
Reducing DNS Caching

Saleem N. Bhatti

University of St Andrews, UK

saleem@cs.st-andrews.ac.uk

Randall Atkinson

Cheltenham Research, VA, USA

Abstract—Motivated by our ongoing work exploring an alter-
native Internet architecture, we wish to make use of naming
services in order to support functionality such as: host and
network mobility; application and/or virtual machine migra-
tion; and various forms of traffic control (e.g. multi-homing).
Currently, the Domain Name System (DNS) is used to resolve
names to DNS records, with relatively large time-to-live (TTL)
values (several thousands of seconds) for caching the results.
To support new agile services and systems, cached results may
need to have much lower TTL values, so that cached DNS
values do not become stale as system changes occur, e.g. changes
to end-system location information to support new methods of
mobility. However, current conventions for DNS configuration
normally use conservatively high TTL values. We have conducted
an empirical study of a live DNS deployment where we have
reduced to zero the TTL values of records for the entire School
of Computer Science at the University of St Andrews. Our results
show that the increase in DNS load is much lower than might
be expected, following a highly non-linear decrease with respect
to the TTL value of the DNS records.

I. INTRODUCTION

Naming services provide mappings from user-friendly or

application-friendly names to numerical addresses. The Do-

main Name Service (DNS) maps fully qualified domain names

(FQDNs), e.g. marston.cs.st-andrews.ac.uk, to other values

such as Internet Protocol (IP) addresses, e.g. 138.251.195.61.

There is increased interest in the use of naming techniques for

enabling functionality in future Internet services and systems.

For example; for enabling mobility (e.g. [1]–[3]); mapping

services for hierarchical routing (e.g. [4]); and the authors’

Identifier Locator Network Protocol (ILNP)1 [5], [6] which

will use naming to implement functionality such as mobility

and multi-homing.

A. An example – using DNS for mobility

The existing Secure DNS Dynamic Update standard [7]

would permit a mobile node to update its location information

when the node moves. Widely used systems software, such as

Microsoft Windows and the BIND software used with UNIX,

already include support for Secure Dynamic DNS Update [8].

Previous studies indicate the use of Secure DNS Dynamic

Update for mobility is entirely feasible [1], [2]. However, these

previous studies do not consider the potential increase in traffic

and load on the DNS as the time-to-live (TTL) of the relevant

resource records is decreased. The TTL specifies the time for

which the record can be cached before it must be retrieved

from the authoritative servers. Lower TTL values mean less

1http://ilnp.cs.st-andrews.ac.uk/

caching and so more DNS name lookups. A previous study

stated that DNS caching is not as effective as is commonly

thought [9], with the trace-driven emulations suggested that it

should be possible to have TTL values as low as ∼1000s (or

even a few 100s) without adverse impact on DNS.

B. Outline of this paper

In this paper, we present results that support the assertion

in [9], that reducing the TTL of DNS resource records to low

values has relatively little impact on DNS load. Indeed, we

take the assertion to the limit and implement zero TTL. We

have conducted an empirical study in which we have used

different TTL values for DNS A records for the operational

DNS server in the School of Computer Science at the Uni-

versity of St Andrews. In Section II we give the relevant

background, including a summary of the findings in [9]. In

Section III, we describe our experimental configuration and

provide descriptions of the data-sets we have collected. In

Section IV, we provide a basic statistical analysis and a simple

‘spectral’ analysis of the data-sets. After a short discussion in

Section V, we conclude with a summary and indications of

our (ongoing and) future work in Section VI.

II. DNS USAGE

The current DNS resolution process forms a spatio-temporal

caching hierarchy, the cache time controlled by the use of TTL

value for the DNS records. We provide here a simple example

to illustrate the use of caching and TTL values within the DNS

system: a fuller description can be found in [8].

