.edu.cn

Olivier Bonaventure
ICTEAM

Université catholique de Louvain

Louvain-la-Neuve, Belgium

Olivier.Bonaventure@uclouvain.be

Peidong Zhu
School of Computer

National University of Defense Technology

Changsha, China

pdzhu@nudt.edu.cn

Abstract—RFD and MRAI are the only two built-in mecha-
nisms in BGP router against unstable routes, they can however
negatively impact the convergence. In this paper, we propose
a churn aggregation approach CAGG to stabilize BGP routing
without harming convergence. CAGG is based on the observation
that AS PATH change is the dominant cause for BGP updates
and only a small number of AS PATHs are explored by each
highly active prefix. A CAGG equipped router converts the
multiple AS PATHs explored by a highly active prefix into an
aggregated path, and propagates the aggregated path instead to
reduce the number of resulted BGP updates from AS PATH
changes. Our experiments with real BGP data show that CAGG
can reduce as much as 50% of BGP updates, and 60% of BGP
path exploration duration in its best case, while on average
28.1% and 32% respectively across 36 RouteViews monitors.
Furthermore, CAGG is shown to perform better than both RFD
and PED[1] in reducing BGP updates, path exploration duration
and accelerating BGP convergence, at the cost of buffering
around 5,000 AS PATHs.

Index Terms—BGP,Interdomain Routing, RFD, MRAI, PED,
BGP Churn,Convergence.

I. INTRODUCTION

BGP is the defacto standard of inter-domain routing pro-

tocol that glues the Internet together. As a consequence of

continuous evolution of Internet, BGP is now facing more

and more scalability problem, especially for the increasing

entries in BGP route table and the rate of BGP updates

(BGP Churn)[2]. The rapidly increasing BGP churn and slow

convergence inherent to BGP path vector nature are the most

two important issues in BGP dynamics. Actually the slow

convergence, known as path exploration, also increases the

BGP churn, so the former issue can benefit from solutions

dedicated to accelerating path exploration as well.

The researches dedicated to either reducing churn or accel-

erating path exploration fall into two categories: Active and

Reactive solutions. In active solutions, such as RCO[3], BGP-

RCN[4] and EPIC[5], updates resulted from topology change

are tagged with the cause so that the a receiver router can

converge to a backup route independent of this change upon

receiving the first update. On the contrary, there are more

reactive solutions such as Route Flap Damping(RFD)[6], Min-

imum Route Advertisement Interval(MRAI)[7], Withdrawal

Rate Limiting(WRATE)[7], Ghost Flush[8], Sender-side Loop

Detection(SSLD)[9], BGP Consistency Assertions[10], Differ-

entiated Update Processing(DUP)[11], Path Diversity Aware

Routing(PDAR)[12] and recently proposed Path Exploration

Damping(PED)[1], RFD+RG[13]. However, only two ap-

proaches, RFD and MRAI, have been implemented by router

vendors.

Both RFD and MRAI are becoming less attractive than a

few years ago in the early Internet for the rising concern

about routing convergence as the emergence of many real

time Internet-based applications, such as Skype, network bank,

video conference and so on. The weakness of RFD lies in

the fact that it is very hard to differentiate path exploration

from persistent route flaps with only prefix penalty. Several

modifications have been proposed for RFD to lower the false

positive ratio in labeling a well-behaved prefix as unstable

one, for example, [14] proposes to rise the damping threshold

while [15] uses selective route flap damping. However, they

can not solve the problem RFD is facing in essence. The

classical RFD comes to its end when we can not afford the

aftereffect of its mistake that [16] recommends to turn RFD

off. MRAI allows a router to privately explore its alternative

choices for best route without exposing its neighbors the

intermediate step, thus reduces the number of updates during

path exploration[17], at the cost of delaying convergence. The

default MRAI configuration is not recommended any more

in[18]. Indeed, ISPs have seldom countermeasures against

those flapping prefixes when more and more networks choose

to turn off RFD and MRAI.

