
Scheduling and Control Co-Design under
End-to-End Response Time Constraints in

Cyber-Physical Systems
Kyung-Joon Park∗, Man-Ki Yoon†, Kyungtae Kang‡, and Chang-Gun Lee§

∗ Department of Information and Communication Engineering, DGIST
Email: kjp@dgist.ac.kr

† Department of Computer Science, University of Illinois at Urbana-Champaign
Email: mkyoon@illinois.edu

‡ Department of Computer Science and Engineering, Hanyang University
Email: ktkang@hanyang.ac.kr

§School of Computer Science and Engineering, Seoul National University
Email: cglee@snu.ac.kr

Abstract—In this paper, we propose an optimization approach
for robust control design with end-to-end response time con-
straints in a multi-resource cyber-physical systems (CPS). We
introduce a rigorous performance metric for robust system
design from the control theoretic viewpoint. Then, we investigate
the impact of end-to-end response time analysis techniques on
the control performance. We show that the traditional per-
job response time analysis significantly degrades the control
performance when real-time tasks visit a resource multiple
times. We demonstrate that we can meaningfully improve the
control performance by adopting the recently-developed per-
resource response time analysis. Our simulation results verify
the effectiveness of the proposed co-design framework.

I. INTRODUCTION

Recently, a cyber-physical system (CPS) has emerged as a
promising research paradigm, which is a convergence of con-
trol, communication, and computation [1]. One fundamental
issue in CPS is how to balance the tradeoff between control
performance and real-time constraints. In general, in order
to improve control performance, more processor time should
be devoted to control tasks, which will obviously reduce the
processor usage for meeting the deadline of real-time tasks.
Consequently, it is crucial how to maximize control perfor-
mance while satisfying all the deadlines of real-time tasks.
An illustration of a CPS application is shown in Fig. 1, where
sensors/actuators, controllers, and other nodes communicate
through a network.

There have been quite extensive studies on real-time
scheduling and control co-design in a single-resource system,
where the utilization bound has been typically used to check
the schedulability of tasks. What has not been fully investi-
gated is how to co-design scheduling and control in a multi-
resource system, where real-time transactions visit multiple
resources.

In this paper, we investigate the problem of real-time
scheduling and control co-design in a multi-resource CPS. Our
contributions can be summarized as follows: (i) We formulate

Controller1

Node2

Actuator2Plant2Sensor2Actuator1Plant1Sensor1

Conroller2

Node1 Node3

Network

Fig. 1. An illustration of a CPS application.

scheduling and control co-design in a multi-resource system
as an optimization problem with an objective of maximizing
a robust system performance. (ii) By adopting the recently-
developed per-resource end-to-end response time analysis, we
show that we can significantly enlarge the feasible region
of the co-design optimization problem. (iii) By combining
the control objective for robust performance and the per-
resource response time analysis, we demonstrate that we can
significantly improve the robustness of the overall system.

The rest of the paper is organized as follows. In Sec-
tion II, we formulate scheduling and control co-design as a
constrained optimization problem with end-to-end response
time constraints. Then, in Section III, we first investigate a
metric for control performance as the objective function of
the optimization problem in Section II. We introduce the per-
resource analysis in order to derive a tight bound for the
end-to-end response time. Our simulation results are given
in Section IV. We provide a summary of related work in
Section V. Finally, our conclusion follows in Section VI.

II. PROBLEM FORMULATION

A. Mathematical Notation

We consider a real-time control system that consists of M
resources denoted by R := {R1, R2, · · · , RM}, which are
either processors or communication links. Without loss of

The First International Workshop on Cyber-Physical Networking Systems

978-1-4244-9920-5/11/$26.00 ©2011 IEEE 773

generality, we do not distinguish the type of resources under
the assumption that every resource schedules its jobs based
on the fixed-priority preemptive scheduling. Note that non-
preemptive tasks on communication links can be dealt with
by considering one message length as a blocking factor [2].