A. DNS operation

The DNS provides distributed lookups for fully qualified

domain names (FQDNs). Queries to the DNS system result in

the return of DNS Resource Records (or just records). There

are different record types. Each record has a Time-To-Live

(TTL) value in seconds: the time for which it is valid and can

be cached. After the TTL for a record has expired, it must be

looked up again and should not be served from cache.

In Figure 1, h1.blob.org will resolve “h2.flump.com”. The

query initially goes to the DNS resolving server local to h1,

n1.blob.org (1). This query results in information about the

generic top-level-domain (gTLD) .com (2), the NS record

returned in step (3). From a .com gTLD server, n1.blob.org

requests the name server for the domain flump.com (4), receiv-

ing the NS record for ns1.flump.com. (5). Then, n1.blob.org

can query for the name “h2.flump.com” (6) (7), returning an

This paper was presented as part of the 14th IEEE Global Internet Symposium (GI) 2011 at IEEE INFOCOM 2011

978-1-4244-9920-5/11/$26.00 ©2011 IEEE 803

A record in step (8). There can be different levels of caching

at different points in the name-space lookup. Normally, the

responses returned at steps (3) and (5) include ‘glue’ records

– A records with IP addresses for the nameserver. Those

NS records and associated A records typically have large

TTLs (perhaps several days). Records can have different TTL

values, e.g. the A records returned in steps (3), (5) and (7)

can have different TTL values. The information returned at

step (8) could also be cached at the end-system (see Section

III-B, however). Fewer DNS queries will result in less DNS

traffic and faster name resolution. This is achieved by having

results cached for longer periods of time, i.e. having large

values for TTLs on DNS records. Certainly, NS records and

corresponding A records should have a long TTL to reduce

the load on root and gTLD servers.

Fig. 1. A simplified DNS lookup, assuming no information is cached as
yet. h1.blob.org needs to resolve the name “h2.flump.com”. (1) h1 makes a
query for “h2.flump.com” to its local DNS resolving server, n1.blob.org. (2)
n1 makes a query to the root server. (3) The root server responds with a NS
record (including a ‘glue’ A record) for generic top-level-domain (gTLD) for
.com. (4) ns1.blob.org sends a query to a .com server and (5) receives an NS
record for ns1.flump.com (including its IP address in a ‘glue’ A record). (6)
ns1.blob.org then sends a query for “h2.flump.com” and (7) receives an A
record with the relevant IP address(es), which (8) are then passed back to h1.
Then (9) h1 uses the IP address to send application packets to h2.

B. DNS server-side caching

The intuition would be that cache times for DNS records

should be kept as high as possible in order to keep low

both DNS server load and DNS traffic. A detailed study

using a set of DNS traffic traces from 2001 [9] reported that,

based on analyses of the traces they used: ∼23% of lookups

received no answer, accounting for more than half of all DNS

packets in the wide area; ∼13% of all lookups receive a

negative response, i.e. they are malformed or “bad” queries

(typos etc.); and over 25% of all lookups sent to the root

servers are also “bad”. In summary, a substantial proportion of

DNS traffic and associated DNS server load consists of “bad”

queries, and so DNS servers already deal with a relatively high

load: additional “good” queries may not necessarily introduce

significant new load, in comparison.

The most interesting claim, however, was based on a trace-

driven emulation to determine the effectiveness of per-client

or shared caches for DNS. The conclusions stated that, “ ...

reducing the TTLs of address (A) records to as low as a

few hundred seconds has little adverse effect on hit rates.”,

and that, “ ... widespread use of dynamic, low-TTL A-record

bindings should not degrade DNS performance.” However, at

the time of writing, with some notable exceptions (see later),

most system administrators continue to use TTL values that

are conservatively high, e.g. the order of hours or days.

III. EXPERIMENTAL CONFIGURATION

We have tested experimentally the assertion for the ineffec-

tiveness of caching made above. We used the operational DNS

system of the School of Computer Science at the University

of St Andrews. We captured the DNS traffic while varying the

TTL value of the DNS records on the School DNS server(s).

