
On Secure and Resilient Telesurgery
Communications over Unreliable Networks

M. Engin Tozal+, Yongge Wang∗, Ehab Al-Shaer∗, Kamil Sarac+, Bhavani Thuraisingham+, Bei-Tseng Chu∗
+Department of Computer Science, The University of Texas at Dallas

∗Department of Software and Information Systems, University of North Carolina Charlotte
{engintozal,ksarac,bxt043000}@utdallas.edu, {yongge.wang,ealshaer,billchu}@uncc.edu

Abstract—Telesurgical Robot Systems (TRSs) address mission
critical operations emerging in extreme fields such as battlefields,
underwater, and disaster territories. The lack of wirelined com-
munication infrastructure in such fields makes the use of wireless
technologies including satellite and ad-hoc networks inevitable.
TRSs over wireless environments pose unique challenges such as
preserving a certain reliability threshold, adhering some maxi-
mum tolerable delay, and providing various security measures
depending on the nature of the operation and communication
environment. In this study we present a novel approach that
uses information coding to integrate both light-weight privacy
and adaptive reliability in a single protocol called Secure and
Statistically Reliable UDP (SSR-UDP). We prove that the offered
security is equivalent to the existing AES-based long key crypto
systems, yet, with significantly less computational overhead.
Additionally, we demonstrate that the proposed scheme can meet
high reliability and delay requirements of TRS applications in
highly lossy environments while optimizing the bandwidth use.
Our proposed SSR-UDP protocol can also be utilized in other
similar cyber-physical wireless application domains.

I. INTRODUCTION

Telesurgical Robot Systems (TRSs) have been recently
the focus of research in academic, military, and commercial
domains [14]. Such systems are designed to allow a master
(called surgeon controller) to operate on a slave (called sur-
gical robot) located at a distant geographical location. The
first generation surgical robots are constructed to perform
minimally invasive surgeries on a patient, using a console
placed in the operating room. On the other hand, contem-
porary TRSs address mission critical operations emerging in
adversarial environments such as battlefields, underwater, and
disaster territories at remote regions [13]. The lack of wirelined
communication infrastructure in such fields makes the use of
wireless technologies including satellite and ad-hoc networks
inevitable. Although these wireless platforms demonstrate
varying characteristics, design and implementation of a se-
cure and reliable wireless communication conforming to the
application tolerable delay for TRSs is crucial.

TRSs are categorized as real-time interactive network ap-
plications. Similar to the other real-time applications, TRSs
are constrained with maximum delay and loss requirements.
Recently, a new communications protocol (ITP), has been
developed to allow interoperability of surgical robots and
controllers [12]. To achieve lowest possible latency, ITP em-
ploys light-weight UDP protocol. To deal with small amount
of packet losses, ITP relies on repositioning based on the
expected continuity of the motion [12]. ITP assumes an
acceptable network performance and infrastructure in order to
meet reliability, privacy, and security requirements of TRSs.
However, these assumptions do not hold when considering

insecure, high loss, and high delay nature of wireless envi-
ronments such as battlefield ad hoc network environments.
Unlike wirelined networks, the primary source of packet

loss in wireless is bit errors instead of congestion. Depending
on the type of the operation being performed a TRS session
needs to achieve different reliability levels. To illustrate, a
mediocre operation might tolerate up to 10% average packet
loss (at least 90% average reliability) in an environment
providing only 80% reliability on the average, whereas, an
intricate surgery might tolerate at most 2% average packet
loss in the same environment. As the retransmission delay is
usually unaffordable in wireless TRSs, using Forward Error
Correction (FEC) is mostly the only viable solution. However,
just combining traditional crypto techniques such as AES with
adaptive FEC obtains unacceptable delay for wireless TRSs as
the AES encryption delay overhead increases significantly with
the traffic redundancy (see Section VI-A). In addition, many
of the existing FEC methods based on digital fountain [7],
[16] require the content of the messages to be known before
the communication session and the FEC methods based on
network coding [1] are tailored for multicast communication
rather than unicast.
In this paper, we present a novel adaptive information