With this M -resource real-time system, we assume N peri-
odic control transactions denoted by {Γ1, Γ2, · · · , ΓN}, where
Γi has a higher priority than Γj if i < j. Each transaction Γi

is composed of |Γi| tasks, denoted by {τi,1, τi,2, · · · , τi,|Γi|}.
Each task τi,j , j = 1, · · · , |Γi| of Γi is executed on resource
ri,j ∈ R with the worst-case execution time of ei,j .

The first task τi,1 of transaction Γi is released with a period
of pi and the subsequent tasks are released at the completion
times of their immediate precedent tasks. Consequently, we
can represent Γi as follows.

Γi =(pi, {τi,1 = (ri,1, ei,1), τi,2 = (ri,2, ei,2), · · · ,

τi,|Γi| = (ri,|Γi|, ei,|Γi|)}).
Here, we call one occurrence of the sequence

τi,1, τi,2, · · · , τi,|Γi| an instance of transaction Γi. Then,
we assume that each instance of Γi should be completed in
a period, i.e., the end-to-end deadline is equal to the period
pi. However, it should be noted that our analysis can also
be applied in a straightforward manner to the case when the
end-to-end deadline is shorter than the period [3].

B. Co-Design Problem Formulation

For a given set of N periodic transactions {Γ1, Γ2, · · · , ΓN}
over M resources {R1, R2, · · · , RM}, we consider the prob-
lem of how to maximize a certain control performance metric
while satisfying the end-to-end schedulability constraints as
follows:

maximize U(p)
subject to e2eRspT imei(p) ≤ pi, i = 1, · · · , N,

(1)

where p = (p1, · · · , pN), U(·), and e2eRspT imei denote the
periods of all the transactions, a certain control performance
metric, and the end-to-end response time of transaction Γi,
respectively.

In our formulation of (1), for the schedulability constraints
in multi-resource systems, we introduce the end-to-end re-
sponse time instead of the utilization bound typically used
for the single-resource case. Though the utilization bound
condition is easy to deal with in analysis because of its
simplicity, it is a sufficient condition even in a single-resource
system, and may not be sufficient in multi-resource cases.

The control performance of each transaction will typically
degrade as its period pi increases. In addition, the overall
objective function U in (1) is generally a certain increasing
function of the control performance of the individual trans-
actions. Hence, in order to maximize the objective function
U , the periods of transactions, pi’s, should be decreased as
much as possible. However, decreased pi’s will result in
increase of the end-to-end response times of all lower-priority
transactions Γj , i < j, because smaller pi’s will consume
more processor time. Consequently, it is of critical importance

how to balance this tradeoff between the control performance
and the processor usage of control transactions, which is a
fundamental issue in CPS.

III. SYSTEMATIC APPROACH FOR SOLVING THE

CO-DESIGN OPTIMIZATION PROBLEM

A. Control Problem Formulation and Performance Metric

Our first task is how to formulate the control problem
with a proper performance metric. Here, we aim to design
a controller that gives robust performance against limitations
in implementation such as imprecise actuation and truncation
errors. In particular, we adopt the controller design approach
in [4].

For control problem formulation, consider that each control
transaction Γi, i = 1, · · · , N controls a single input com-
pletely reachable system described by ni linear differential
equations, where ni is called the dimension of the system. The
continuous-time system dynamics with the state vector x(i) =
[x(i)

1 · · · x
(i)
ni]T and the control input ui, where AT denotes

the transpose of A, can be represented in a matrix form as

ẋ(i) = Aix
(i) + Biui, (2)

where Ai ∈ R
ni×ni , Bi ∈ R

ni×1, and i = 1, · · · , N. For
notational simplicity, we will use the superscript (i) and
subscript i only when they are strictly required.