A. Experimental procedure

A summary of the experimental environment is given in

Table I. No modifications were made to the DNS servers

except to the TTL values of the DNS records. The tcpdump

application was used to capture the traffic seen on a port mirror

of the switch ports to which the DNS servers were connected.

All DNS queries, both from internal sources and external

sources, were captured. The changes to the TTL values were

made during the normal semester period, with the usual mix

of School activities (teaching, research and administration)

being undertaken during the measurement period. School were

modified to honour TTL values of DNS records.

TABLE I
DNS OPERATIONAL INFORMATION FOR DATA CAPTURE

Time frame Q4 2009 (during normal semester)

DNS servers DNS server version 6.0 6002 (0x1772)
on ActiveDirectory / Windows Server 2008 R1
(standard configuration of 4 servers)

TTL values 1800s, 30s, 0s

Duration 601,200s (7-days less 1 hour) at each TTL value

Capture port-mirror of DNS server ethernet port(s) and
method capture with tcpdump

B. Client-side caching

For IPv4, very few applications do anything with the TTL

value for a DNS record. Applications typically make DNS

queries each time they wish to resolve a name (e.g. using

gethostbyname() in C, or via other similar APIs). This

programming behaviour is beneficial if we wish to exploit low

TTL values, as it means that most applications do not cache

DNS records. However, we find that some applications and

end-systems do cache DNS results:

• Windows 2 : Different versions of Windows have different

DNS cache behaviours, and might not honour the TTL.

However, the Windows DNS cache does not keep stale

DNS entries, ensuring that entries are deleted before their

DNS TTL expires. This DNS cache can be disabled.

• Linux3: The Name Server Caching Daemon (ncsd) may

be enabled on some distributions of Linux, and may

2http://support.microsoft.com/kb/318803
3http://linux-documentation.com/en/man/man8/nscd.html

804

have a default cache time of 15 minutes, ignoring TTL

values. It can be disabled through normal configuration

mechanisms (/etc/nscd.conf).

• MacOS X & Safari4: MacOSX 10.5.6 has a system-wide

DNS cache that honours DNS TTLs. Safari uses that

system-wide cache, instead of having its own cache.

• Internet Explorer (IE)5: IE caches DNS records for 30

minutes (24 hours in versions of IE before v4.x). This

can be disabled through the Windows Registry.

• Firefox6: Firefox has a DNS cache which ignores TTL

values, but can be disabled through the normal FireFox

configuration mechanisms.

For our experiments, the client-side caches of School-

managed end-systems were modified so there was no caching

unless the TTL value was honoured.

C. Data-sets captured

We examine only the numbers of A record queries for the

servers internal to the School, and infer from that the additional

traffic load being placed on the DNS server by reduced TTL

values producing additional lookups. A previous study has

shown that A record queries can account for more than half

of all DNS queries [10]. However, DNS data can also be very

noisy: the selection of A queries for a set of well-known end-

systems (School servers) allows us to filter malformed requests

and look at the additional load generated by “real” queries

only, and make comparisons across data-sets.

A summary of our data-sets is given in Table II. The “No.

of pkts captured” (2nd column) includes all packets seen on

port 53 including errors or “bad” queries, but does not include

DNS responses. The “No. of A queries” (3rd column) counted

are for the School servers, some 67 machines at the time of

the measurement. The School had approximately 500 client

systems (student labs, student’s personal laptops, academic

staff, research staff, technical staff and admin staff), with a

mix of MS Windows and Linux machines in roughly equal

numbers, and around 70 MacOSX machines.

D. Data processing

The data-sets were processed using scripts created originally

in python v2.5.2, with the use of standard functions from the

modules math and numpy7. The tcpdump captures were filtered

only for those DNS A record queries for the names of 67

known servers within the School. These A record requests

were counted into 1 second buckets. For the Figures 2, 3,

4, 5 and 6: the left column of the page is for TTL=1800s;

the middle column for TTL=30s; and the right column for

TTL=0s. The time domain plot for these 1s buckets is shown

in Figure 2, with the CDFs in Figure 3.