coding scheme to support both confidentiality and adaptive re-
liability simultaneously. The protocol introduced in this study,
Secure and Statistically Reliable UDP (SSR-UDP), demon-
strates the fact that security and reliability could be well-
integrated into a single protocol in order to accommodate the
TRSs requirements in wireless environments. In a typical TRS
application, the controller constantly generates messages to be
transmitted through a wireless channel and the robot collects
and processes the messages at the application layer. SSR-UDP
is a light-weight layer located between transport and applica-
tion layers of the Internet Protocol Suite and it is responsible
for addressing security and reliability requirements of TRSs.
At the sender side SSR-UDP accumulates k messages while
adhering to the application delay constraints and encodes
these messages into a batch of n packets (k < n). At the
receiver side SSR-UDP immediately recovers all k messages
given that at least k out of n packets in the batch have been
successfully received. SSR-UDP introduces redundancy while
translating k messages into n packets in order to maintain
required α reliability in the long run over a wireless channel
that provides average reliability υ such that 0 < υ < α < 1.
Additionally, our information coding scheme used in SSR-
UDP automatically provides both confidentiality and reliability
with significantly less delay overhead compared to other
standalone crypto approaches such as DTLS, TLS/SSL, and
IPSec. Moreover, our information coding scheme is adjustable

The First International Workshop on Cyber-Physical Networking Systems

978-1-4244-9920-5/11/$26.00 ©2011 IEEE 725

2

to provide varying security key lengths depending on the TRS
application requirements.

Our analytical proofs show that suggested privacy scheme
can be as strong as AES with 128 and 256 key length, but with
significantly less delay overhead (up to 70% for AES-128 and
n = 4, k = 3). In the reliability side, we have shown that even
with high variation of packet loss, the protocol can achieve
α = 99% target reliability threshold over a channel providing
only 90% average reliability with a reasonable redundancy
ranging between 30%− 45%. Additionally, we show that our
protocol can achieve α = 98% long run reliability requirement
with 86% redundancy over a channel providing 76% reliability
on the average.

The rest of the paper is organized as follows: Section II
presents the related work. The proposed information cod-
ing technique, cryptographic functions and their analysis is
introduced in Sections III and IV respectively. Section V
presents dynamic adjustment of message encoding based on
the observed loss and delay in the channel. We discuss the
experimental results in Section VI and present conclusions
and future works in Section VII.

II. RELATED WORK

Since the first telesurgical robot system [9] which was a
couple of mechanical hands cabled to a remote handle, many
successful works have been done in the field [3], [10], [11].
Brady and Tarn [6], developed a framework for extending
teleoperation systems to Internet. Project RAVEN [13] is an
implementation of TRSs and it proved that remote surgeries
can successfully be realized over the Internet via UDP.

Lum et. al. [13], showed that RAVEN can be utilized
over transatlantic Internet and wireless radio links. Brett et.al.
demonstrated an experimental surgical robot in extreme condi-
tions where the installation of wireless networks is not feasible
using an unmanned airborne vehicle as a network topology.

In this study we develop an information coding scheme
along with an application layer protocol for addressing both
security and reliability in TRSs over wireless links. Our
coding scheme is based on adaptive forward error correction
(FEC). Many FEC techniques based on digital fountain have
been designed in the past [7], [16] for efficient and reliable
multicast. In digital fountain technique, the source host divides
a given message into k packets and generates a potentially
infinite supply of encoding packets from the original k packets.
The receiver host reconstructs the original message from any
of the received k encoding packets. However, digital fountain
techniques are not applicable to TRSs because in these tech-
niques, (i) the message is required to be known before the com-
munication starts and (ii) privacy protection is not addressed.
Network coding is also used for multicast communication. In a
network coding based communication, each intermediate node
receives data packets from its incoming edges, combines them
by some encoding algorithms, and transmits the encoded data
via its outgoing edges. When the receiver receives sufficiently
many packets, it could recover the original message with high
probability. Although network coding provides a probabilistic
framework for increasing network capacity and reliability, it is
not applicable to TRSs because (i) it requires the deployment
of network coding capability into intermediate nodes, (ii) it is
suitable for multicast communication rather than unicast, and
(iii) privacy protection is not addressed.