To reduce BGP churn, we propose a novel approach, Churn
Aggregation(CAGG), against those highly active prefixes with-

out harming BGP convergence, considering that a significant

fraction of BGP churn is associated to a really small fraction of

highly active prefixes[19]. For each flapping prefix, a CAGG

equipped router converts the multiple AS PATHs used by

this prefix into an aggregated path to reduce the number

of BGP updates due to changes of AS PATH attribute. Our

contributions in this paper are twofold: 1) we find the so-

called Path Locality that only a small number of AS PATHs

are explored by a highly active prefix(or flapping prefix); 2)

based on that, CAGG converts the several transient paths into

a normalized one, to reduce the updates caused by AS PATH

change. CAGG is shown to perform better than RFD[6] and a

MRAI similar method PED[1] in both reducing BGP updates

This paper was presented as part of the 14th IEEE Global Internet Symposium (GI) 2011 at IEEE INFOCOM 2011

978-1-4244-9920-5/11/$26.00 ©2011 IEEE 851

and accelerating BGP convergence.

The remainder of this paper is structured as follows. Section

2 explains our motivation, and CAGG is introduced in Section

3. Section 4 compares the CAGG approach with RFD and

PED in performance and convergence, and then evaluates the

memory cost. Finally we conclude this paper in Section 5.

II. MOTIVATION

To understand the components of BGP churn, we analyzed

the BGP messages sent by 36 monitors that peer with the

RouteViews collector during December 2009. We first filtered

all session resets from the dataset. Figure 1 sketches the

components of routing changes observed from these monitors

by comparing each BGP message with the previous one for

the same prefix. As we can see, the reason for sending a BGP

Update is usually either a change in AS PATH or a change in

BGP community. These two types of changes are responsible

for 98% of the observed BGP updates. A change in AS PATH

reflects either a change of route or sometimes a traffic engi-

neering action with a change in AS PATH prepending.

BGP communities are different. These BGP attributes are

used for various purposes, ranging from tagging routes to

indicating policy actions. Most of these communities are

used only within a single ISP and propagating them over

eBGP sessions is useless. In our analysis, seldom prefixes are

involved in community changes in 14 monitors. This indicates

that the corresponding operator has chosen to filter the BGP

communities. However, nearly all the observed prefixes are

associated to at least one community change in the other 22

monitors. All operators should deploy BGP filters to filter the

BGP communities over eBGP sessions to reduce the BGP

churn. In the remainder of this paper, we assume that operators

have deployed outbound filters to avoid announcing BGP

Updates when only BGP communities have changed.

Changes in AS PATH can be caused by policy changes,

but are often due to route flapping. The principle of route

flapping can be depicted on the basis of the topology in Figure

3, in which each node represents an AS and only prefix d is

originated from AS 1. The link or node in abstracted routing

topology responsible for an observed flapping prefix is called

flapping originator, or originator for short. The route besides

AS7 marked with an asterisk is the best route for prefix d
selected to forward packets. Route flapping can be caused by

several pathological reasons, such as hardware/software errors,

connection errors, policy inconsistency, etc. Observed from

the originator itself, route flapping can be either repeatedly

announcing, withdrawing then followed by re-announcing,

or repeatedly oscillating among several routes. The latter

behavior is usually caused by policy or configuration errors,

such as MED-induced divergence[20]. The behaviors of route

flapping vary as the relative position between the originator

and the observer as well. For example in Figure 3 the link

between AS 1 and AS 2, denoted by (1, 2), is assumed to

periodically fail and then restore, and we suppose that AS

7 favors the route learned from AS 4 over AS 5, then in

turn over AS 6. Standing on AS 4, alternate announcement

d, 21 and withdrawal are observed, and AS 8 however sees

several announcements eventually converged to either d, 7631
or d, 7421.

When a route flaps, RouteViews monitors should often

announce alternating AS PATHs. To verify this, we anal-

ysed the BGP updates from 6 peering ASes of RouteView

collector, including 2 Tier1 ASes (AS3356 and AS1239), 2

Tier2 ASes(AS1221 and AS13030), and 2 stub ASes(AS14608

and AS3130). We chose this subset for geographical and

topological diversity. In each of the 6 Ases, the prefixes

were first sorted according the number of observed updates

associated to them during December, 2009. Then we stored the

different AS PATHs that were advertised for each of the top

10,000 prefixes that contributed to most of the BGP Updates.

For each prefix, we define a likelihood P as the probability that

a received BGP Update contains an AS PATH among the 3

most frequent AS PATHs for this prefix over December 2009.