Following the example presented in [11], we have per-

formed a simple ‘spectral’ analysis on the data, in order to

observe the change in the query rate volumes and distributions.

4Private communication with Stuart Cheshire, Apple.
5http://support.microsoft.com/kb/263558
6http://www.techiecorner.com/225/how-to-disable-firefox-dns-cache/
7http://numpy.scipy.org/

TABLE II
META-DATA FOR DNS TRAFFIC DATA-SETS

Data set No. of DNS No. of A record

namea pkts capturedb queriesc

all queries

2009-1800 41,868,522 2,004,133 (4.79%)

2009-0030 71,105,247 2,648,769 (3.73%)

2009-0000 55,868,573 4,501,590 (8.06%)

internal: queries from end-systems within the School

2009-1800-i 29,486,362 792,339 (2.69%)

2009-0030-i 54,097,231 951,485 (1.76%)

2009-0000-i 30,555,305 1,419,782 (4.65%)

external: queries from end-systems outside the School

2009-1800-e 12,382,160 1,211,794 (9.79%)

2009-0030-e 17,008,016 1,697,311 (9.98%)

2009-0000-e 25,313,268 3,081,808 (12.17%)

a Format of dataset name is YYYY-TTTT, YYYY = year, TTTT = TTL
value in seconds. Each data-set holds 601,200s of packets (7 days less one
hour temporal guard-band to allow for changes in TTL for the DNS records).
b All packets to port 53 (UDP and TCP), including errors.
c Queries for 67 servers active during the period of measurement.

This is presented in Figures 4, 5 and 6: we have used a

line between points as a visual aid, but these are discrete

spectra, defined to be valid only at the marked points. For

the simple spectra of Figure 4, we counted the number

of queries per second (per 1s bucket) as our query rate,

recorded the occurence of these query rates (the number of

1s buckets containing that value), across all 7 days, and then

normalised. The CDF plots in Figure 5 are then produced for

the corresponding graph of Figure 4. The plot of Figure 6

summarises the daily spectra across the 7 days: the points mark

the mean requests per second, with minimum and maximum

bars to show the variation of the A record query rates.

IV. ANALYSES

Our aim is to examine the general overall effect on DNS

offered load as the TTL changes, rather than provide detailed

statistics for specific DNS server or client behaviour. As we

were not able to control client-side behaviour on external

nodes, and due to space limitations, we choose to focus on

internal nodes (which also produced more traffic than external

nodes). We use the overall effects observed as indications of

the scale of overall behaviour.

A. Basic statistical analysis

Figure 2 plots the queries/s for each data set over the period

of each measurement. In Figure 3, we see the corresponding

CDF plots for each plot of Figure 2, showing that requests

were fairly evenly distributed across each of the 7-day periods.

From Table II (third column), we see that the number of

queries does increase, as might be expected, as the TTL

decreases. As a proportion of overall DNS traffic, we see

A record query rates increase from ∼4.8% to ∼8.1%. In

Table III, we see that the mean query rate increases, again as

expected. However, in both cases, the increase in query rate is

relatively low, and certainly not in proportion to the decrease

in TTL value. In moving from TTL=1800s to TTL=30s, the

mean query rate increases by ∼1/3 for all queries, and ∼1/5 for

internal queries. The mean value at TTL=0s reaches a rather

805

modest 7.49 queries/s. Maximum query rates also remain

modest, reaching 369 queries/s at TTL=0s. Overall, the mean

and the maximum query rates remain manageable by today’s

off-the-shelf server systems and DNS software.