Since there is a delay of p in each control loop, the delayed
input of u((k − 1)p) is applied to the control system during
the k-th sampling period. Hence, for the sampled discrete-time
system, we introduce an additional state variable of z(kp) =
u((k − 1)p) in order to account for the delayed input. Then,
the augmented system equations sampled with the period p is
given as follows from [5]:[

x((k + 1)p)
z((k + 1)p)

]
= Φ

[
x(kp)
z(kp)

]
+ Υu(kp), (3)

where

Φ =
[

eAp b
∫ p

0 eAξdξ
0 0

]
, Υ =

[
0
1

]
.

In the meantime, a state feedback control law for the aug-
mented state vector [x(kp)T z(kp)]T is given as follows.

u(kp) = kxx(kp) + kuz(kp), (4)

where kx and ku are feedback gain vectors, of which the sizes
are 1 × ni and 1 × 1, respectively. By plugging (4) into (3),
the closed-loop dynamics can be derived as[

x((k + 1)p)
z((k + 1)p)

]
= (Φ + ΥK)

[
x(kp)
z(kp)

]
, (5)

where K = [kx ku]. With the discrete-time equations in (5),
each control transaction has a vector of feedback gains K as
control parameters.

As a performance metric for control design, same as in [4],
we define the stability region for control parameters Ki of
transaction Γi as follows: Let Λi denote a set such that the
system in (5) is asymptotically stable if and only if Ki ∈ Λi.

774

Here, we call Λi the stability region of transaction Γi. Obvi-
ously, a small area of Λi requires a more accurate controller
design because the control parameters Ki should remain in
the region despite the imprecision in implementation. Hence,
with a large area of Λi, the control system will become more
robust to implementation errors.

The stability region Λi is generally a complex region in
a multidimensional space. Hence, in order to quantify the
stability region Λi with a single scalar value, we need an
effective measure that properly represents the area of Λi. Here,
we introduce the stability center θi and the stability radius
μi as the Chebyshev center and the Chebyshev radius of Λi,
respectively [4]. Briefly speaking, the Chebyshev center of a
bounded set is defined as the center of the largest inscribed
ball of the set, and the corresponding radius is called the
Chebyshev radius. With the above definitions, the stability
radius μi, which is actually the Chebyshev radius of Λi, is
an effective measure of the stability region Λi.

With the stability radius μi, we can now define the perfor-
mance metric U(p) = mini=1,··· ,N μi, which is the smallest
stability radius among those of the N stability regions. Now,
the overall co-design problem in (1) becomes

maximize min
i=1,··· ,N

μi(pi)

subject to e2eRspT imei(p) ≤ pi, i = 1, · · · , N,
(6)

where we explicitly show the dependencies of μi on pi because
the stability radius μi of transaction Γi is a function of its own
period pi.

B. Computation of the Stability Radius

In the case of first-order systems where ni = 1, the stability
region Λ can be analytically obtained as a triangle by using
the Jury criterion [5]. First, the characteristic polynomial of
the matrix Φ + ΥK in (5) is given as

z2 − (
eλ1p + ku

)
z + eλ1pku − bkxI(p),

where λ1 is the eigenvalue of the continuous-time system in
(2) and I(p) =

∫ p

0 eλ1ξdξ = (eλ1p − 1)/λ1. Then, the Jury
criterion [5] gives the following inequalities for K = [kx ku]:⎡

⎣ eλ1p −bI(p)
−(eλ1p − 1) bI(p)
−(eλ1p + 1) bI(p)

⎤
⎦[

kx

ku

]
<

⎡
⎣ 1

1 − eλ1p

1 + eλ1p

⎤
⎦ . (7)

Consequently, the stability region Λ for K can be obtained
as a triangle, which is formed by three lines given in (7). In
addition, from Proposition 1 in [4], the stability radius μ is
given as

μ =

⎧⎪⎨
⎪⎩

λ1
eλ1p(λ1+|B|)−|B| , if λ1 > 0;

2λ1
eλ1p(λ1+2|B|)+λ1−2|B| , if λ1 < 0;

1
1+p|B| , if λ1 = 0.