Figure 2 plots the CCDF of this likelihood for each of those

6 ASes. Each data point (x%, y%) in the CCDF indicates that

y% of the top 10K prefixes have their probability larger than

x%. As we can see, more than 70% of the top 10,000 prefixes

in all those 6 ASes have the likelihood higher than 60%. And

15% of these prefixes are found to have explored fewer than 3

paths during one entire month in AS3130 while this fraction

in AS14608 is 5% and 10%-15% in the other 4 ASes. We

want to emphasise that the fraction of AS PATH occurrences

covered by the top 3 paths per prefix in a shorter time window

may be higher, since the flapping routes per prefix may vary

as time goes on. This Path locality means that there are only a

few AS PATHs observed from an AS to reach a highly active

prefix.

III. CAGG MODEL

The measurements above show that AS PATH changes are

an important contributor to BGP churn. Furthermore, a small

fraction of highly active prefixes are responsible for a large

fraction of the BGP churn[19] and the highly active prefixes

explore only a small number of AS PATHs. These findings

inspire our proposed Churn Aggregation technique. Our idea

is to convert the multiple AS PATHs used by a highly active

prefix into an aggregated path to reduce the number of BGP

updates due to changes of AS PATH attribute.

From a router’s point of view, for a downstream

neighbor N regarding prefix d, BGP routing informa-

tion propagated to this neighbor is denoted as RN,d =
(〈r1, t1〉, 〈r2, t2〉...〈rn, tn〉)(n ≥ 1) while each of the routes ri

is disseminated at time ti. The objective of Churn Aggregation

(CAGG) is to compute a new routing R′
N,d, in which the

number of messages is reduced. For simplicity, we name

BGP equipped with CAGG aBGP(aggregation BGP). aBGP

operates like a normal BGP router, except that it uses an

outbound filter on eBGP sessions.

To understand intuitively the operation of CAGG, let us

consider the topology depicted in Figure 3. Supposing that

link (1, 2) is periodically flapping, and path 247 is faster

than 257 in propagating routing changes. Observed from AS

852

Fig. 1. Components of routing changes

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
0

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

#% of occurrences of top 3 paths

C
C

df

AS3356
AS1239
AS1221
AS13030
AS14608
AS3130

Fig. 2. CCDF of the top 3 paths’ occur-
rences per prefix in top 10K prefixes

Fig. 3. Sample topology of BGP routing

8, routes towards d oscillate between the two sequences,

7421 → 7521 → 7631 and 7631 → 7421. Now the CAGG

deployed in AS 7 maps all the three paths above to an

aggregated path 7{2, 3, 4, 5, 6}1, and propagated to AS 8 the

aggregated path instead. Then the two sequences are converted

to 7{2, 3, 4, 5, 6}1 → 7{2, 3, 4, 5, 6}1 → 7{2, 3, 4, 5, 6}1 and

7{2, 3, 4, 5, 6}1 → 7{2, 3, 4, 5, 6}1 respectively, and only the

first route is necessary while the others are ignored.

The CAGG filter operates as follows :

• Decomposing. Each ri ∈ RN,d is further modeled as

a two values tuple 〈pi, qi〉 where pi is its AS PATH

attribute and qi the other attributes1. Correspondingly, the

vectors of pi and qi are denoted as PN,d and QN,d, and

RN,d = (PN,d, QN,d, TN,d) while TN,d is the time vector

of (t1, t2...tn).
• Mapping. CAGG defines a function f with domain PN,d

and range P ′
N,d that computes for each i(1 ≤ i ≤ n) and

pi ∈ PN,d, p
′
i ∈ P ′

N,d,

p′i =
{

f(pi) pi �= φ
pi pi = φ

This step does not modify BGP Withdrawal messages.

• Reforming. A new routing R′
N,d is constructed such that

R′
N,d = (P ′

N,d, QN,d, TN,d).
• Propagating. Not all the messages in R′

N,d are propagated

to N since some of the neighboring entries become

identical now, and a BGP router only advertises changes.

The CAGG filter advertises only the entries that are

different from the previous one. For each i = n → 2, the

tuple 〈r′i, ti〉 is removed if r′i = r′i−1(p
′
i = p′i−1&qi =

qi−1), and the rest are propagated to N according to the

timestamp vector TN,d.

