
Using Physiological Signals for Authentication in a

Group Key Agreement Protocol

Kalvinder Singh

IBM, Australia Development Lab

and Griffith University

St Leonards, Australia, NSW

Email: kalsingh@au.ibm.com

Vallipuram Muthukkumarasamy

Griffith University

Queensland, Australia

Email: v.muthu@griffith.edu.au

Abstract—A Body Area Network (BAN) can be used to monitor
the elderly people or patients with chronic diseases. Securing
broadcasted data and commands within BANs is essential for
preserving the privacy of health data and for ensuring the safety
of the patient. We show how a group key can be securely
established between the different sensors within a BAN. The
proposed mechanism uses the inherent secure environmental
values. An implementation of the protocols is carried out on
mica2 motes and performance is examined in detail. The time
elapsed, complexity of the code and memory requirements are
analysed. The results confirm the potential benefits in real-world
application. We show that a key establishment protocol based
on RSA has advantages over a protocol based on ECC for this
application.

I. INTRODUCTION

The aging population and the increase of chronic diseases

have placed an immense financial burden on health services. A

home health care system, with both body and external sensors

may be used to help reduce the costs. Sensors can be used

to remotely monitor elderly patients suffering from chronic

diseases and allow them to have relatively independent lives.

Home health care systems require a degree of real–time data

collection. A patient with a medical emergency will require

data sent to medical staff as quickly as possible, rather than

the data sent after a few hours or days. The problem gets

even more complex with the requirement that commands sent

to sensors need to be in real–time. For instance, if a device

recognizes a possible medical emergency, it should notify

other sensors immediately to start recording.

Security or information assurance is a very important cri-

teria of the home health care system. A device broadcasting

a command to all the sensors should have the transmission

secured using a group key. The group key should be shared

amongst the device and the sensors.

A home health care system [1], with both body and external

sensors is an example of a complex sensor network system.

The complexity of the system increases as we add more

sensors to collect more data. For instance, blood pressure

increasing due to exercise is normal. However, increase in

blood pressure while at rest could mean a serious medical

condition. Sensors may not just measure physiological values,

but also body motions, which can lead to a number of

different sensors needing to communicate with each other. As

Patient

Mobile Phone

Fig. 1. Body Sensor Environment

the number of heterogeneous sensors increases, so will the

complexity of interactions between the sensors.

Figure 1 gives a diagrammatic representation of a patient

with body sensors and a mobile phone. The mobile phone is

a specialized device that the patient will carry with them and

it will be able to connect with the sensors and the internet. In

the case where this system is part of a home health system, the

mobile phone communicates with other devices in the home.

Depending on the health risks and privacy concerns of the

patient all of the information may not be transmitted to a

hospital.

If a sensor detects an anomaly it can broadcast a command

to all the sensors to increase their sampling rate. In the

case where sensors do not have the intelligence to detects

anomalies, the data is sent to the mobile phone. The mobile

The First International Workshop on Cyber-Physical Networking Systems

978-1-4244-9920-5/11/$26.00 ©2011 IEEE 731

phone can then detect if there is anything wrong, if required

then the mobile phone can broadcast a command to increase

their sampling rate. Another important requirement is that

sensors (especially sensors that are worn) on the body may

be added or removed from the sensor network. The group key

should be updated to handle additions and deletions of nodes

to the sensor network.

II. PROBLEMS AND LIMITATIONS

A. Group Key Protocols

One of the best known available group key protocol,

which many other group key protocols are based on, is

the Microtimed Efficient Stream Loss–Tolerant Authentication

(µTESLA) protocol designed by Perrig et al. [2]. In µTESLA,
when a message is broadcast, it generates a message authen-

tication code for that message with a symmetric key. The key

is a number on a one–way hash chain (OHC). Each sensor is

preconfigured with the initial number of the OHC, called the

commitment, so that when the key is released, each sensor

node can verify whether the key is valid. Only one sensor (in

most cases it will be the base station) will have the entire

OHC. To securely broadcast a message, the base station sends

the message and its message authentication code generated by

the key. At a later time, the base station releases the key to

all the sensors. The sensors will first verify that the key is on

the OHC, if it is then it can confirm that the original message

is correct.