(8)

Note that it can be easily shown from (8) that the stability
radius μ monotonically decreases with p.

In general, it is formidable to compute the stability radius
in higher-order systems. However, it is still possible to derive

the empirical probability for the system in (5) being stable by
using the randomized algorithms [6].

Let P (θ, μ) denote the empirical probability for (5) being
stable in the set of Bμ(θ) = {K | ||K − θ|| ≤ μ}. Once μ is
given, we can numerically find θ∗(μ) that maximizes P (θ, μ).
Hence, for any given tolerance of ε, the stability radius and
the stability center can be estimated as the minimum μ and
the corresponding θ∗ such that P (θ∗(μ), μ) ≤ 1 − ε.

Here, we give a brief introduction on how to apply the
randomized algorithms to the calculation of the empirical
probability P (θ, μ) for a given μ. First, draw m random
samples for θ, denoted by θ1, · · · , θm. Then, for each θi, by
drawing n samples of K in Bμ(θ), calculate the empirical
probability of P (θi, μ) denoted by Pn(θi, μ). Finally, we
can obtain the estimate of the stability center as θm,n =
argmaxi=1,··· ,m Pn(θi, μ). Note that a detailed explanation
including the selection rule for m and n with a given ε can
be found in [6].

C. Per-Job End-to-End Response Time Analysis and Multiple
Visit Problem

With the control problem formulation in the preceding
sections, the remaining issue is how to derive a tight bound for
the end-to-end response time. For calculation of the end-to-end
response time, we may use the conventional per-job end-to-
end response time analysis [7], of which a brief overview is
as follows.

For task τi,k in transaction Γi, its per-job worst-case re-
sponse time, denoted by wi,k, is calculated by using the
following recursive equation.

wi,k = ei,k +
∑
∀j<i

∑
{a|rj,a=ri,k}

⌈
Jj,a + wi,k

pj

⌉
ej,a, (9)

where Jj,a is the worst-case release jitter of a-th task τj,a of
a higher priority transaction Γj . Equation (9) implies that the
per-job worst-case response time of task τi,k can be calculated
by adding the following two terms; (i) its own execution time
ei,k and (ii) the largest possible delay due to higher priority
jobs on the same resource. Consequently, by applying (9) to all
the tasks in transaction Γi, the worst-case end-to-end response
time, e2eRspT imei, can be calculated by summing up all the
per-job response times as follows.

e2eRspT imei =
|Γi|∑
k=1

wi,k.

However, this per-job analysis can severely overrate the
end-to-end response time when transaction Γi visits the same
resource multiple times, which is termed the multiple visit
problem [3].

As an illustrative example for the multiple visit problem
of the per-job analysis, we consider the case in Fig. 2(a),
where three Electronic Control Units (ECUs) are connected
through a Controller Area Network (CAN) bus. We assume
two transactions in the system as follows: A high priority
transaction consists of five tasks (1, 2, 3, 4, 5) that utilizes

775

CAN

ECU2

ECU3ECU1

1

2

3

4

5
6

7

8

9

10

(a) Two transactions on an ECU network

ECU1

ECU2

ECU3

CAN

time

time

time

time

double count

worst case end-to-end response time
based on per-job analysis

1

22

3

44

5 6

7

8

9

10

(b) Per-job based analysis

Fig. 2. Illustrative example of the multiple visit problem.

ECU2, CAN , ECU3, CAN , and ECU1, respectively. A low
priority transaction has five tasks (6 , 7, 8, 9, 10) that utilizes
ECU1, CAN , ECU2, CAN , and ECU3, respectively. In
this system, the conventional per-job analysis is illustrated in
Fig. 2(b).

