
Cooperative Spectrum Sensing in TV White Spaces:
When Cognitive Radio Meets Cloud

Chun-Hsien Ko, Din Hwa Huang and Sau-Hsuan Wu,
Institute of Communications Engineering, National Chiao Tung University, Hsinchu, Taiwan 300

E-mail:{dke.cm99g@nctu.edu.tw, dinhwa.cm94g@g2.nctu.edu.tw, sauhsuan@cm.nctu.edu.tw}

Abstract—A Cognitive Radio Cloud Network (CRCN) in TV
White Spaces (TVWS) is proposed in this paper. Under the
infrastructure of CRCN, cooperative spectrum sensing (SS) and
resource scheduling in TVWS can be efficiently implemented
making use of the scalability and the vast storage and computing
capacity of the Cloud. Based on the sensing reports collected on
the Cognitive Radio Cloud (CRC) from distributed secondary
users (SUs), we study and implement a sparse Bayesian learning
(SBL) algorithm for cooperative SS in TVWS using Microsoft’s
Windows Azure Cloud platform. A database for the estimated
locations and spectrum power profiles of the primary users are
established on CRC with Microsoft’s SQL Azure. Moreover
to enhance the performance of the SBL-based SS on CRC,
a hierarchical parallelization method is also implemented with
Microsoft’s dotNet 4.0 in a MapReduce-like programming model.
Based on our simulation studies, a proper programming model
and partitioning of the sensing data play crucial roles to the
performance of the SBL-based SS on the Cloud.

Index Terms—Cognitive Radio, Cloud Computing, MapRe-
duce, Windows Azure, Sparse Bayesian Learning.

I. INTRODUCTION

The concept of cognitive radio (CR) is first introduced by
Joseph Mitola III in [1]. Since then CR has attracted significant
research attentions either in telecommunications technologies
or their related regulations. In view of the inefficient usages
of the licensed spectrum (less than 25% overall [2]) and the
opportunity of the termination of analog TV broadcasting, the
Federal Communications Commission (FCC) of the U.S has
established the regulation for CR accesses in its TV White
Spaces (TVWS) in 2007 [3] and has recently granted field
tests of the CR network in part of the TVWS. Encouraged by
the acts of FCC, many international organizations have also
started to define CR standards on TVWS, e.g. IEEE 802.22,
1900, 802.16m and ECMA 392, etc.

To ensure the received signal quality of TV sets, the FCC
requires CR operators in TVWS being able to detect the TV
signal even if its strength is 0.8dBm below the noise level (-
106.2dBm). In addition, the CR operators should also provide
databases that maintain the geographical locations of TV base
stations (BS) and their radiation powers, antenna heights and
numbers of channels, etc. To help achieve these goals of
spectrum sensing (SS) in TVWS, the secondary users (SUs)
of the CR network in TVWS are suggested to provide their
sensing data and geographical locations for CR operators to
perform cooperative SS.

Compared to the BSs of regular cellular networks, the
radiation power of a TV base station (BS) typically covers
a much larger area than that covered by the transmit power of
a mobile device. To reconstruct the radiation power profile of
even a TV BS, it requires sensing reports from SUs located in
different positions inside the coverage area of the TV signal.
However, the distribution and population density (sparsity) of
SUs are not uniform in different areas, and vary in different
time of a day. Moreover, the received signal strength of a
SU is likely to be attenuated by the shadowing effects of
wireless channels. Considering these characteristics of sensing
measurements and the strict requirements of SS in TVWS,
we study a cooperative SS algorithm for TVWS in this paper
based on the concept of sparse Bayesian learning (SBL) and
the relevance vector machine (RVM) [4].

As the number of SUs vary with time, the computational
demands to reconstruct the power propagation map (PPM) of a
large area may change significantly over time if sensing reports
inside the area are all used in cooperative SS. To control
the algorithm complexity and in the meantime to maintain
the quality of SS, not only should the number of sensing
measurements be limited inside an area, but the area from
which measurements are collected for the computation of a
RVM should also be adjusted with time. Consequently, the
overall computational quantity to reconstruct the PPM of a
nation or region will scale up and down significantly over
time. This makes the SS in TVWS an ideal application for
Cloud computing.