There are several problems with this approach. The mecha-

nism is inefficient if there are many broadcast messages lost,

sensor nodes will then spend a long time verifying the key

against the one–way hash function. Another problem is that

when an important event occurs, and a command needs to

be broadcast out to all the sensors to increase their sampling

rates, the µTESLA delayed approach does not perform well.

The command that was broadcast cannot be verified until at

a latter time. And the final problem is that all the sensors

will have to be preconfigured with the initial number of the

OHC, which makes it difficult to add or replace sensors to the

system.

Recent research in BSNs has shown that environmental

information found in the body can be used to secure com-

munication between sensors nodes [3].Health sensors can use

Inter–Pulse–Interval (IPI) or Heart Rate Variance (HRV) as

good sources for cryptographically random numbers and the

physiological values can be used as a one–time pad. Protocols

that used these physiological values to encrypt a new key

between a sensor pair have been developed [4]. For instance,

Venkatasubramanian et al. [4] used a single message to send

a new key to the neighbouring sensor node, as shown in

Protocol 1.

Protocol 1 Venkatasubramanian BSN protocol

A→ B : NA, [NA]K ,K ⊕ SEV

The new key K is encrypted with the physiological value

SEV , which is only known to sensors on a particular person.

Sensor node B validates that K is correct by verifying the

MAC of NA.

Venkatasubramanian and Gupta noted that finding additional

cryptographically sound physiological values is still an open

research problem. Only cryptographically strong physiological

values, such as IPI and HRV, can be used. However, the

method used to generate a strong cryptographic key takes 30

seconds, since 67 quantized IPI values are required. Another

problem was that physiological signals measured from differ-

ent areas of the body have similar trends but not the same

values.

Venkatasubramanian et al. [3] developed PSKA, as a mech-

anism such that the duration of the physiological signal capture

is kept minimal. They used a vault [5] for the key agreement

mechanism, where the phsiological data is used to lock and

unlock the vault. However, the scheme requires approximately

50KB of memory and 10KB of transmitted data. Another

limitation is that if a body sensor is lost or stolen, the contents

of the vault are no longer secure. Some body sensors will not

have enough resources, and may not be physically secured to

be able to use the PSKA scheme.

Another mechanism to create a secure communication be-

tween body sensors is to place a small electrical charge around

the body and use that as the communication medium [6].

However, the sensors themselves will become more complex

as more components are added. Also, the network will become

insecure if two body sensor networks were to come closer and

intersect.

An approach for a secure group key generation for off the

shelf sensors with minimal memory and bandwidth resources

is required.

III. CREATING A GROUP PROTOCOL USING SEVS

This paper uses the generic name Secure Environmental

Value (SEV) referring to sensed data that can be obtained by

sensors from their environment. This data is usually hard to

obtain through other means. Examples of environment where

SEVs may be found include :

• Human body, where it is difficult to attach a device on

the body without the knowledge of the person.

• A secured location, for instance a military base or un-

manned vehicle, such as UAVs.

• Hard to reach places, for instance a satellite in orbit.

The example environment used in this paper is the human body

where BSNs have been developed to measure the physiological

values found in individuals. A major advantage of using SEVs

is that they can be used for authentication in body sensors,

since sensor on one’s body will be measuring physiological

data that is likely to be different from that is measured on

another body at any given time.

Some of the data recorded from body sensors include the

heart rate, blood pressure, temperature, and blood oxygen [7].

Table I shows the typical range of the data rate for each of the

physiological values. The node information is the location of

the sender node (8 bits), a MAC (we have specified the size

to be the same as the size of the physiological data), and a

732

counter to stop replay attacks (32 bits). We have not included

information such as the location of the receiving node in our

node information, since it is a part of the packet header as

described in TinyOS [8]. The heart rate values requires less

than 2 bits per second, however, the node information increases

the data rate to 10 bits per second. For the other physiological

values including the node information, there is only a need for

2 to 3 bits per second. We assume the data rate of 10 bits per

second, for measuring the time taken to execute our protocol.