III. INFORMATION CODING

In the traditional Hill cipher scheme, one encrypts an
alphabet sequence (m1,m2, . . . ,mn) with an n × n key
matrix A by letting the cipher text (c1, c2, · · · , cn)

T =
A(m1,m2, . . . ,mn)

T mod 26. We can extend Hill cipher to
an extended coding scheme to achieve reliability and privacy
at the same time. Specifically, our scheme is based on a
secure key generation function G, which takes a secret key key
(shared between the parties) and an arbitrary length string x to
return a fixed length (e.g., 256 bits) string G(key, x). The ad-
versary sees a sequence (x1, a1), (x2, a2), . . ., (xq , aq) of pairs
of inputs and their corresponding outputs ai = G(key, xi). The
adversary breaks the key generation function G if she can find
an input x, not included among x1, . . . , xq , together with its
corresponding valid output a = G(key, x). In this paper, our
security model is based on the chosen message attacks. That
is, the adversary is allowed to choose the sequence of inputs
x1, x2, . . . , xq .
Let key be the ephemeral session key establishment for the

secure communication between the sender and the receiver.
First, a secure key generation function G is used to generate
the message authentication key b = G(key, “HMACKEY”).
We may assume that the basic data blocks are elements from

a finite field Fp. Let (k, n) be an appropriately chosen pair
of integer parameters, which could be configured for specific
applications based on the network capacity and reliability
requirements as described in Section V.
Assume that we have a message flow m1,m2,m3, · · · for

delivery. We group these messages into blocks of k and each
group will be assigned a sequence number seq and will
be delivered as one group. In another word, the messages
m1, · · · ,mk will be put into one group and the messages
mk+1, · · · ,m2k will be put into another group.
For each group with the sequence number seq, the coeffi-

cient matrix is generated by letting ai,j = G(key, i||j||seq)
where 1 ≤ i ≤ n, 1 ≤ j ≤ k. Note that this coefficient matrix
is only valid for this group of messages with the sequence
number seq.
Assume that we have one group of messages

(m1, . . . ,mk) ∈ F k
p for delivery. Let

y1 = a1,1m1 + . . .+ a1,kmk

· · ·
yn = an,1m1 + . . .+ an,kmk

(1)

The encoded vector for this group of messages is
(y1, . . . , yn) (n ≥ k). Using the message authentication key b,
the sender will generate the message authentication tags (e.g.,
using the HMAC scheme [4]) for each of these n messages,
and deliver these n encoded messages together with their
authentication tags to the receiver independently.
The receiver will be able to recover the original message

vector (m1, . . . ,mk) as long as it can receive at least k un-
corrupted packets (any k packets will be OK and the order is
not important) from the collection of these paths. For example,
if the receiver node collects k packets yi1 , . . . , yik , then with
high probability she could recover the original message as

m1

m2

. . .
mk

=

(

ai1,1 · · · ai1,k
· · · · · · · · ·
aik,1 · · · aik,k

)−1

yi1
yi2
. . .
yik

(2)

726

3

As an example, let n = 4 and k = 3. We can use four UDP
packets to deliver the encoded information and we can tolerate
one packet loss. In another word, if the UDP packet loss is at
most 25%, we have achieved reliable communication channels
using the UDP protocol.
The major cost for the information coding and decoding

comes from the encoding equation (1) and decoding equation
(2). In particular, if the underlying field Fp is larger (e.g.,
|p| = 160), then the information coding and decoding will
be very expensive for real time communications. In practice,
we can use small integers (e.g., 8-bit integers) coefficients for
linear combinations on the field Fp. For example, we may
choose ai from {0, · · · , 255} and each message is 160 bits
(that is, an element from the field F2160). This will improve
the performance by a factor of at least 20. In particular,
the decoding coefficients matrix in the equation (2) could
be efficiently calculated with table look-ups. Our experiments
show that with this technique, the decoding and encoding costs
are negligible in real-time communications.
When we use information coding over small integers of 8

bits, (n, k) should be chosen in such a way that 8nk is large
enough (e.g., 128) to avoid exhaustive search attacks.

IV. SECURE KEY GENERATION FUNCTIONS

Our secure key generation function is essentially the HMAC
function. We call it key generation function and use a different
notation G since our emphasis here is on key generation
instead of message authentication and we do not need to
truncate the outputs of the external-layer hash function. In
particular, let H be a hash function which takes arbitrary
length inputs and outputs l-bits strings. Then the secure key
generation function is defined as:

G(key, x) = H(key ⊕ opad,H(key ⊕ ipad, x))

where ipad is “the byte 0x36 repeated b/8 times” and opad
is “the byte 0x5C repeated b/8 times” which is similar to the
HMAC standard.