A similar concept of cognitive wireless Cloud (CWC) has
been introduced by H. Harada et al in [5] where they consider
a heterogeneous network that consists of various types of
wireless networks and propose a Cloud-based algorithm to
optimize the spectrum resource scheduling among the het-
erogeneous networks in CWC. In contrast to their ideas in
heterogeneous networks, we propose herein a more complete
concept of Cognitive Radio Cloud Network (CRCN) that
enables and integrates cooperative SS and resource scheduling
in TVWS. Making use of the scalability and the vast storage
and computing capacity of the Cloud, the database of PPM can
be established, updated and accessed by a large amount of SUs
in an efficient manner. Under this infrastructure of CRCN, we
study and implement a SBL-based cooperative SS algorithm
on Microsoft’s Windows Azure Cloud platform, and propose a
scalable mapping method under a MapReduce-like program-

IEEE INFOCOM 2011 Workshop on Cloud Computing

683



ming model to dynamically partition the geographical area
according to the SU density. Utilizing the scalable mapping
method and the dynamic computing resource allocation of the
Cloud, the CRCN can provide a PPM in different precisions
according to the density of SUs. Based on our simulation
studies, a proper programming model and partitioning of the
sensing data play crucial roles to the performance of the SBL-
based cooperative SS on the Cloud.

This paper is organized as follows. Section II specifies
the system model for CRCN and provides some background
knowledges on Windows Azure. Section III reviews the basic
concept of SBL and the MapReduce [6] programming model,
and introduces a SBL-based cooperative SS and a scalable
mapping method on Window’s Cloud platform. Simulation re-
sults are presented in Section IV followed by some conclusions
and discussions made in Section V.

II. THE INFRASTRUCTURE OF CRCN

The purpose of CR is to utilize the precious radio resources
more intelligently. Fig. 1 illustrates the infrastructure of the
CRCN proposed in this paper. SUs in the CRCN are allowed
to use a spectrum in time and space as long as not seriously
deteriorating the signal qualities of primary users (PUs) in
the same spectrum. To make the most out of the available
spectra, a command and control center (also referred to the
CR Cloud (CRC)) is used to coordinate and manage the entire
radio resources in TVWS. In the CRCN, there are various CR
BSs to collect sensing measurements from distributed SUs.
The sensing results are fed back through CR BSs to the CRC
to estimate the PPM with a SBL algorithm implemented on
Microsoft’s Windows Azure. The resultant PPM of SS contains
the number of PUs and their locations and corresponding radio
power profiles, and are stored in Microsoft’s SQL Azure.

A. The Windows Azure CRC Platform

The CRC is in fact implemented on Microsoft’s Windows
Azure Cloud platform which can support program develop-
ments in JAVA or in C] and Visual Basic on Visual Studio.
The operating system for Windows Azure is Windows Azure
Guest OS 1.8 which is a virtual machine (VM) version of
Windows Server 2008. Windows Azure supports three types
of data storages which are BLOB for general binary data, Table
for systematic data and Queue for data passing between webs
and programs.

For the programming model in Windows Azure, there are
two different roles which are:

• Web Role: The task of web role is to communicate
between users and background processes. It can be
implemented by dynamic web language, for example,
ASP.NET and PHP, etc.

• Worker Role: It is a background process in Windows
Azure. Worker Roles grab and execute jobs, and then
export the results periodically.

On the other hand, SQL Azure is the Cloud version of SQL
server and is built on Windows Azure. Designed for Cloud,
SQL Azure only supports part of the functions of SQL server.

Fig. 1. A conceptual map of the Cognitive Radio Cloud Network, which
illustrates the geographical relationship among the PUs, PU BSs, CR SUs
and CR BSs of the network. As shown in the figure, the received signal of
SU1 is blocked by a mountain which makes the SU1 difficult to detect the
PU BS by itself. Thus, SU1 will interfere with the PU when it uses the same
frequency band to connect to the CR BS. With the CRCN, this shadowing
effect can be easily resolved and the frequency band will be allocated to SU2

to enhance the spectra efficiency.