TABLE I
BODY SENSOR DATA RATE RANGE

Signal Type Depth Node Info. Msg Rate

Heart rate 8 bits 56 bits 10 msgs/min
Blood Pressure 16 bits 64 bits 2 msgs/min
Temperature 16 bits 64 bits 1 msgs/min
Blood oxygen 16 bits 64 bits 1 msgs/min

The major benefit of using environmental data is that body

sensors can use the environmental data to authenticate that

another sensor is also on the same body, and not a sensor on

another individual.

Even though PINs and passwords may not be used feasibly

in sensors, we show that password protocols can be used.

Passwords have low randomness, and therefore have similar

characteristics to many SEVs. A four digit PIN contains less

than 14 bits of randomness and can be used in a password

protocol. A typical password length of eight characters has

less than 48 bit of randomness, if we randomly choose upper

and lower case letters as well as the digits 0 to 9. Password

protocols have the special property of allowing secrets with

small entropy to be used for key establishment [9]. Password

protocols are designed so that both off–line and on–line attacks

are not feasible. A feature or by–product of most password

protocols is that if the SEV is compromised, after the execution

of the protocol, then any session key that was created will not

be compromised.

Key sizes in sensor networks are small, normally 64 bits,

so that the encryption or integrity tests do not consume too

much energy [2]. Small key sizes lead to the need to update

keys on a regular basis. Another aspect of a heterogeneous

sensor network is that different sensors measure different

environmental data. There are also sensors that can measure

more than one environmental phenomena.

A. A Group Protocol

If several entities sharing no previous secret need to create

a shared group key, we can utilize a group key establishment

protocol, such as the Burmester and Desmedt protocol as

defined in Protocol 2 [10]. The protocol was originally created

without a formal proof, but subsequent work has shown the

protocol to be provably secure [11]. The protocol provides

both forward and backwards secrecy. Where an adversary who

knows a set of group keys cannot derive any new group keys,

or an adversary who knows a set of group keys cannot find

any earlier group keys. The Burmester and Desmedt protocol

uses a cyclic function to define the shared key. The protocol

requires that the sensors are logically arranged in a ring so

that S1 = Sm+1, where m is the total number of sensors.

Protocol 2 Burmester–Desmedt generalised Diffie–Hellman

with broadcasts

Si−1 Si Si+1

Round 1:

ri ∈R Zp
ti

←− ti = gri
ti

−→

Xi = (ti+1/ti−1)
ri

Zi−1,i = tri

i−1

Round 2:

Si broadcasts Xi to all parties

Si calculates Z

During Round 1 each adjacent pair of sensors, Si and Si+1,

performs a basic Diffie–Hellman key exchange. The sensor

Si calculates the ratio, Xi = (ti+1/ti−1)
ri , from its two

secrets from the adjacent sensors. In Round 2 each sensor

broadcasts its Xi value. Once all the sensors have broadcast

their values, every sensor can calculate the shared secret

Z = (Zi−1,i)
mXm−1

i Xm−2

i+1
. . . Xi−2.

The protocol has no authentication mechanism and by itself

cannot be used in a sensor environment. When using this

protocol with SEVs, we found that the difficulties of this

protocol included :

• There is no authentication or key confirmation mecha-

nism.

• Using weak keys to secure the protocol is non–trivial.

• There are m+2 exponents that are need to be calculated

per sensor.

Since the protocol has no authentication mechanism, an

adversary can easily join the protocol and discover the group

key. We will show how SEVs can be used to authenticate all

the participants in a group protocol, as long as every partici-

pant has access to the physiological values of the body (as an

example) in real time. Key confirmation is also important to

insure that all the participants in the group protocol obtained

the newly created group key. We will show how SEVs can

also be used as nonces.