Observed over a long time, the lifetime of route ri in

RN,d propagated to N for prefix d ranges from ti to ti+1,

so does r′i in R′
N,d. Huston et al. decomposed BGP con-

vergence into two distinct parts of pursuing reachability and

optimality respectively[1]. For a destination prefix, reachability

is guaranteed as long as there is at least one route available.

And optimality is not achieved until every router learns the

best route, which is usually indicated by a long enough silent

1BGP Withdrawal is denoted by the empty path φ and empty attributes φ
as well.

Algorithm 1 Map BGP route ri to aBGP route r′i
Input: ri−1, ri, r

′
i−1, HN,d

Output: r′i
1: if ri = ri−1 then
2: r′i ← r′i−1 {ri is a duplicated update}
3: else
4: r′i ← ri {r′i is initialize to be ri}
5: if ri �= WITHDRAWAL then
6: if ri.AS PATH ≺ r′i−1.AS PATH then
7: r′i.AS PATH ← r′i−1.AS PATH
8: else
9: r′i.AS PATH ← agg(ri.AS PATH,HN,d)

10: if r′i.AS PATH �= ri.AS PATH then
11: r′i.AGGREGATOR ← identity
12: return r′i

period, during which no new routes are received for that prefix.

For any time range [ti, ti+1], the reachability of aBGP is the

same to BGP since the type of r′i and ri are exactly the same,

either Announcement or Withdrawal. Then aBGP and BGP are

sharing the same time vector that optimality is not delayed in

aBGP as well. In fact, routing convergence is accelerated in

aBGP and formal proofs are in[21].

A. Algorithm

An AS PATH a is said to be represented by b(a ≺ b) if

and only if their aggregated path c is equal to b. Without loss

of generality, we base the description of our algorithm on a

router with identifier identity (AS number + Router ID). For

a route ri regarding prefix d to be disseminated to one BGP

neighbor N at time ti, and a history set HN,d used to record

the AS PATHs recently propagated to N for prefix d, our goal

is to compute its aBGP route r′i. In addition to the algorithm

presented in Algorithm 1, CAGG tracks per prefix and per

neighbor the latest route it had sent, in order to filter our the

identical route to the previous one.

The function agg aggregates ri.AS PATH and paths in

history set HN,d together. The return value can be an aggre-

gated path involved with ri.AS PATH , or ri.AS PATH
itself when the aggregation fails. Not all the paths in HN,d are

selected to be aggregated together with r.AS PATH , and the

detailed selections depend on the policy used in CAGG. For

853

instance, we can always select the shortest k(k ≥ 1) paths in

AS PATH length, the top k paths most frequently used and so

on. Another feature of function agg worthy to be mentioned is

that the output path’s AS PATH length is assured to be shorter

than any of the member paths involved in this aggregation.

In fact, this is common for an aggregation, for example the

aggregated path resulting from the three paths in Figure3 is

7{2, 3, 4, 5, 6}1 with the length 3, while all the member paths

have length 4. However, it may not hold in some extreme

cases. For instance, the aggregated path of 765 and 7654 is

7654, which is longer than member path 765.

Comparing r′i with ri, the NEXT HOP, MED, COM-

MUNITY, ATOMIC AGGREGATE and even LOCAL PREF

attributes do never change in all cases, however, AGGREGA-

TOR attribute is subject to a change if the r′i is involved

in aggregation. AGGREGATOR attribute is currently just

informational and not used in routing selection, thus the

impacts of its change are ignored. CAGG doesn’t break the

interaction pattern between routing and forwarding as in BGP

that a router A will install the NEXT HOP attribute attached

to the received BGP route from B in its local RIB for data

forwarding if that route wins in A’s BGP decision process.

The NEXT HOP attribute of r′i remains the same to ri, so

does the forwarding path.

Churn Aggregation approach differs from traditional routing

aggregation(TAGG)[7] primarily in three aspects: (1) TAGG

aggregates a group of routes destined for different prefixes,

which are usually covered by a super prefix. CAGG however

aggregates AS PATHs regarding the same prefix; (2) TAGG

essentially consists of two separated aggregations, NLRI and

path attributes, including ORIGIN, NEXT HOP, AS PATH,

ATOMIC AGGREGATE and AGGREGATOR2. On the con-

trary, only AS PATH aggregation is involved in CAGG; (3)

the routes involved in TAGG are assured to be simultaneously

available, but this is not the case in CAGG. For example,

supposing that the latest path propagated from AS 7 in Figure 3

to AS 8 is the aggregated path 7{2, 3, 4, 5, 6}1, and the failure

of link (1, 2) invalidates paths 7421 and 7521. However, the

propagated path remains unchanged since the only available

path 7631 can still be represented by the aggregated path.