TABLE III
BASIC STATISTICS FOR A RECORD QUERY RATES

Data set mean std dev max ∼95%d ∼99%e

all queries

2009-1800 3.33 3.47 183 8 14

2009-0030 4.41 4.27 261 10 16

2009-0000 7.49 4.93 369 15 22

internal: queries from end-systems within the School

2009-1800-i 1.31 2.98 176 8 22

2009-0030-i 1.58 3.57 168 8 24

2009-0000-i 2.36 3.48 68 8 15

external: queries from end-systems outside the School

2009-1800-e 2.02 1.76 66 5 7

2009-0030-e 2.82 2.28 259 7 9

2009-0000-e 5.13 3.40 368 11 14

dThe value of query rate at which we first see (to 3 s.f.) ≥95% of queries.
eThe value of query rate at which we first see (to 3 s.f.) ≥99% of queries.

B. Simple spectral analysis

In Figure 4, we see the normalised frequency of query rates.

If we look at the counts of query requests from the 1s buckets,

we can build a picture of the relative spread of query rates. As

the TTL changes, we see the greatest change in the query rate

counts below 10 queries/s, and relatively few changes in the

query rate profile above 10 queries/s. We see this very clearly

in the respective CDF plots in Figure 5: most queries occur as

bursts of 10 queries/s or less. From the data used to create the

plots of Figure 5, we can find the approximate 95th-percentile

and 99th-percentile of the query rates, as given in the final

two columns of Table III. We see that for the internal traffic,

the (approximate) 95th-percentile is the same (to 3 s.f.), and is

a low value (8 queries/s). So, while the mean request rate has

more than doubled, most of the requests arrive in relatively

small bursts. We can also see in Figure 6 the reasons for the

increase in standard deviation values in Table III. The lower

TTL values show increasing variation across the query rate

profiles: note the size of the bars for maximum and minimum

values at each query rate across the 7-day period.

On the log-log plots of Figures 4 and 6, we might reasonably

fit a straight line for the upper portion of the plot (upto ∼20

queries/s), and so there is likely to be a power-law relationship

for the distribution of query rates.

V. DISCUSSION

It is clear that decreasing the TTL value for DNS A records

does increase traffic load, but the increase does not have a

significant impact on DNS traffic overall, even with TTLs as

low as zero. We do not propose that sites should set TTL to

zero – our experiment was to assess DNS load to learn about

the impact of using reduced DNS caching, and so we chose an

extreme scenario: setting a whole site’s A records to use zero

TTL and measuring DNS load. Others have already explored

the possibility for DNS-enabled mobility in various different

ways [1], [2], [12].

A. Mobility revisited

For our example of mobility, a purely analytical study of

the use of zero TTL is presented in [12], and extrapolates

from one of the same data-sets used in [9]. The main finding

was that a TTL of zero for A records in supporting mobile

nodes is unlikely to have significant impact on DNS traffic

load, but, of course, will be dependent on a number of factors,

including the number of mobile nodes and rate of mobility.

Our experiments support that finding. However, to perform a

complete assessment of the impact of using DNS for mobility,

we would also need to assess the additional DNS server load

introduced by Secure DNS Dynamic Update (ala RFC3007).

B. Operational issues

We did not analyse the impact on application level per-

formance due to the decrease in TTL values. Anecdotally,

there were no reports of additional application or service

latency from either our users, or other system and network

administrators from other parts of the University with which

our systems interact.

Our Systems Admin Group did observe a potentially serious

problem, not with end-systems, but with the mail service

records. MX records and associated A records are used by

the mail service to resolve the address(es) of mail servers

for a domain. The School’s primary DNS servers are within

the School; a secondary DNS server is in a different building

nearby. In a preliminary experiment in 2008 (with BIND8),

we also had reduced the DNS TTL value for many record

types, including MX records. At one point, there was a

network outage affecting the entire University. This meant that

all of the DNS servers were unavailable externally, so MX

record queries would not be answered. Different mail server

implementations would probably interpret this differently. It

could be interpreted simply as a temporarily unavailable mail

server, or more drastically as the mail domain being a spam

site. So, it is desirable for DNS records for services, such

as MX and SRV records, and associated A/AAAA records,

to avoid using low DNS TTL values. Also, this experience

reinforces the well known importance of topologically diverse

secondary DNS servers.