V. DYNAMIC ADJUSTMENT OF (n, k)

The performance of the proposed encoding scheme depends
on the careful selection of k and n values so as to bound
application experienced loss ratio as well as to respect the
security requirements of the encoding scheme. In this section,
we discuss the factors that affect the selection and dynamic
adaptation of k and n for optimal information coding.
In telesurgery, the controller constantly generates a single

message per unit time, k of these messages are accumulated
and wrapped into n code packets via information encoding
(k < n), and all n code packets are streamed out over the next
k unit time period. The process of k message accumulation;
n packet encoding; and their dispatch is called a “batch
transmission”. A communication session between a sender and
a receiver consists of numerous batch transmissions depending
on k. That is, for a session with m messages, the number of
batches would be ⌈m/k⌉ for a fixed k.
The motivation behind translating k messages into n code

packets (k < n) is to ensure with probability α that at least k
of the n code packets are successfully transmitted through a
lossy logical channel. The α probability could be a constant
or a varying parameter depending on the loss tolerance of
the application for the next batch. The receiver can perfectly

recover the original k messages as long as it receives at least
k of the n code packets.

In the following, we analyze constraints imposed on n
and k and discuss how to balance their values regarding the
constraints.

A. Constraints Analysis of n

In this section, we discuss how to choose a proper n
value under the requirements dictated by the application and
constraints imposed by the networking infrastructure. In order
to convey a healthy discussion regarding the effect of the
varying n values on the application and on the networking
resources, we need to abstract the communication between
a sender and a receiver. Remember that, loss in wirelined
networks is mostly due to congestion, however, in wireless
environments loss is mostly due to bit errors. In our model
we have a sender and a receiver communicating through a
logical channel with packet loss probability q and packet losses
are statistically independent [2], [8]. A packet is successfully
transmitted with probability p = 1 − q. Let R be a discrete
random variable denoting the number of successfully trans-
mitted packets out of a batch of n code packets. Then, R
has a binomial distribution with parameters n and p, i.e.,
R ∼ Binomial(n, p). Transmission of a batch of n code
packets is regarded as a “successful batch” as long as at least k
code packets make it to the receiver through the lossy channel.
Hence, probability that a batch will be successful is calculated
as:

P{Successful Batch} = P{R ≥ k}

=
n
∑

i=k

(

n

i

)

pi(1 − p)n−i (3)

Given k messages and a logical channel with successful packet
transmission probability p, our objective is to find a value n
such that the probability that at least k out of n code packets
has been received is α, i.e., P{Successful Batch} = α. Let
m be the total messages generated by the application and
〈k〉 be the average k, then the expected value of success-
fully transmitted SSR-UDP application messages is 〈k〉 m

〈k〉α.
For conventional UDP, it is mp. As a result, through a
careful selection of k and n, we can achieve α reliability
over a channel providing p reliability (α > p) in the long
run. Equivalent to (3), we can work with the expression
P{Failed Batch} = 1− α.

P{Failed Batch} = P{R ≤ k − 1}

=
k−1
∑

i=0

(

n

i

)

pi(1− p)n−i

⇒ 1− α =

k−1
∑

i=0

(

n

i

)

pi(1− p)n−i (4)

such that p < α

Solving (4) for n would give us the proper number of
code packets needs to be sent in order to yield a successful
batch with α probability over the channel. However, (4) does
not have a closed form solution. To develop a “numerical”

727

4

solution, we resorted to normal approximation1 to the binomial
distribution R along with continuity correction. Let X be
a normally distributed random variable with parameters µ
and σ2, i.e., X ∼ Normal(µ, σ2), such that µ = np and
σ2 = np(1 − p). Let Z be the standard normal form of X ,
i.e., Z = (X − µ)/σ. Then

P{Failed Batch} = P{R ≤ k − 1}

⇒ 1− α ≈ P{X ≤ k −
1

2
}

= P{Z ≤
k − 1

2 − µ

σ
}

⇒ z1−α =
k − 1

2 − np
√

np(1− p)
(5)

(5) is obtained by replacing µ and σ with their real values

np and
√

np(1− p), respectively. z1−α is the left quantile
function of the standard normal distribution Z . Solving (5)
for n results in the final value for n in terms of k, p, and α
as follows;

n =
2k − 1 + z21−α(1− p)

2p

−
z1−α

√

z21−α(1− p)2 + (1− p)(4k − 2)

2p
such that 0 < α < 1 and k ≥ 1 (6)

Given that k and α are constants in (6), as p goes to
zero, i.e., packet loss probability (q = 1 − p) goes to one,
n goes to infinity. Put in other words, as the channel becomes
more and more unreliable, the number of generated code
packets in order to sustain α success rate increases without
any bound. At a heavily loaded channel with small buffering
capacity as n increases, p will decrease which in turn cause
n to increase and so on. We take care of this potential ill-
behavior (spinning effect) in our algorithm by reducing k
(which implicitly reduces n) as we experience consecutive
decrements in p.