B. Safety, Performance and Convergence Issues

Given a sequence of aBGP routes, there are two major

differences from BGP: AS PATH, and the moments to dissem-

inate some of them. Proving that aBGP is loop free and the pri-

ority of aBGP routes are no less than those in BGP are straight-

forward for two reasons: (1) all the ASes in r.AS PATH are

assured to be in the aBGP path r′.AS PATH ; (2) the length

of aggregated path is no longer than each of the paths involved

in the aggregation.

In case if r′.AS PATH �= r.AS PATH , a CAGG

enabled AS M aggregates several history paths with

r.AS PATH together, and propagates only aggregated path

2Routes that have different MED attributes are not allowed to aggregate
together[7].

r′.AS PATH instead. Those ASes involved in any history

path hi only are exclusive to use r′.AS PATH since their AS

numbers have been included in the AS list of this route even

when hi has actually been withdrawn. In response to this risk,

our solution is to enable SSLD in CAGG. SSLD(Sender Side

Loop Detection)[9] is a technology used to avoid propagating

routes to a peer which would detect a loop and discard it later,

in order to partially reduce communication cost. In detail,

SSLD checks if AS PATH list in route to be propagated

already has receiver AS inside, and discard this route in

advance if so. For each direct neighbor N of a CAGG enabled

router, the key idea is to perform the loop check on the sender

side other than receiver side so that N ’s AS number does not

appear in any paths exported to N , neither does the history

cache HN,x where x is an arbitrary prefix exported to N from

this router. Formal proofs are presented in[21].

C. Implementation

CAGG maintains per peer N and per prefix d a penalty

value PN,d to measure the recent activities related to this

prefix, just as that in classical RFD. PN,d is accumulated

by a constant increment dependent of the type of the routing

changes upon detecting a route for d to be propagated to peer

N . CAGG also maintains a path frequency value FN,d,p for

each path p in HN,d, to record p’s frequency of that selected

as best path for prefix d. Both PN,d and FN,d,p decay expo-

nentially according to the equation that PN,d(t′) = PN,d(t)×
e−λN,d(t′−t) and FN,d,p(t′) = FN,d,p(t)×e−λN,d(t′−t) respec-

tively. λN,d is defined on per peer and per prefix basis, but we

use a globally unique λ for simplicity in this paper defined

together with Halftime H such that e−λ×H = 1
2 .

CAGG includes two types of garbage collection, AS PATH-
level and Prefix-level clean, to minimize the memory consump-

tion. Once detected a route r for prefix d to be propagated to

neighbor N , the PN,d, HN,d and FN,d,r.AS PATH are first

updated. Then AS PATH-level clean removes from HN,d the

paths whose prefix penalties have fallen beyond Tsweep. If

PN,d exceeds the Cutoff Threshold, as in RFD, Algorithm 1

is triggered to compute the aBGP route r′; or else the aBGP
route r′ is directly set to be r. Prefix-level clean is scheduled

as a background thread to clean the history of those prefixes

whose Prefix Penalties have fallen below Tinactive. In our

experiments, this clean process is invoked every 6 hours. More

implementation details are presented in [21].

IV. EVALUATION

Two algorithms, RFD and PED, are taken as reference in

the latitudinal comparison with our CAGG approach. This

comparison consists of three parts: CAGG is compared with

1) PED and 2) RFD respectively in both performance and

convergence; 3) the evaluation of the memory cost across 36

monitors.

A. Experimental Setting

In our experimental setting, RFD is configured with Cisco

default parameters, and PED with PEDI[1] 35 seconds, which

854

1 4 7 10 13 16 19 22 25 28 31 34

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1

#%
 o

f e
ve

nt
 d

ur
at

io
ns

 in
 s

um

Monitor ID
1 4 7 10 13 16 19 22 25 28 31 34

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1
1.1

#%
 o

f r
ed

uc
ed

 u
pd

at
es

CAGG performance
PED performance
CAGG event durations
PED event durations

(a) Event durations and performance

1 4 7 10 13 16 19 22 25 28 31 34
−80

−60

−40

−20

0

20

40

Monitor ID

av
er

ag
ed

 c
on

v
de

la
y(

se
co

nd
s)

 p
er

 e
ve

nt

CAGG
PED

(b) Relative convergence delay

Fig. 4. Compare CAGG with PED. The monitors are sorted by PED
performance in reducing BGP updates in descendant order.

has been shown by Geoff Huston et al. to perform better than

30 seconds MRAI, a typical setting for current eBGP session.