Other operational issues with the behaviour of DNS servers

and clients under various network conditions have been doc-

umented in detail [10], [13]. While we have not yet analysed

fully the implications of low TTL on possible operation of

applications using DNS, it seems clear that low TTL values

will have an impact on the behaviour of some systems.

Meanwhile, at the time of writing, Yahoo has servers with

A record TTL values of 60 seconds, while Akamai has servers

with A record TTL values of 20s. So low DNS TTL values

are already in use in commercial environments today.

Local address resolution protocols may need to be recon-

figured. RFC4861 does specify some configurable caching

806

 1

 10

 100

341 342 343 344 345 346 347 348 349

Q
u

er
ie

s
/

se
co

n
d

Day

DNS A record queries, dns2009-1800-i

 1

 10

 100

334 335 336 337 338 339 340 341 342

Q
u

er
ie

s
/

se
co

n
d

Day

DNS A record queries, dns2009-0030-i

 1

 10

 100

320 321 322 323 324 325 326 327 328

Q
u

er
ie

s
/

se
co

n
d

Day

DNS A record queries, dns2009-0000-i

Fig. 2. DNS A record queries. The horizontal axis shows time in units of days, 01 Jan 2009 is day 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

341 342 343 344 345 346 347 348 349

N
o

.
o

f
q

u
er

ie
s

(n
o

rm
al

is
ed

)

Day

CDF for DNS A record queries, dns2009-1800-i

 0

 0.2

 0.4

 0.6

 0.8

 1

334 335 336 337 338 339 340 341 342

N
o

.
o

f
q

u
er

ie
s

(n
o

rm
al

is
ed

)

Day

CDF for DNS A record queries, dns2009-0030-i

 0

 0.2

 0.4

 0.6

 0.8

 1

320 321 322 323 324 325 326 327 328

N
o

.
o

f
q

u
er

ie
s

(n
o

rm
al

is
ed

)

Day

CDF for DNS A record queries, dns2009-0000-i

Fig. 3. CDF plots for DNS A record queries. The horizontal axis shows time in units of days, 01 Jan 2009 is day 1.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100

N
o
.

o
f

q
u
er

ie
s

(n
o
rm

al
is

ed
)

Query rate [1/s]

7-day DNS A record query rates, dns2009-1800-i

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100

N
o
.

o
f

q
u
er

ie
s

(n
o
rm

al
is

ed
)

Query rate [1/s]

7-day DNS A record query rates, dns2009-0030-i

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100

N
o
.

o
f

q
u
er

ie
s

(n
o
rm

al
is

ed
)

Query rate [1/s]

7-day DNS A record query rates, dns2009-0000-i

Fig. 4. DNS A record query rates – 7-days, totals, normalised (log-log axes).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

N
o
.

o
f

q
u
er

ie
s

(n
o
rm

al
is

ed
)

Query rate [1/s]

7-day CDF for DNS A record query rates, dns2009-1800-i

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

N
o
.

o
f

q
u
er

ie
s

(n
o
rm

al
is

ed
)

Query rate [1/s]

7-day CDF for DNS A record query rates, dns2009-0030-i

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

N
o
.

o
f

q
u
er

ie
s

(n
o
rm

al
is

ed
)

Query rate [1/s]

7-day CDF for DNS A record query rates, dns2009-0000-i

Fig. 5. CDF plots for DNS A record query rates – 7 days, totals (CDFs of plots in Figure 4, log-linear axes).