B. Constraints Analysis of k

In this section, we discuss how to adjust k with respect to
the application requirements and resource utilization. Since the
number of packets should be an integer, n in (6) is rounded up
and this introduces traffic waste with an expected value of 0.5
packet/batch. For a session with m application messages, if we
use k = 1, then it takes m batches to complete data transfer
resulting in a waste of m/2 packets, i.e., 50% unnecessary
increase in traffic load into the network.
The above analysis suggests that increasing k reduces waste

as it decreases the number of batches during a session.
However using very large k values introduces two issues: (i)
real-time data have an application-dependent delay threshold
and increasing k by accumulating more messages will likely
to increase the delay, and (ii) as k increases, n also increases
and sending large batches might potentially fill an intermediate
queue and cause more packet drops. In our algorithm we
dynamically adjust the value of k based on the real-time delay

1As a rule of thumb, normal approximation to the binomial distribution
improves whilst np ≥ 5 and n(1 − p) ≥ 5. Our empirical results,
however, show that applying continuity correction significantly reduces the
approximation error to tolerable values for small n and large p values.

constraints of the application and observed loss rate of the
channel. To achieve RSA-1024 level of security we require
kn ≥ 10. Given that n ≥ k + 1, this requirement translates
into k(k + 1) ≥ 10 giving us a lower bound on k, as k ≥ 3.
In our algorithm, we explicitly check that k ≥ 3 and hence
ensure that this security requirement is always satisfied.
In summary, n is bounded below by k and optimized with

respect to p and α, and k bounded below by 3. Asymptotically,
n and p are inversely proportional, i.e., n ∝ p−1. Moreover,
decreasing k decreases communication delay but contributes
to waste traffic. On the other hand, increasing k increases
communication delay and potentially decreases p.
Algorithm 1 dynamically controls (k, n) values. We assume

that there are two channels; namely a data channel from
the sender to the receiver and a feedback channel in the
reverse direction. The sender receives the success fraction
of the packets that are sent in a batch through feedback
channel. Algorithm 1 is executed after each feedback message
to calculate the next values of k and n.

Algorithm 1 Dynamic adaptation of k, n

Require: k { current value of k }
Require: α { application reliability requirement }
Require: pnext { estimated packet success probability for the next batch }
Require: plast { estimated packet success probability for the previous (last) batch }
Require: ∆p0 { previous amount of change in packet success probability }
Require: dnext { estimated channel delay for the next batch }
Require: dmax { maximum tolerable real time application delay }
Require: dimsg { delay between generation of two application messages }
Ensure: k, n { 3 ≤ k < n }
1: ∆p1 ← pnext−plast { current amount of change in packet success probability}
2: if ∆p0 < 0 and ∆p1 < ∆p0 then
3: decrease k
4: else
5: if |∆p1| ≤ E1 then
6: do not change k
7: else if ∆p1 ≥ 0 then
8: increase k
9: else
10: decrease k
11: end if
12: end if
13: denc ← estimate encoding delay
14: ddec ← estimate decoding delay
15: kmax ← θ((dmax − denc − dnext(1 + E2)− ddec + dimsg)/dimsg)
16: if k > kmax then
17: k← kmax

18: end if
19: n← calculate using Equation 6
20: return k, ⌈n⌉

The algorithm controls n by changing k in order to preserve
a successful batch transmission with α probability. If there
are two consecutive negative changes in the amount of packet
success probability p, we anticipate growing unreliability in
the channel and decrease k as suggested at lines 2 and 3
of Algorithm 1. On the other hand, if the current reliability
change is not significant we do not update the value of k; if
the reliability has significantly increased we utilize the channel
by raising k; and if the reliability has significantly diminished,
we avoid from more potential code packet losses as well as the
spinning effect by decreasing k as demonstrated at lines 5-11.
E1 at line 5 implies occurence of a small amount of change in
the estimated packet loss probability. k is set to 3 at the be-
ginning of the communication session. In our experiments we
incremented k by 20% and decremented it by 40% each time.
Compared to additive increase multiplicative decrease model,
20-40% increment-decrement model utilizes the channel more
aggressively. Lines 13 and 14 requires estimating the encoding
and decoding delays in terms of the physical time, respectively.
Note that encoding/decoding delay depends on many factors