To reconstruct the PPM on Windows Azure, each SU inside
the CRCN is assumed equipped with a global positioning
system (GPS) device and is able to feed back its location, time
and value of the received signal strength indicator (RSSI) to
the CRC through the Web Role of Windows Azure as shown
in Fig. 2. Each Web Role takes the inputs sent from a CR BS
and stores the sensing reports in the input database of SQL
Azure. The CRC then partitions the sensing measurements in
the input database into blocks according to their associated
positions, and maps the data of each block to a Worker Role of
Windows Azure to parallelizes the SBL algorithm. A Worker
Roles performs the SBL-based SS algorithm with the sensing
measurements of each block and stores the reconstructed PPM
of PUs of each time slot in the output database of SQL Azure.
If a SU wants to access the CRCN, it first sends a request
together with its location to the CRC to ask for permission.
The CRC will allocate the radio resource to the SU according
to the PPM of PUs and the locations of all users both stored
in the input and output databases of SQL Azure.

III. THE IMPLEMENTATION OF THE SBL-BASED

COOPERATIVE SS ON CRC

More details about the SBL-based cooperative SS algorithm
and how we implement and parallelize the algorithm on the
CRC are provided in this Section. A scalable mapping function
is also proposed to adjust the block scale of each Worker Role.

A. The SBL-Based Cooperative SS Algorithm

Assume that there are N PUs in an area of Np ×
Np, and Mp CR BSs to collect these PUs’ sens-
ing results t = (t1, t2, · · · , tN )T and locations X =
[x1,x2, · · · ,xN ], with xj , [xj , yj ]

T , and feed back
them to the CRC. We select a basis function φj(xi) =

684



Fig. 2. The The block diagram of the Cognitive Radio Cloud platform. The
platform includes two dynamic web pages and one database of SQL Azure for
SUs and one for PUs. The SBL-based cooperative SS algorithm is operated
in Worker Roles and triggered periodically.

1
2sj

exp
{
−
√
(xi,x − µj,x)2 + (xi,y − µj,y)2/sj

}
and use the

SBL to solve the regression problem of [7]

t = Φw + n (1)

where ΦN×M = [ψ1(X),ψ2(X), · · · ,ψM (X)], with
ψj(X) , (φj(x1), φj(x2), · · · , φj(xN ))T , is the basis ma-
trix determined by the number M , the locations µ =
(µ1,µ2, · · · ,µM )T , with µj , [µj,x, µj,y], and the power
decaying rates s = (s1, s2, · · · , sM )T of the bases, and also
by the number N and the location vector X of the SUs.
The vector w = (w1, w2, · · · , wM )T denotes the weighting
coefficients of the basis functions, and each of its entries wj

is endowed a prior probability N (0, α−1
j ). The n denotes the

shadowing effect, with each entry being a zero-mean Gaussian
random variable (RV) with variance β−1. The SBL iteratively
modifies the RVM and estimates the parameters M , α−1

j ,
β−1, µj , and sj to maximize the marginal likelihood function
p(t|X,α, β,µ, s,M) from sparse measurements.

The SBL can also be viewed as an alternative EM algorithm.
In the E-step, the covariance Σ and mean m of the posterior
distribution of weighting coefficients w are evaluated by

Σ = (βΦT
Φ+A)−1, and m = βΣΦ

T t (2)

where A , diag(αj) is a M × M diagonal matrix. Conse-
quently, we can obtain the estimated weighting coefficients
w̃ = m and then delete those low-weighted bases according
to w̃. Here we select the bases whose weighting coefficients
are larger than a threshold η and count their number to renew
the M . For the k-th iteration of SBL, we have

M(k) =

M(k−1)∑

j=1

I(w̃j ≥ η) (3)

where I is the indicating function. Since there are two M-steps
in SBL andm is mainly adjusted in the first M-step. The bases

deleting criterion is only applied in the first EM in which the
basis parameters µ, s and M are assumed known. Therefore,
the variance parameters α−1

j and β−1 are estimated as

α−1
j =

m2
j

γj
, and β−1 =

‖t−Φm‖2

N −
∑M

j=1 γj
(4)

where γj ≡ 1−αjΣjj , and Σjj are the diagonal terms of Σ.
The smaller is the α−1

j , the more likely is φj a redundant basis.
Besides, the deleting threshold η in (3) should be set based on
the noise variance β−1. In the second M-step, w, β−1, and
M are assumed known. We infer the basis parameters µ and
s that maximize the likelihood function p(t|µ, s;X,M, β,α)
by the gradient descent method