 1

 10

 100

 1000

 10000

 100000

 1 10 100

N
u
m

b
er

 o
f

q
u
er

ie
s

Query rate [1/s]

Daily DNS A record query rates, dns2009-1800-i

 1

 10

 100

 1000

 10000

 100000

 1 10 100

N
u
m

b
er

 o
f

q
u
er

ie
s

Query rate [1/s]

Daily DNS A record query rates, dns2009-0030-i

 1

 10

 100

 1000

 10000

 100000

 1 10 100

N
u
m

b
er

 o
f

q
u
er

ie
s

Query rate [1/s]

Daily DNS A record query rates, dns2009-0000-i

Fig. 6. DNS A record query rates – mean daily query counts for 7-day period (with minimum and maximum, log-log axes).

807

behaviour for IPv6: Neighbour Discovery (ND) can be con-

figured for a site through Router Advertisements. For IPv4,

ad hoc mechanisms may be required, especially if ARP cache

times are hard-wired into system code and difficult to change.

C. Exploiting zero TTL for DNS records

Our original motivation for examining the caching perfor-

mance of DNS with low TTL was in relation to our ongoing

work on ILNP., including mobility. We believe that zero

TTL provides other possibilities worth exploring for improved

network functionality.

A potential area is load balancing and management of

virtual machines (including migration) in data centres and

cloud computing. Indeed, content and service providers have

been using for some time, DNS with low TTL values for load

balancing [14] and content distribution, but there can be issues

with DNS behaviour [15].

We are exploring possibilities for ILNP, including mobility

[16]. New DNS records could hold multiple network Locator

(address prefix) values for a site, with preference values. This

could be used to offer options for path-control and lightweight

traffic-engineering from edge sites, as well as possibilities for

network defence [17].

However, it may be beneficial to configure TTL=1s instead

of zero for performance benefits of some applications. For

example, this would permit web browser code loops which

open multiple connections in parallel to the same site to set-

up those connections without having to make separate DNS

lookups for each connection.

Low TTL values could help to alleviate the effects of DNS

cache poisoning attacks [18]. However, spoofing attacks could

be more successful due to the increased number of queries.

Authenticated DNS records would help in both cases.

VI. CONCLUSION AND FUTURE WORK

We have investigated the use of low TTL values in DNS A

records. We have made 7-day measurements of DNS queries

for the School of Computer Science at the University of St

Andrews for TTL values of 1800s, 30s, and 0s.

We have found good agreement with the conclusions drawn

in previous analyses, including a trace-driven emulation [9]

which suggested that TTL values of a few 100s for DNS A

records should not impact significantly on DNS. However, we

found that much lower values than suggested are possible, and

zero TTL was used in our experiments without adverse impact

on DNS load. Tables II and III (internal) show that decreasing

TTL from 1800s to 0s caused mean query rates for A records

to almost double, while absolute query rates remained modest

(mean of 2.36 queries/s, maximum of 68 queries/s), and at a

relatively low proportion of overall DNS load (∼4.7%).

We propose, therefore, that the use of naming within the

DNS could be exploited to offer functionality, such as mobility,

by allowing DNS A record values to have low cache times.

For future work, we aim to run additional experiments at

other sites, and to test the impact of Secure DNS Dynamic

Update coupled with low TTL values. We are confident that

naming and the DNS can be used for supporting network

layer functionality, and we intend to implement and investigate

mobility, multi-homing, VM migration and other functionality

for our ongoing work in ILNP, by exploiting low TTL values

in DNS records. Security issues also need further investigation.

ACKNOWLEDGMENTS

Our thanks to the SysAdmin Group (School of Computer

Science, University of St Andrews) for enabling the DNS ex-

periments on the operational DNS system. Some of this work

was presented in invited talks at NANOG508 and IETF799: we

are grateful for the discussion from the attendees, as well as

specific comments by Stuart Cheshire (Apple), Alan Clegg

(ISC), Aaron Falk (BBN), Peter Koch (DENIC eG), Dave

Thaler (Microsoft), Christian Vogt (Ericsson), Scott Whyte

(Google). Dr Cheshire and Dr Thaler provided information

on DNS behaviour of commercial products. Dr Cheshire also

initiated the discussion about why TTL=1s would be better

than TTL=0s. The GI2011 reviewers gave feedback which has

helped to improve the presentation of this paper.