In the figure, the low priority transaction visits CAN two
times with task 7 and task 9. For each visit, the per-job
analysis assumes that the worst-case delay by the high-priority
tasks is attributed by task 2 and task 4. Hence, as shown in
Fig. 2(b), the execution times of tasks 2 and 4 in the high-
priority transaction may be double-counted in calculation of
the end-to-end response time of the low-priority transaction.
Obviously, this redundant counts in the per-job analysis will
result in an overestimation of the end-to-end response time,
which becomes more severe as the number of the multiple
visit increases.

D. Per-Resource End-to-End Response Time Analysis

To resolve the multiple visit problem of the traditional per-
job response time analysis explained in the previous section,
we introduce the recently developed per-resource end-to-end
response time analysis [3]. Figure 3 gives an illustration that
compares the per-job analysis and the per-resource analysis.

In our per-resource response time analysis, the end-to-end
response time of transaction Γi can be calculated as follows:

e2eRspT imei =

∑
∀Rl∈R

⎛
⎝ ∑

{(i,k)|ri,k=Rl}
ei,k +

i−1∑
j=1

TDj
i (Rl)

⎞
⎠ , (10)

where ei,k is the execution time of task τi,k and TDj
i (Rl)

denotes the per-resource total delay, which is defined as the
worst-case total delay that one instance of Γi experiences due
to higher priority transactions Γj , j = 1, · · · , i−1 at resource
Rl.

In order to further derive the total delay TDj
i (R) in (10), we

introduce a notion of the per-resource total window, denoted
by TWi(R), which is defined as the time duration during
which an instance of transaction Γi has unfinished tasks on
resource R. Then, to find TDj

i (R), we introduce an iterative
convergence approach, similarly as in the traditional recursive
response time equation [8], [9].

Initially, we set TDj
i (R) = 0 for all the transactions Γj , j =

1, · · · , i−1 and for all the resources R ∈ {R1, R2, · · · , RM}.
Then, we have the following iterative equation between
TWi(R) and TDj

i (R):

TWi(R) =
∑

v1≤k≤vm

ei,k

+
∑

∀Rl∈R

i−1∑
j=1

TDj
i (Rl)Xvm

v1
(Rl), (11)

where

Xvm
v1

(Rl) =
{

1, if any of {τi,v1 , · · · , τi,vm} visits Rl;
0, otherwise.

Once TWi(Rl) for resource Rl is given, TDj
i (Rl) can be

obtained by

TDj
i (Rl) =

∑
{a|rj,a=Rl}

(
Cj,a

i (TWi(Rl)) × ej,a

)
, (12)

where Cj,a
i (TWi(Rl)) denotes the worst-case total number of

instances of ej,a attributing to TDj
i (Rl) in TWi(Rl). We can

calculate Cj,a
i (TWi(Rl)) by

Cj,a
i (TWi(Rl)) =

min

⎡
⎣Zj,a(TWi(Rl)),

∑
{k|ri,k=Rl}

Ij,a(i, k)

⎤
⎦ , (13)

where Zj,a(TWi(Rl)) = �Jj,a + TWi(Rl)/pj� and Ij,a(i, k)
is the largest possible number of release of task τj,a during
the busy period of task τi,k which can be obtained from (9).

Consequently, by applying (11), (12), and (13) altogether in
an iterative manner, we can calculate the total delay TDj

i (R),
which in turn gives the end-to-end response time by (10).

IV. NUMERICAL STUDY

A. Simulation Setup

We consider a multi-resource system in Fig. 1. Assume that
there are four transactions, denoted by {Γ1, Γ2, Γ3, Γ4}. Our
goal is to determine the periods of transactions Γ1 and Γ2

while Γ3 and Γ4 have fixed periods. In addition, we assume
that the shared network in Fig. 1 is a Controller Area Network
(CAN) bus, which is considered as one of the resources as

776

end-to-end response time

re
so

ur
ce

 d
im

en
si

on

job dimension

end-to-end response time

re
so

ur
ce

 d
im

en
si

on

job dimension

Per-job analysis Per-resource analysis

: delay by high-priority jobs

: executions of our interested transaction

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4

R1 R1

R2 R2

Fig. 3. Conceptual comparison of per-job analysis and per-resource analysis.