728

5

including implementation, programming language preference,
CPU power, and whether the machine has a dedicated crypto
hardware. At lines 15-18, we check whether the suggested
k violates real time nature of the application and re-adjust its
value in case it does. The term E2 is a very small amount used
to increase the estimated channel delay to compensate with
estimation errors. The factor 0 < θ < 1 lets us gain some room
in terms of time and stream the batch over that time instead
of sending it as a burst. θ is set to 0.6 in our simulations. At
line 19 we calculate the value of n using Equation 6.
Finally, the algorithm does not dictate any method for

calculating pnext (estimated packet success probability) and
dnext (estimated channel delay) for the next batch. One can use
exponential moving average, last observation, or the highest
observed value which could be obtained through feedback
messages [2], [5]. Nevertheless, the error in these estimations
affect optimization of k and n.

VI. PERFORMANCE AND SIMULATION COMPARISONS

A. Theoretical Analysis of Information Coding Performance

In this section, we briefly discuss the theoretical perfor-
mance of our solution against other solutions such as TLS
and DTLS.
In the DTLS/TLS protocol, the communication content

is encrypted via symmetric ciphers such as AES or stream
ciphers (for TLS only). In our scheme, both the sender and
the receiver need to generate the coefficient matrix via the
secure hash function and carry out n linear operations for the
sender and k linear operations for the receiver in the field Fp as
specified in the equations (1) and (2). Furthermore, the receiver
needs to carry out a k × k matrix inversion over the small
integers of 8 bits as specified in the equation (2). For any given
sequence number seq, both the sender and the receiver can
compute the values of αi,j = G(key, i||j||seq) for 1 ≤ i ≤ n
and 1 ≤ j ≤ k in advance. In our scheme, the values of (n, k)
could be dynamically adjusted during the protocol execution
based on network performance. However, both the sender and
the receiver could choose a reasonable large (n0, k0) and pre-
compute the values of αi,j for all 1 ≤ i ≤ n0 and 1 ≤ j ≤ k0
in advance. Then, in the real-time execution of the protocol
with n ≤ n0 and k ≤ k0, both the sender and the receiver
have all the required values of αi,j in hand. With these pre-
computations, the real time required operations for the sender
is n linear operations and the operations for the receiver is k
linear operations and a k × k matrix inversion.
AES-128 needs to carry out approximately 480 linear opera-

tions over the finite field F28 for each encryption (decryption)
of a 128-bit block. For our information coding scheme, the
performance depends on packet size and the choice of (n, k).
For the reason of convenience for comparison, we assume
that each packet is 128 bits and the αi,j belongs to the finite
field F28 . With these assumptions, for k packets of 128-bit
size data, the sender needs to carry out 2nk linear operations
over F2128 , and the receiver needs to carry out 2k2 linear
operations over F2128 and a k × k matrix inversion over F28 .
For the k×k matrix inversion, the trivial Gaussian Elimination
method takes k3 operations, Strassen algorithm takes less than
5k2.807 operations, and Commpersmith-Winograd algorithm
takes O(k2.376) operations over F28 .
For a modular operation αx with x ∈ F2128 and α ∈ F28 , we

can write it as α(x152
15×8+ · · ·+x12

8+x0) where xi ∈ F28 .
Thus each linear operation over F2128 can be approximately

counted as 35 operations over F28 . For fast integer multipli-
cation implementation package such as MIRACL [15], it is
feasible to achieve the above approximation. That is, we can
carry out one linear operation over F2128 at the cost of 35
operations over F28 .

TABLE I: Performance comparison of DTLS (AES based) and
Info-Coding for k data messages in terms of the number of
operations

(n,k) Redundancy % AES with FEC Sender Receiver
(4,3) 25 2432 840 657
(5,3) 40 3040 1050 657
(6,3) 50 3648 1260 657
(6,5) 16 3648 2100 1875
(7,5) 28 4256 2450 1875
(8,5) 37 4864 2800 1875
(8,7) 12 4864 3920 3773
(9,7) 22 5472 4410 3773
(10,7) 30 6080 4900 3773

Finally, in Table I, we list the comparison data for several
examples with the above assumption using various values of
k (3, 5 and 7) that obtain a reasonable delay bound (less than
150ms one-way), and various values of n that represent up to
50% redundancy.