REFERENCES

[1] A. C. Snoeren and H. Balakrishnan. An end-to-end approach to host
mobility. In Proc. MobiCom 2000, pages 155–166, 2000.

[2] A. Pappas, S. Hailes, and R. Giaffreda. Mobile Host Location Tracking
Through DNS. In LCS2002: 2002 IEEE London Communications

Symposium, Sep 2007.
[3] R. Atkinson, S. Bhatti, and S. Hailes. Mobility through naming: impact

on DNS. In Proc. MobiArch 2008, pages 7–12, 2008.
[4] L. Jakab, A. Cabellos-Aparicio, F. Coras, D. Saucez, and O. Bonaven-

ture. LISP-TREE: A DNS Hierarchy to Support the LISP Mapping
System. IEEE JSAC, 28(8):1332–1343, Oct 2010.

[5] R. Atkinson, S. Bhatti, and S. Hailes. ILNP: mobility, multi-homing,
localised addressing and security through naming. Telecommunication

Systems, 42:273–291, 2009.
[6] R. Atkinson, S. Bhatti, and S. Hailes. Evolving the Internet Architecture

Through Naming. IEEE JSAC, 28(8):1319–1325, Oct 2010.
[7] B. Wellington. Secure Domain Name System (DNS) Dynamic Update.

RFC 3007, Nov 2000.
[8] C. Liu and P.Albitz. DNS and BIND, 5th Edition. O’Reilly and

Associates, Sebastopol, CA, USA, May 2006.
[9] J. Jung, E. Sit, H. Balakrishnan, and R. Morris. DNS performance and

the effectiveness of caching. IEEE/ACM Trans. Netw., 10(5):589–603,
2002.

[10] D. Wessels and M. Fomenkov. Wow, That’s a Lot of Packets. In Proc

PAM2003, Apr 2003.
[11] A. Broido, E. Nemeth, and kc Claffy. Spectroscopy of DNS update

traffic. SIGMETRICS Perform. Eval. Rev., 31(1):320–321, 2003.
[12] Yi Wu, J. Tuononen, and M. Latvala. An Analytical Model for DNS

Performance with TTL Value 0 in Mobile Internet. In TENCON 2006:

2006 IEEE Region 10 Conference, pages 1–4, Nov 2006.
[13] D. Wessels, M. Fomenkov, N. Brownlee, and kc Claffy. Measurements

and Laboratory Simulations of the Upper DNS Hierarchy. In Proc.

PAM2004, Apr 2004.
[14] T. Briscoe. DNS Support for Load Balancing. RFC 1794, Apr 1995.
[15] B. Ager, W. Mühlbauer, G. Smaragdakis, and S. Uhlig. Comparing DNS

resolvers in the wild. In Proc. IMC 2010, pages 15–21, 2010.
[16] D. Rehunathan and S. Bhatti. A Comparative Assessment of Routing

for Mobile Networks. In Proc. WiMob2010, pages 434–441, Oct 2010.
[17] R. Atkinson and S. Bhatti. Site-Controlled Secure Multi-homing and

Traffic Engineering for IP. In Proc. MILCOM2009, Oct 2009.
[18] A. Klein. BIND 9 DNS Cache Poisoning, Mar 2007. http://www.trusteer.

com/bind9dns.

8http://www.nanog.org/meetings/nanog50/presentations/Tuesday/
NANOG50.Talk64.bhatti-nanog50 dns.pdf

9http://www.ietf.org/proceedings/79/slides/nbs-9.pdf

808