We use the BGP data from route-views2.oregon-ix.net ranging

from 00:00, 1st, Dec, 2009 to 23:45, 31st, Dec, 2009. This

collector is supposed to be peering with 46 monitors, however,

we find only 42 active monitors in 38 ASes, and 36 monitors

are selected in our experiments since the other 6 are not always

available in the entire month. As for CAGG, the Halftime(H)

we use is 9,000 seconds, which balances the performance with

memory cost[21].

B. Comparison between PED and CAGG

PED is supposed to depress the transient updates during path

exploration, no matter the involved prefix is stable or unstable

in history, CAGG however pays attention to only recently

active prefixes. As shown in Figure 4(a), CAGG outperforms

PED in reducing BGP updates in 80.5% of the monitors (29

out of 36), and the averaged ratio of reduced BGP updates

by CAGG across the 36 monitors is 28.1% while 21.2% by

PED. As for the total event durations, two conclusions can be

made from Figure 4(a): (1) both PED and CAGG are capable

of shortening path exploration durations, however, PED may

sometimes prolongs the total durations, as in Monitor 7, 19

and 24; (2) there is no correlation for PED between the number

of reduced BGP updates and its total event duration. On the

contrary, a clear positive correlation can be found in CAGG

that more updates are reduced, shorter event duration we can

achieve. The results are really encouraging that as much as

60% path exploration duration(with Monitor ID 34) can be

eliminated, while the average reduction is 32% by CAGG and

7.3% by PED.

The averaged relative convergence delay per event of the

36 monitors is shown in Figure 4(b), where CAGG signifi-

cantly outperforms PED that CAGG always accelerates BGP

convergence while PED always delays the convergence. For

each event u, and its corresponding CAGG output uc and

PED output up, the relative convergence delay of CAGG is

defined to be the time distance between the last update in u
and uc that conv(uc) = L(uc) − L(u) where L(x) denotes

the time to disseminate the last update in event x. Similarly,

conv(up) = L(up) − L(u). In opposite to a positive conv,

which delays convergence, a negative conv will accelerate

the convergence process. As we can see in Figure 4(b), PED

1 4 7 10 13 16 19 22 25 28 31 34

0

10%

20%

30%

40%

50%

60%

70%

Monitor ID

#%
 o

f r
ed

uc
ed

 u
pd

at
es

RFD
CAGG

(a) Reduced updates

1 4 7 10 13 16 19 22 25 28 31 34
100

101

102

103

104

105

Monitor ID

of

 s
up

pr
es

se
d

pr
ef

ix
es

RFD
CAGG

(b) # of suppressed prefixes

Fig. 5. Compare CAGG with RFD. The monitors are sorted by CAGG
performance in descendant order.

delays BGP convergence 14.2 seconds per event on average

across the 36 monitors while the convergence in CAGG is

20.7 seconds faster than in BGP per event. Furthermore, the

relative convergence delay curve of CAGG coincides well with

the event duration curve in Figure 4(a).

C. Comparison between RFD and CAGG

Both RFD and CAGG are history-based damping mecha-

nisms used to stabilize Internet routing, and both of them are

supposed to deal with highly active prefixes. The comparison

includes three parts: (1) how about their performances in re-

ducing BGP updates, especially for the top 10,000 prefixes; (2)

how many prefixes are suppressed by these two mechanisms

respectively; and (3) how about the routing reachability and

optimality to those suppressed prefixes in RFD and CAGG.

As for the first question, CAGG outperforms RFD in 68%

of the monitors (24 out of 36), as in Figure 5(a). Similar results

are observed on the top 10,000 prefixes that CAGG performs

better in the top 10,000 prefixes than RFD in 55.6% (20 out of

36) of the monitors. Compared with the performance across

overall prefixes, CAGG’s advantage against RFD is not so

significant. That’s because RFD arbitrarily depresses all the

updates for a prefix whose penalty value has exceeded a given

threshold, thus more efficient in reducing updates for those

highly active prefixes, however, CAGG still outperforms RFD

across overall prefixes.