Also, it is non–trivial using small keys (such as SEVs) to

encrypt the communication. A security weakness occurs if the

same weak key is used multiple times in the protocol. The

same environmental data may be used over multiple protocol

runs to conserve energy, or may be the environmental data

stays constant over a period of time. When environmental

data is used to encrypt ti, an adversary can use brute force

to decrypt [[ti]]SEV over all the possible values of SEV and

check if the candidate results are valid. If they are not then

that particular SEV can be removed from the list of valid

environmental values. If the same SEV is used multiple times,

then the SEV can become compromised, and the adversary can

join in the protocol and obtain the group key.

Encryption of data using a weak key introduces a brute force

733

style attack in this protocol. An adversary guessing the SEV

values can attempt to decrypt [[ti]]SEV and examine whether

the resulting plaintext is a valid Diffie–Hellman ephemeral

value. For instance, if the decryption with a candidate SEV
results in a string whose value is greater than p then that

candidate is invalid.

Boyd and Mathuria [9] suggested an alternative method to

calculate a shared secret when using a cyclic function. The

method is to define Xi = Zi,i+1 − Zi−1,i, and the way to

calculate the shared secret is defined as Equation 1.

Z = mZi−1,i + (m− 1)Xi + (m− 2)Xi+1 + . . .

+Xi−2

= mZi−1,i + (m− 1)(Zi,i+1 − Zi−1,i) +

(m− 2)(Zi+1,i+2 − Zi,i+1) + . . .

+Zi−2,i−1 − Zi−3,i−2

= Z1,2 + Z2,3 + . . . + Zm,1

= gr1r2 + gr2,r3 + . . . + grm,r1

(1)

However, there is a redundancy with Equation 1. The

following is true X1 + X2 + . . . + Xn = 0. This redundancy
enables an adversary to make the protocol vulnerable to an

attack by guessing the SEVs off-line and verifying whether

the addition of decrypted values in the second round commu-

nication is zero. If so, the adversarys guess for SEVs is correct.

Every participant needs to complete round 2 for this attack to

be successful. Using SEVs to only encrypt the second phase

does not yield a secure protocol and one can mount an off-line

attack.

B. Proposed Group Protocol using SEVs

We now describe our proposed group key establishment

protocol. It is based on the provably secure Burmester and

Desmedt protocol. We have added authentication and key

confirmation to this protocol using SEVs. We assume that the

protocol has n sensors, where each sensor is able to sense the

same environmental values as the other sensors in the system.

The protocol is described in Protocol 3.

In the first round, each sensor Si chooses a random time Ti

where Ti > currentT ime. The time will be used to notify

all the participants at what time the sensor will be measuring

its SEV. The time is set in the future so that an adversary

cannot pick a time in the past, where they have calculated

an old SEV. Each sensor will then broadcast out a message

Si, Ti informing all the other sensors at what stage they will

calculate the SEV.

In the second round, each sensor will sense its environment

and store the SEV Vi values for each sensor that is involved in

the protocol. If two sensors are measuring the same SEV, the

sensor with the larger id value will be given the next available

time slot in the list. Insuring that Vi 6= Vj∀i, j.
In the third round, we perform the Diffie–Hellman pro-

portion of the protocol. However, before sending out ti, we

Protocol 3 Singh et al. proposed group key protocol

Si−1 Si Si+1

Round 1:

Si chooses a time Ti

Si broadcasts Si, Ti

Round 2:

Si senses V1, . . . , Vn

Round 3:

ri ∈R Zp

ti = gri

t∗
i

←− t∗i = ti ⊕ Vi

t∗
i

−→

Zi−1,i = tri

i−1

Zi+1,i = tri

i+1

Xi = Zi+1,i − Zi−1,i

Round 4:

Si broadcasts Xi ⊕ Vi except Sn

Si calculates Xn and then Z
Round 5:

Si broadcasts ENCZ(Si, Vi)

encrypt it using Vi. Since each SEV is different, a partition

attack is not possible.

In the fourth round each sensor sends Xi⊕Vi, except for Sn.