µj,x(k)
µj,y(k)
sj(k)



 =




µj,x(k − 1)
µj,y(k − 1)
sj(k − 1)



− δ




∂Q
∂µj,x

∣∣∣
µj,x(k−1)

∂Q
∂µj,y

∣∣∣
µj,y(k−1)

∂Q
∂sj

∣∣∣
sj(k−1)




(5)

where k is the iteration index, Q , − ln p(t|µ, s;X,M, β,α)
and δ > 0 is the step size or referred to as the learning rate.
The details of the iteration process is shown in Table I.

According to the compressive sensing (CS) theorem [8], a
signal can be exactly reconstructed when the measurement rate
(N/N2

p ) is larger than 0.16. Even though the SBL algorithm
does not adopt orthogonal bases and as such does not abide
by the CS theorem, the CS theorem still provides for the SBL
algorithm a useful reference figure on the measurement rate.
In the sequel, we only simulate the cases whose measurement
rates are less than 0.15. The estimation errors do not improve
significantly when the measurement rates are larger than 0.15,
while the complexity will increase dramatically.

TABLE I

The Sparse Bayesian Learning Algrithm

1) Uniformly spread M bases φj in the area of interest.

2) Initiate the iterations with αj = 1, β = 1 and k = 0,

and evaluate the corresponding mean m and covariance Σ.

3) Let k = k + 1. Update α−1 and β−1

and then evaluate m, Σ and Q(k).

4) Delete the bases whose corresponding weights w̃j < η

and then renew the M equal to the number of the surviving bases.

Renew the matrix Φ and A.

5) Let k = k + 1. Update µj = [µj,x, µj,y ] and sj and

and then evaluate m, Σ and Q(k).

Go to step 6) if (Q(k)−Q(k − 1))/Q(k − 1) < 0.0001.

Otherwise, repeat this step for L times, then go back to step 3).

6) Output the µj = [µj,x, µj,y ] and sj .

Let M̃p = M and w̃ = m.

B. Area Parallelization with a MapReduce-like method

Because the algorithm complexity of the SBL-based SS
scheme grows in the third order of the number of sensing
measurements, we partition the sensing data of the distributed

685



Fig. 3. The flowchart of the parallelized SBL-based cooperative SS algorithm
in the background process of Windows Azure. In this example, there are one
web role and four worker roles, and each role operates on an individual VM.
The web role distributes the sensing data; in contrast, the worker roles execute
programs. The detailed execution steps of the algorithm are listed in Table II.

SUs by their locations into blocks to reduce the processing
time of the SS algorithm. The data of each block are processed
independently by a Worker Role of a VM to execute the SBL-
based SS scheme for the block. When the number, locations
and the RSSI levels of PUs are obtained, each VM reports the
results to a common PUs database.

Under the MapReduce programming model [6], VMs ex-
change data in a format of (key, value) pair. Applying this
concept to our SS problem, we define the time and the location
measurements as the Mapper’s input data key and output data
key, respectively. For the Reducer, both the input data key
and the output data key are location information. The flow
chart is shown in Fig. 3. We note that VMs and SQLs are
not guaranteed to be implemented in the same server, thus
exchanging data between VMs might become the bottleneck
of our implementation. It is a tradeoff between the degree of
parallelism and data exchange. The detailed description of this
MapReduce Programming Model is shown in Table II.

TABLE II

MapReduce Programming Model

1) Job tracker distributes SUs’ data to different

Worker Roles according to the chronical order.

2) Worker Role distributes the SUs’ data to different

sub-databases according to the SUs’ locations.

Each worker Role renews its state = 1 in Check SQL

when the distribution is done.

3) Worker Roles check state value in the Check SQL.

If all state values are equal to 1,

then start to run the spectrum sensing algorithm.

Otherwise, check state value periodically.

4) Export the estimation results into PUs’ database.