B. Evaluation of Secure and Statistically Reliable UDP

In this section we present our simulation-based evaluation
of SSR-UDP using a custom built simulator. Our evaluation
metrics include reliability, redundancy, and waste and our
parameters are application demanded reliability (α), channel
loss distribution, and channel loss variance. Our experiments
include a sender sending real-time traffic to a receiver who
sends feedback information to adjust n and k. We used
three different channel loss probability and tracking models:
(1) Uniform distribution with no loss estimation (UPNE),
assuming unpredictable random channel loss, for which we
use the maximum loss rate observed as the channel’s loss rate,
(2) Triangular distribution with regular loss estimating (TPRE)
using exponentially moving averages method assuming some
persistence in average, (3) Constant channel loss probability
with perfect loss estimation (CPPE), to represent the best
case scenario. Although our worst case (UPNE) and best case
(CPPE) scenarios are unrealistic, we use them to demonstrate
the upper and lower bounds. We assume the delay tolerance
bound is 150 msec and RTT is changing between [40 − 60]
msec.
In this part we ran a set of simulations demonstrating how

well we empirically achieve the required application success
rate α and analyze its cost. At each simulation the sender
generates 10 million application messages with a rate of 1
message/msec.
Figures 1a and 1b show the empirical message success ratio

and its related redundancy with respect to the changing values
of α in the interval [0.91 − 0.99], respectively. In Figure 1a
SSR-UDP achieves at least the required reliability α under all
loss models. The top line in Figure 1a shows the empirical
success rate with UPNE. For UPNE, we modeled the channel
loss with Uniform(0.05, 0.15) distribution with mean 0.10
and we used the highest loss rate that we have observed at
any time as the loss estimation (1−p) in our algorithm. Since
it takes the most dramatic action with respect to channel loss,

729

6

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

S
u
c
c
e
s
s
 R

a
te

Application Reliability Requirement (α)

SSR-UDP Application Layer Message Success (CPPE)
SSR-UDP Application Layer Message Success (TPRE)
SSR-UDP Application Layer Message Success (UPNE)

SSR-UDP Network Layer Packet Success

(a) Application Reliability Requirement (α) vs. Success Ratio

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1.20

0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

R
e
d
u
n
d
a
n
c
y
 R

a
ti
o

Application Reliability Requirement (α)

SSR-UDP Network Layer Redundancy (CPPE)
SSR-UDP Network Layer Redundancy (TPRE)
SSR-UDP Network Layer Redundancy (UPNE)

(b) Application Reliability Requirement (α) vs. Redundancy

Fig. 1: Behavior of Success Rate and Redundancy with respect
to Application Reliability Requirement (α)

it achieves (very close) to 100% reliability at each application
demanded reliability α. On the other hand, Figure 1b shows
that UPNE introduces the most redundancy into the network.
The second line presents CPPE. For this simulation the channel
loss probability is set to 10% and the algorithm optimized
k and n according to this pre-known loss rate. The third
line shows TPRE. For this simulation we modeled channel
loss probability with triangular distribution over the range
[0.05, 0.15] with mean at 0.10. Besides, in order to reduce
the batch losses due to channel loss underestimation, we con-
stantly introduced a 0.03 points channel loss overestimation
factor. Clearly, the demanded reliability along with the best
redundancy is achieved with CPPE. However, TPRE a more
realistic model, also attains the required reliability with a
redundancy changing between 30% and 44%.

The bottom line in Figure 1a shows that since all channel
models have 10% average loss rate, SSR-UDP experiences
10% packet loss at the network layer. Additionally, we ob-
served the waste to be around 4% for all models which
confirms that waste is a function of the number of batches
and our simulations have generated around 8% of the total
messages as batches.

Additionally, we ran a set of simulations to see how
redundancy changes with a relatively high level reliability
requirement [17]. We achieved 99.9% success rate with 79%
redundancy for the above TPRE loss model. We also observed
that as the reliability requirement approaches to 100%, the

redundancy increases exponentially confirming the theoretical
findings in Section V.
Finally, in another set of simulations [17], we fixed ap-

plication required reliability α at 98% and observed the
attained reliability as well as redundancy over channels having
various loss rates between 2% and 24% again under UPNE,
TPRE, and CPPE models. Our results show that SSR-UDP
successfully achieves the required reliability over all channels
with redundancy changing between 30% to 86% for the more
realistic TPRE case.