After all the messages have been broadcast, all the sensors will

be able to calculate Xn from the equation Xn = −(X1+X2+
. . . + Xn−1). The reason to have the value Xn calculated by

each sensor is to remove the redundancy found in Equation 1.

The fifth round verifies that each sensor has successfully

calculated the new group key. It is important to add key

confirmation at the end of this protocol, since an adversary

may attempt a man–in–the–middle attack. This is done by

each sensor encypting the values Si, Vi with the group key

Z, and then broadcasting the encrypted values to each of the

other sensors in the group.

C. RSA and ECC Comparison

Previous research in sensors suggested that RSA is not

suitable, and elliptic curves should be used [12], [13]. We

extensively examine this claim and investigate if RSA can be

efficiently implemented. To convert the RSA implementation

of a password protocol into an elliptic curve implementation,

the V1 will need to be mapped to an elliptic curve point. The

mapping requires a much larger key than the 160-bit exponent

required for the above protocol. A general procedure for this

can be found in IEEE P1363.2: Standard Specifications for

Password–Based Public–Key Cryptographic Techniques [14].

A simplified version of the procedure is shown below.

1) Set i = 1.
2) Compute w = h(A,B, V1, i).
3) Set α = w3 + aw + b.
4) If α = 0 then the point is (w, 0).
5) Find the minimum square root of α, and call it β. Can

use the method found in IEEE P1363 [15] (Appendix

A.2.5).

734

6) If no square root exists, set i = i + 1, and go to Step 2.

7) The elliptic curve point is (w, β).

The above algorithm is non–deterministic for different V1

values. If a square root is not found then the algorithm will

loop back to the second step to compute a new value for β. In
an environment where a sensor scavenges energy to perform

an operation, it is not suitable to have a non–deterministic

algorithm.

Mapping a variable into a point on an elliptic curve allows

the conversion of many RSA password protocols to an elliptic

curve password protocol.

1) Mapping SEV into the field. When using RSA, the SEV

can be naturally mapped into the field. This could either

be a direct modulus, or a modulus of the hash of the

SEV. However, mapping the SEV onto a point requires

more work as shown by the following equation P =
f(A,B, V1)r. The function f is the non–deterministic

method to map a number onto a point in an elliptic

curve, as described above. The point is then multiplied

by r, to place it into the correct group.

2) Both the RSA and the ECC implementation require a

random value in the field Zq to obtain an rA as shown

by rA ∈R Zq.

3) The ephemeral value for Diffie–Hellman is calculated,

for ECC, that is tA = rAg. The RSA algorithm involves

an exponent.

4) Finally, the message is created. In the RSA case, P is

multiplied to tA, whereas in the ECC case the following

equation is used m = tA+P . The message m is created,

to decrypt the message the receiver can subtract P ,

since tA = m − P . An adversary will not be able to

discover the value for tA unless they know V1. Also,

the adversary will not find any invalid decrypted values,

which removes the partition attack problem.

However, when converting this into an elliptic curve–based

construct, we face the same problems as shown for the PAK

family of products. The SEV will need to be mapped onto an

elliptic curve point, which is non–deterministic.

We have developed a technique to make the proto-

col deterministic, where the elliptic curve point (x, y) =
(h1(V1, R1), h2(V1, R1)). After this calculation, a valid ellip-

tic curve is found where this point is valid y2 = x3 + ax + b,
where the value for a is predefined. However, this does

require extra encrypted information to be sent from A to B,

[[R1]]V1
, [[b]]V1

. In a resource constrained environment, extra

information sent by a sensor will require additional energy to

be consumed by the sensor.

IV. ANALYSIS AND IMPLEMENTATION

We implemented and compared the proposed group key

agreement protocol on a Crossbow mica2 MPR2600 mote.The

protocols were developed using TinyOS 2.x. The RSA code

was based from the Deluge System, and we used a 160 bit

exponent as required by most RSA based password protocols.