Period
Execution time

Si, Ci, Ai, Nodei CAN
Γ1 p1 10 50
Γ2 p2 20 60
Γ3 1500 30 70
Γ4 3000 40 80

TABLE I
THE PERIODS OF TRANSACTIONS AND THE EXECUTION TIMES OF

RESOURCES IN MS.

already explained in Section II-A. The visit sequences of
transactions are given as follows:

Γ1 : {S1, CAN, C1, CAN, A1},
Γ2 : {S2, CAN, C2, CAN, A2},
Γ3 : {N1, CAN, C1, CAN, N2, CAN, C1, CAN, N1},
Γ4 : {N3, CAN, C2, CAN, N2, CAN, C2, CAN, N3},

where Si, Ci, Ai, i = 1, 2 and Ni, i = 1, 2, 3 denote Sensori,
Controlleri, Actuatori, and Nodei in Fig. 1, respectively. The
periods of each transaction and the execution times at each
resource are summarized in Table I. The priority of a trans-
action is given with the rate-monotonic priority assignment.
For the dynamics of Plant1 and Plant2, we use λ1 = 1 and
λ2 = 3, respectively, and B = 1 for both plants.

B. Comparison of the Stability Regions

Due to the page limit, here we only show the numerical
result of the robustness performance of the overall system. In
particular, in order to see the effect of both the control metric
and the response time analysis, we introduce the following
objective in (1) for comparison with our objective function:
Uprimitive(p) = −∑N

i=1 pi.
With the introduction of Uprimitive, we have the following

four combinations for solving the optimization problem of
(1): (Uprimitive, per-job analysis), (Uprimitive, per-resource
analysis), (Uours, per-job analysis), and (Uours, per-resource
analysis). Table II shows the optimal solution p∗ = (p∗1, p∗2)
to each combination and the corresponding stability radius
μ(p∗) = (μi(p∗1), μi(p∗2)). Note that the underlined values

Per-job analysis Per-resource analysis

Uprim
p∗ = (340, 780) p∗ = (340, 400)

μ(p∗) = (0.5525, 0.0740) μ(p∗) = (0.5525, 0.2442)

Uours
p∗ = (700, 580) p∗ = (650, 290)

μ(p∗) = (0.3303, 0.1377) μ(p∗) = (0.3532, 0.3510)

TABLE II
THE OPTIMAL SOLUTION p∗ TO THE RESPECTIVE FORMULATION AND THE

CORRESPONDING STABILITY RADIUS.

are the period that gives the smallest stability radius and the
corresponding stability radius between p∗1 and p∗2.

In Table II, if we compare the results in each column, we can
notice that Uprimitive gives a smaller aggregate of the periods
than Uours. In fact, we can easily expect this result from the
objective of each formulation. However, the smallest stability
radius (underlined in Table II) is smaller with Uprimitive. This
fact indicates that Uprimitive improves the control performance
of one transaction at the expense of the other one, which
results in a severe unbalance between the stability radius of
two transactions.

The stability region of the transaction with the smallest
stability radius in Table II are shown in Fig. 4. As we can
expect from the analysis, the stability region increases either
with the per-resource analysis or with the proposed objective.
By comparing Fig. 4(a) and Fig. 4(d), we can conclude that
our approach significantly increases the stability region.

V. RELATED WORK

An early work on integration of real-time scheduling and
control design was carried out by Seto et al. [10], where
an optimal sampling period selection algorithm was proposed
under the assumption that control performance monotonically
increases as the periods decrease. In [11], RMA schedulability
are formulated as an integer programming to obtain all the
feasible periods of a task set, and then the optimal periods
are derived by evaluating a given cost function. Overviews on
scheduling and control co-design can be found in [12] and
[13].