VII. CONCLUSIONS

Dealing with packet losses in TRSs requires FEC methods
rather than packet retransmission due to the delay critical
nature of TRS applications. Privacy concerns in domains such
as military, requires utilization of the existing security metrics.
However, applying an off-the-shelf crypto technique on FEC
will introduce significant extra delay unacceptable by wireless
TRSs. Our scheme uses information coding to encode a block
of k application messages into n transmitted packets where
n > k. The receiver will successfully decode the messages
if at least k of them are received. The (n, k) is dynamically
selected based on observed network conditions. The analytical
proofs show that our privacy scheme can be as strong as AES
with 128 and 256 key length, but with significantly less delay
overhead (up to 40% when k = 3 and up to 28% when
k = 5 for AES-128). We have also shown that even with high
variation of packet loss, the protocol can achieve the target
reliability threshold α = 99% over a channel providing only
90% average reliability with a reasonable redundancy.

REFERENCES

[1] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung. Network information
flow. IEEE Transactions on Information Theory, 46:1204–1216, 2000.

[2] P. Barsocchi, G. Oligeri, and F. Potortı̀. Packet loss in TCP hybrid
wireless networks. In ASMS, May 2006.

[3] A. K. Bejczy. Sensors, Controls, and Man-Machine Interface for
Advanced Teleoperation. Science, (208):1327–1335, June 1980.

[4] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for
message authentication. In Crypto 96, LNCS 1109, 1996.

[5] J.C. Bolot. End-to-end packet delay and loss behavior in the internet.
In SIGCOMM ’93, volume 23, pages 289–298. ACM, October 1993.

[6] K. Brady and T.J. Tarn. Internet-based remote teleoperation. Proc. 1998
IEEE Int. Conf. Robotics and Automation, vol.1, 1998.

[7] J. Byers, M. Luby, and M. Mitzenmacher. A digital fountain approach
to asynchronous reliable multicast. IEEE JSAC, 20(8):1528–1540, 2002.

[8] P. Chatzimisios, A. C. Boucouvalas, and V. Vitsas. Ieee 802.11 wlans:
performance analysis in presence of bit errors. In CSNDSP 2004, 2004.

[9] R.C. Goertz and W.M. Thompson. Electronically Controlled Manipula-
tor. Communications Magazine, IEEE, November 1954.

[10] G.S. Guthart and J.K. Salisbury. The Intuitive Telesurgery System:
Overview and Application. April 2000.

[11] W. Hill, P.S. Green, J.F. Jensen, Y. Gorfu, and A.S. Shah. Telepresence
Surgery Demonstration System. May 1994.

[12] H. H. King, K. Tadano, R. Donlin, D. Friedman, M.J.H. Lum, V. Asch,
C. Wang, K. Kawashima, and B. Hannaford. Preliminary protocol for
interoperable telesurgery. In Advanced Robotics 2009, pages 1–6,, 2009.

[13] M.J.H. Lum, D.C.W. Friedman, G. Sankaranarayanan, H. King,
K. Fodero, R. Leuschke, B. Hannaford, J. Rosen, and M.N. Sinanan.
The raven: Design and validation of a telesurgery system. Int. J. Rob.
Res., 28:1183–1197, September 2009.

[14] G. Sankaranarayanan, H. King, S. Ko, M.J.H. Lum, D.C.W. Friedman,
J. Rosen, and B. Hannaford. Portable surgery master station for mobile
robotic telesurgery. In RoboComm ’07, pages 1–8. IEEE Press.

[15] M. Scott. Miracl: Multiprecision integer and rational arithmetic c/c++
library. http://www.shamus.ie/, 2010.

[16] A. Shokrollahi. Raptor codes. IEEE Transactions on Information
Theory, 52(6):2551–2567, 2006.

[17] Yongge Wang, M. Engin Tozal, Ehab Al-Shaer, Kamil Sarac, Bhavani
Thuraisingham, and Bei-Tseng Chu. Information coding approach for se-
cure and reliable telesurgery communications. Technical Report UNCC-
SIS-10-7-1, http://www.cyberdna.uncc.edu/publications.php, July 2010.

730