The averaged number of suppressed prefixes in RFD and

CAGG across all the 36 monitors are shown in Figure 5(b).

As we can see, CAGG suppresses significantly more prefixes

than RFD in all the given monitors. RFD steadily suppresses

around 200 prefixes across all the monitors, and the number

decreases a little as the performance degrades. Although RFD

suppresses fewer prefixes, we can find in the case study[21]

that RFD can sometimes suppress as many as 3,200 prefixes,

and the caused reachability loss can not be ignored.

D. Memory cost

CAGG buffers the AS PATHs for those highly active pre-

fixes, thus incurs extra memory overhead. The memory cost

of each monitor(number of buffered AS PATHs) is sampled

every 2 hours, and then compared with the AS PATHs in

corresponding RIB. Only the averages are presented in Figure

6. There are 45,368 unique AS PATHs in RIB on average

855

1 4 7 10 13 16 19 22 25 28 31 34
0

10%

20%

30%

40%

50%

tier 1 → ←−−−−−−−−transit−−−−−−−−→ ←stub

Monitor ID

#%
 o

f r
el

at
ed

 e
nt

rie
s/

#(
A

S
_P

A
TH

s)
 in

 R
IB

CAGG ASPATHs
CAGG ASPATHs not in RIB
CAGG Prefixes

Fig. 6. Memory cost related to CAGG. Inside each tier, the monitors are
sorted in a descend order according their performances in reducing updates.

over one month across the 36 monitors, and the averaged

AS PATHs in CAGG history cache accounts for 17.6% of

the RIB path size, while the unique paths cached by CAGG

after removing those already in RIB falls to 8.9% of the

number of AS PATHs in RIB. What we want to emphasize

is that this is the upper bound of memory cost of CAGG:

(1) if attribute sharing is extended to the AS PATHs stored

in Adj-RIB-Ins[7](They are also learned from BGP neighbors

but not selected as best paths, thus invisible in local-RIB),

the memory cost will be further reduced; (2) we maintained

history paths for all the prefixes observed from each monitor

in the evaluation, however, only a subset of those prefixes

are exported to BGP peers. Correspondingly, the memory

cost is overestimated here. The ”CAGG Prefixes” curve in

Figure6 indicates the number of prefixes CAGG maintains

history paths for. Interestingly, these prefixes are even more

than buffered AS PATHs. It means that there are many groups

of prefixes alway sharing the same AS PATH.

The memory cost on average in high tier ASes are lower

than in low tier ASes. The averaged number of CAGG

AS PATHs those not in RIB is 3,373 in the 11 Tier 1 monitors,

accounting for 7.41% of AS PATHs in RIB, while the numbers

and fractions are 5,275, 10.5% and 5,420 and 11% respectively

in transit and stub ASes.

V. CONCLUSION

This paper proposes a novel countermeasure against routing

instabilities without harming BGP convergence, on the basis

of the observation that a highly active prefix explores only

a small number of AS PATHs. CAGG converts the multiple

paths frequently explored by a prefix into an aggregated path,

to reduce the resulted updates from AS PATH change. This

handling is much safer than arbitrarily suppressing updates

related to a highly active prefix in RFD, so more aggressive

damping parameter can be used. Our experiments with real

BGP data show that CAGG can significantly reduce BGP

updates and path exploration duration, 28.1% and 32% respec-

tively on average, and 50% and 60% respectively in the best

case. Latitudinal comparison with RFD and PED also proves

our efficiency in depressing routing instabilities. Currently,

CAGG works over only eBGP sessions thus cannot protect

its iBGP peers from excessive updates flooding. It is possible

to introduce CAGG to iBGP as well after their interactions

are exhaustively studied, and this is part of our future work.

VI. ACKNOWLEDGEMENT

This work is primarily finished during the visit in UCL,

Belgium. This work has been partially supported by NSF of

China under Contract No.60873214. Many thanks to Pierre

Francois, Pei-Chun Cheng and anonymous reviewers for their

valuable comments on this work.