Previous studies assumed that a larger key size is needed when

using RSA [16]. However, password protocols have different

characteristics where the assumption is not valid. We had

one sensor attached to a workstation while the other sensors

were placed stand–alone. After the running of the protocols,

the elapsed time was then sent via the serial connection,

to a PC running a Linux R© distribution where we have a

Java R© application reading the TinyOS packet from the serial

port, and report that data to the user.

The configuration we used is shown in Figure 2. One of the

sensors is attached to the computer with a USB cable. The

computer registers the connection as a serial port. The com-

munication between the computer and the sensor is achieved

through the serial port.

Fig. 2. Reading from the Sensor using the Serial Port

Table II shows the ratio of the application speed for each of

the algorithms compared to exclusive-or algorithm. When we

ran the algorithm on the mica2 mote, over the 2000 iterations it

took approximately one millisecond. In the ATEMU simulator

it took approximately 7000 instructions.

TABLE II
COMPARISON OF APPLICATION SPEED: AS RATIO TO EXCLUSIVE-OR

Algorithm Mica2 ATEMU

RC5 453 456
SKIPJACK 739 741
HMAC–MD5 18400 18500
RSA 41600 41900
SQRT 87800 88400
ECC 4820000 4920000

We found little difference between the simulation results

and the amount of time an operation takes when put on the

mica2 mote. The most notable difference in results was for

the ECC algorithm where there was a two percent difference.

Both the time and number of instructions suggest that for the

same size key the RSA algorithm is significantly better than

the ECC algorithm.

735

A. Memory Size

The size of the application both in terms of number of lines

of code and the size in bytes is important when choosing an

algorithm. Table III list the number of lines of code and the

size in bytes of the application that we used to run our original

time and instruction measurements.

TABLE III
MEMORY SIZE FOR DIFFERENT ALGORITHMS

Algorithm
Code Size Stack RAM
Lines (bytes) (bytes) (bytes)

XOR 80 5600 158 432
RC5 506 6776 172 466
SKIPJACK 697 8138 190 496
RSA 1456 7062 213 624
SQRT 3366 7662 230 748
ECC 5038 14020 760 2066

The Code Lines indicates lines of code and thus the

complexity of the code for a developer to implement the

application. The Size (bytes) indicates the size in bytes of

the application. The Stack (bytes) indicates the maximium

size of the stack for the application. The RAM (bytes) is the

maximium amount of RAM the application will need. The

figures are obtained from the stack analysis tool found in

tinyos.

The XOR application is the quickest by several orders of

magnitude compared to the other cryptographic primitives.

But the size of the application is smaller, and the number of

lines is less then the other applications. The XOR application

is the quickest, whereas the ECC application is the slowest.

This verifies existing research into the differences in speed

for password protocols of RSA and ECC implementations in

TinyOS simulators [1]. The HMAC–MD5 application is the

largest, however the application was a straight port from the

RFCs, where the code was not intended for sensors.

We found that the performance costs of the cryptography

algorithms was insignificant compared to the costs of commu-

nication. Where the communication can be measured in the

milliseconds the computation costs had to be measured in the

microseconds range. On average each message sent took 10

ms to be received and parsed by the opposite end. When we

ran the protocol over four nodes, we found that the total time

took was 97 ms. We have yet to try this protocol with a larger

number of sensors.

We also investigated the memory used by the protocol. We

developed an application without RSA. The application only

sent and received messages. We then added the parsing and

calculations of the group key into the code. We found that the

application without RSA had a maximum RAM size of 411

bytes. By adding the RSA algorithm into the application the

RAM size grew to 624 bytes.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a secure group key establishment

mechanism for a body area network. It allows multiple devices

to agree on a shared group key, in an authenticated manner,

without the need for any form of initialization or a priori

knowledge. We showed that designing a secure group key

agreement protocol is not a trivial task, and discussed different

types of attacks. The proposed group protocol uses SEVs

to achieve authentication. The protocols were implemented

in TinyOS and run on micaz motes. The time elapsed and

memory usage showed that the protocol meets the general

BSN requirements. We show that a group key establishment

protocol can be efficiently run in a sensor network with the

RSA algorithm. Future work includes further performance

testing of our protocol with a larger number of sensors.