Palopoli et al. [4] presented a rigorous optimization ap-
proach for scheduling and control co-design in a single-

777

−12.5 −12 −11.5 −11 −10.5 −10 −9.5 −9 −8.5 −8

−48

−46

−44

−42

−40

−38

−36

−34

−32

−30

−28

k
x

k u

(a) Stability region Λ for the
primitive objective with the

conventional per-job analysis

−5.5 −5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1

−26

−24

−22

−20

−18

−16

−14

−12

−10

−8

−6

k
x

k u

(b) Stability region Λ for the
primitive objective with the

per-resource analysis

−8 −7.5 −7 −6.5 −6 −5.5 −5 −4.5 −4 −3.5

−34

−32

−30

−28

−26

−24

−22

−20

−18

−16

−14

k
x

k u

(c) Stability region Λ for our
robustness objective with the
conventional per-job analysis

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0

−24

−22

−20

−18

−16

−14

−12

−10

−8

−6

−4

k
x

k u

(d) Stability region Λ for our
robustness objective with the

per-resource analysis

Fig. 4. Stability region Λ of the transaction with the smallest stability radius.

resource system under the utilization bound constraint. Our
control design follows the approach in [4] by adopting the
notion of the stability radius. In the meantime, it should be
noted that our co-design formulation differs from previous
studies in that we study the scheduling and control co-design
in multi-resource systems with the end-to-end response time
constraints.

A scheduling problem in multi-resource systems has been
investigated in an optimization framework [14], where the
multi-resource scheduling has been formulated as minimiza-
tion of the aggregate response times of transactions under
the traditional end-to-end response time constraints. A period
assignment problem has been also tackled in [15], where
an optimization approach has been proposed by taking into
account the control delay.

From the perspective of real-time schedulability theory, the
classic work of Joseph et al. [9] presented the worst-case
response time analysis for multiple tasks on a single processor
fixed-priority scheduling system. This analysis was extended
by Tindell et al. for arbitrary deadlines [8] and distributed
systems with multiple resources [7]. These studies have been
further extended in many ways; reducing or eliminating the jit-
ters [16], [17], or considering precedence and timing relations
among jobs [18]–[20]. However, all these studies are based
on Tindell’s per-job analysis in [7] and hence have a common
fundamental issue of the multiple visit problem.

The delay composition theorem of [21] and [22] respectively
considered the overlapped executions in pipelined distributed
systems and in distributed acyclic systems to reduce the over-
estimation of the per-job end-to-end delay analysis. However,
these approaches are not applicable to our cases where trans-

actions visit resources multiple times in arbitrary manners.
Our end-to-end response time analysis in this work mainly

relies on that in [3], of which the per-resource response time
analysis significantly reduces the overestimation of the per-job
analysis caused by the multiple visit problem.

VI. CONCLUSION

In this paper, we have investigated the problem of real-
time scheduling and control co-design in a multi-resource CPS
from the perspective of the robustness. We expect that our
framework will provide an effective framework for design of
a robust CPS.

REFERENCES

[1] J. A. Stankovic, I. Lee, A. Mok, and R. Rajkumar, “Opportunities and
obligations for physical computing systems,” IEEE Computer, vol. 38,
no. 11, pp. 23–31, November 2005.

[2] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller Area
Network (CAN) schedulability analysis: Refuted, revisited and revised,”
Real-Time Systems, vol. 35, no. 3, pp. 239–272, April 2007.

[3] M.-K. Yoon, C.-G. Lee, and J. Han, “Migrating from per-job analysis to
per-resource analysis for tighter bounds of end-to-end response times,”
IEEE Transactions on Computers, vol. 59, no. 7, pp. 933–942, July
2010.

[4] L. Palopoli, C. Pinello, A. Bicchi, and A. L. Sangiovanni-Vincentelli,
“Maximizing the stability radius of a set of systems under real-
time scheduling constraints,” IEEE Transactions on Automatic Control,
vol. 50, no. 11, pp. 1790–1795, 2005.