REFERENCES

[1] G. Huston, M. Rossi, and G. Armitage, “A Technique for Reducing
BGP Update Announcements through Path Exploration Damping,” IEEE
Journal on Selected Areas in Communications, vol. 28, no. 8, 2010.

[2] A. Elmokashfi, A. Kvalbein, and C. Dovrolis, “On the scalability
of BGP: the roles of topology growth and update rate-limiting,” in
Proceedings of the 2008 ACM CoNEXT Conference. ACM, 2008, pp.
1–12.

[3] J. Luo, J. Xie, R. Hao, and X. Li, “An approach to accelerate conver-
gence for path vector protocol,” Global Telecommunications Conference,
2002. GLOBECOM ’02. IEEE, pp. 2390–2394, 2002.

[4] D. Pei, M. Azuma, D. Massey, and L. Zhang, “Bgp-rcn: improving bgp
convergence through root cause notification,” Comput. Netw. ISDN Syst.,
vol. 48, no. 2, pp. 175–194, 205.

[5] J. Chandrashekar, Z. Duan, Z.-L. Zhang, and J. Krasky, “Limiting path
exploration in bgp,” in INFOCOM. IEEE, 2005, pp. 2337–2348.

[6] C. Villamizar, R. Chandra, and R. Govindan, “Bgp route flap damping,”
http://www.ietf.org/rfc/rfc2439.txt.

[7] Y. Rekhter, T. Li, and S. Hares, “A border gateway protocol 4 (bgp-4),
rfc 1771 & rfc 4271,” Internet Official Protocol Standards, 1995,2006.

[8] A. Bremler-Barr, Y. Afek, and S. Schwarz, “Improved BGP convergence
via ghost flushing,” IEEE INFOCOM 2003, vol. 00, pp. 927–937, 2003.

[9] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed Internet
routing convergence,” IEEE/ACM transactions on networking, vol. 9,
no. 3, pp. 293–306, 2001.

[10] D. Pei, X. Zhao, L. Wang, D. Massey, A. Mankin, S. F. Wu, and
L. Zhang, “Improving bgp convergence through consistency assertions,”
in In Proceedings of the IEEE INFOCOM, 2002.

[11] W. Sun, Z. Mao, and K. Shin, “Differentiated BGP Update Processing
for Improved Routing Convergence,” Proceedings of the 2006 IEEE
International Conference on Network Protocols, no. i, pp. 280–289, Nov.
2006.

[12] F. Wang and L. Gao, “Path Diversity Aware Interdomain Routing,” IEEE
INFOCOM 2009 - The 28th Conference on Computer Communications,
pp. 307–315, Apr. 2009.

[13] P. chun Cheng, J. H. Park, K. Patel, and L. Zhang, “Flap damping with
assured reachability,” UCLA CS Technical Report 100024.

[14] C. Pelsser, O. Maennel, K. Patel, and R. Bush, “Route flap damping
considered useable,” IEPG,Beijing,http://www.iepg.org/2010-11-ietf79/
101107.iepg-rfd.pdf.

[15] Z. Mao, R. Govindan, G. Varghese, and R. Katz, “Route flap damping
exacerbates Internet routing convergence,” in Proceedings of the 2002
conference on Applications, technologies, architectures, and protocols
for computer communications. ACM, 2002, p. 233.

[16] R. R. W. Group, “Recommendations on route-flap damping,”
RIPEDocumentID378,http://www.ripe.net/docs/ripe-378.html.

[17] T. Griffin and B. Premore, “An experimental analysis of BGP conver-
gence time,” in Proceedings of ICNP. Citeseer, 2001, pp. 53–61.

[18] P. Jakma, “Revised default values for the bgp minimum route advertise-
ment interval,” http://tools.ietf.org/html/draft-ietf-idr-mrai-dep-02.

[19] R. V. Oliveira, R. Izhak-ratzin, B. Zhang, and L. Zhang, “Measurement
of highly active prefixes in bgp,” IEEE GLOBECOM, vol. 2005, 2005.

[20] T. Griffin, “Analysis of the MED oscillation problem in BGP,” in IEEE
International Conference on Network Protocols (ICNP), 2002.

[21] W. Xiaoqiang and O. Bonaventure, “Stabilizing bgp routing without
harming convergence,” Technical Report, http://u.sohu.com/download/
10/12941224217240688676116, 2010.

856