REFERENCES

[1] K. Singh and V. Muthukkumarasamy, “Verification of key establishment
protocols for a home health care system,” in Proceedings of the Fourth

International Conference on Intelligent Sensors, Sensor Networks and

Information Processing (ISSNIP), Sydney, Australia, December 2008.
[2] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. D. Tygar, “SPINS:

Security protocols for sensor networks,” in Seventh Annual International

Conference on Mobile Computing and Networks (MobiCOM 2001),
Rome, Italy, July 2001.

[3] K. K. Venkatasubramanian, A. Banerjee, and S. K. S. Gupta, “Pska:
Usable and secure key agreement scheme for body area networks,” IEEE
Transactions on Information Technology in Biomedicine, vol. 14, no. 1,
pp. 60–68, 2010.

[4] K. K. Venkatasubramanian and S. K. S. Gupta, “Security for pervasive
health monitoring sensor applications,” in ICISIP ’06: Proceedings of

the 4th International Conference on Intelligent Sensing and Information

Processing. Bangalore, India: IEEE Press, December 2006, pp. 197–
202.

[5] A. Juels and M. Sudan, “A fuzzy vault scheme,” in Information Theory,

2002. Proceedings. 2002 IEEE International Symposium on, 2002, p.
408.

[6] T. Falck, H. Baldus, J. Espina, and K. Klabunde, “Plug ’n play simplicity
for wireless medical body sensors,” Mob. Netw. Appl., vol. 12, pp. 143–
153, March 2007.

[7] T. Balomenos, “User requirements analysis and spcification of health
status analysis and hazard avoidance artefacts,” DC FET Project
ORESTELA, Delieverable D02, Tech. Rep., 2001.

[8] TinyOS, “An operating system for sensor motes,” http://www.tinyos.net/,
2007.

[9] C. Boyd and A. Mathuria, Protocols for Authentication and Key Estab-

lishment, U. Maurer and R. Rivest, Eds. Springer Berlin / Heidelberg,
2003.

[10] M. Burmester and Y. Desmedt, “A secure and scalable group key
exchange system,” Inf. Process. Lett., vol. 94, no. 3, pp. 137–143, 2005.

[11] J. Katz and M. Yung, “Scalable protocols for authenticated group key
exchange,” Journal of Cryptology, vol. 20, pp. 85–113, 2007.

[12] R. Watro, D. Kong, S. fen Cuti, C. Gardiner, C. Lynn, and P. Kruus,
“Tinypk: securing sensor networks with public key technology,” in SASN

’04: Proceedings of the 2nd ACM workshop on Security of ad hoc and

sensor networks. New York, NY, USA: ACM Press, 2004, pp. 59–64.
[13] D. J. Malan, M. Welsh, and M. D. Smith, “A public–key infrastructure

for key distribution in tinyos based on elliptic curve cryptography,” in
Proc. 1st IEEE Communications Society Conference on Sensor and Ah

Hoc Communications and Networks (SECON ’04). Santa Clara, CA,
USA: IEEE Computer Society Press, October 2004, pp. 71–80.

[14] IEEE, “Standard specifications for password–based public–key crypto-
graphic techniques,” IEEE, Tech. Rep. IEEE 1363-2000, 2006, http:
//grouper.ieee.org/groups/1363/passwdPK/draft.html.

[15] IEEE, “Standard specifications for public key cryptography,” IEEE,
Tech. Rep. IEEE 1363-2000, 2000, http://grouper.ieee.org/groups/1363/
P1363.

[16] H. Wang and Q. Li, “Efficient implementation of public key cryptosys-
tems on mote sensors (short paper),” in Information and Communica-

tions Security, ser. Lecture Notes in Computer Science, P. Ning, S. Qing,
and N. Li, Eds. Springer Berlin / Heidelberg, 2006, vol. 4307, pp. 519–
528.

736