[5] K. J. Åström and B. Wittenmark, Computer-Controlled Systems. Pren-
tice Hall, 1997.

[6] R. Tempo, G. Calafiore, and F. Dabbene, Randomized Algorithms for
Analysis and Control of Uncertain Systems. Springer, 2007.

[7] K. Tindell and J. Clark, “Holistic schedulability analysis for distributed
hard real-time systems,” Microprocessing and Microprogramming -
Euromicro Journal, vol. 40, no. 2-3, pp. 117–134, April 1994.

[8] K. Tindell, A. Burns, and A. Wellings, “An Extendible Approach for
Analyzing Fixed Priority Hard Real-Time Tasks,” J. Real-Time Systems,
vol. 6, no. 2, pp. 133–151, March 1994.

[9] M. Joseph and P. Pandya, “Finding Response Times in a Real-Time
System,” BCS Computer J., vol. 29, no. 5, pp. 390–395, Oct. 1986.

[10] D. Seto, J. P. Lehoczky, L. Sha, and K. G. Shin, “On task schedulability
in real-time control systems,” in Proceedings of the 17th Real-Time
Systems Symposium, December 1996.

[11] D. Seto, J. P. Lehoczky, and L. Sha, “Task Period Selection and
Schedulability in Real-Time Systems,” in Proceedings of the 19th Real-
Time Systems Symposium, December 1998.

[12] K.-E. Årzén, A. Cervin, J. Eker, and L. Sha, “An Introduction to Control
and Scheduling Co-Design,” in Proc. of the 39th IEEE Conference on
Decision and Control, December 2000.

[13] D. Simon, P. Hokayem, J. Lygeros, and E. Camacho, “State of the art
in control/computing co-design,” The FeedNetback Project (http://www.
feednetback.eu/), Tech. Rep., March 2009.

[14] A. Davare, Q. Zhu, M. D. Natale, C. Pinello, S. Kanajan, and A. L.
Sangiovanni-Vincentelli, “Period optimization for hard real-time dis-
tributed automotive systems,” in Proc. of the 44th Design Automation
Conference, June 2007.

[15] E. Bini and A. Cervin, “Delay-aware period assignment in control
systems,” in Proc. of the 29th Real-Time Systems Symposium, December
2008.

[16] J. Sun and J. Liu, “Bounding the end-to-end response times of tasks in a
distributed real-time system using the direct synchronization protocol,”
Department of Computer Science, University of Illinois at Urbana-
Champaign, Tech. Rep. UIUCDCS-R-96-1949, June 1996.

[17] J. C. Palencia, J. J. G. Garcı́a, and M. G. Harbour, “Best-case analysis
for improving the worst-case schedulability test for distributed hard real-
time systems,” in Proc. of the 10th Euromicro Workshop on Real-Time
Systems, 1998, pp. 35–44.

[18] J. C. Palencia and M. G. Harbour, “Schedulability analysis for tasks
with static and dynamic offsets,” in Proc. of the 19th IEEE Real-Time
Systems Symp., Dec. 1998, pp. 26–37.

[19] ——, “Exploiting precedence relations in the schedulability analysis of
distributed real-time systems,” in Proc. IEEE 20th Real-Time Systems
Symp., Dec. 1999, pp. 328–339.

[20] R. Henia and R. Ernst, “Improved offset-analysis using multiple timing-
references,” in Proc. of the conference on Design, Automation and Test
in Europe, March 2006, pp. 450–455.

[21] P. Jayachandran and T. Abdelzaher, “A Delay Composition Theorem
for Real-Time Pipelines,” in Proc. of the 19th Euromicro Conference on
Real-Time Systems, July 2007.

[22] ——, “Transforming Distributed Acyclic Systems into Equivalent
Uniprocessors Under Preemptive and Non-Preemptive Scheduling,” in
Proc. of the 20th Euromicro Conference on Real-Time Systems, July
2008.

778