C. Hierarchical Parallelization

Although area parallelization can reduce the processing
time significantly, the speed improvement is still restricted
by the power coverage areas of the PUs, in particular, for
a PU like a TV broadcasting station. This is because data
processed by a VM should come from an area larger than that
covered by the power of a PU to ensure the correctness of the
reconstructed PPM of a PU. To lift this fundamental limit on
the computational speed of the SS algorithm, one can consider
a traditional parallelization method of multi-threading.

Specifically, we consider a hierarchical parallelization struc-
ture for the computation of the SBL-based SS algorithm.
Measurement data are first partitioned by area into blocks for
the algorithm complexity is of the third order of the number
of measurements. Each block are handled by one VM with
multiple CPU cores. Signal processing within each VM is
further parallelized with multi-threading over multiple cores.

In Microsoft’s dotNet 4.0, a simple multi-thread instruction
of Parallel.For can be used to parallelize computations This
is an advantage of Windows Azure. Unlike Hadoop, Windows
Azure allows users to define some system-level properties for
the different VMs of Web Roles and Worker Roles. Therefore,
using multi-threading in VMs with multiple cores on Windows
Azure platform can also reduce the communication cost be-
tween VMs when only single-thread instructions are allowed
in each VM as in typical MapReduce programming model.

IV. SIMULATION RESULTS

Before we introduce the simulation results, we first give
some figures about the Windows Azure Platform. Windows
Azure offers different options of VMs whose system parame-
ters are listed in Table III. These options allow us to do a fairer
comparison between the speeds and accuracies of different
measurement rates.

We consider herein an area of 60×60 with 3 PUs located at
(15, 45), (45, 45) and (15, 45), respectively. A baseline SBL-
based SS algorithm is performed for this area on Windows
Azure using the large instance in Table III. To study the per-
formance of parallelization on the Cloud, we test three types of
parallelization methods for the SBL-based SS algorithm. The
Type I performs parallelization for the SS algorithm by simple
multi-threading using four CPU cores of small instance in one
VM of the Worker Role. In comparison, the Type II (in Host)
partitions the entire area into four blocks. Each area includes
at most one PU located at the same position relative to the
baseline example. Data from each block are processed by one
CPU core of a VM with 4 cores. In contrast, the Type II (on
Cloud) processes data from each block on a VM of a single
CPU, i.e., each Worker Role processes the measurement data
from an area of 30× 30. Finally, the Type III processes data
from each block on a VM with 4 CPU cores. As a results, the
total number of CPU cores for the Worker Role becomes 16.

The simulation results for different measurement rates (spar-
sities) are listed in Table IV to VIII and are also shown in Fig.
4 to Fig. 8. Fig. 4 shows that parallelization by partitioning the
area is most crucial to the computation of the SS algorithm.

686



TABLE III
THE COMPUTE INSTANCE SIZE OF WINDOWS AZURE

Computer CPU RAM Storage I/O

Instance Size efficiency

Extra Small 1.0GHz 768 MB 20 GB Low

Small 1.6GHz 1.75 GB 225 GB Moderate

Medium 2× 1.6GHz 3.5 GB 490 GB High

Large 4× 1.6GHz 7 GB 1, 000 GB High

Extra large 8× 1.6GHz 14 GB 2, 040 GB High

0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

500

1000

1500

2000

2500
Processing Times of Locationing by Different Measurement Rates

Measurement Rate

T
im

e 
(s

ec
)

 

 
original
type 1
type 2 (on Cloud)
type 2 (in Host)
type 3

Fig. 4. The average processing times in the CRC platform versus the
measurement rates. Only 10 runs are executed for each point.

At the measurement rate of 0.1, Type II (in Host) can improve
the processing speed of Type I by 20 times, while Type II (on
Cloud) improves the processing speed of Type I around 13
times due to the communication time between the VMs. The
computational advantage of Type II results from the matrix
inversion involved in the SBL-based SS algorithm since, for
the Gaussian-Jordan method, the time complexity grows with
the third order of the amount of sensing reports.

TABLE IV
THE SPENDING TIMES (SEC) UNDER DIFFERENT MEASUREMENT RATES

Measurement rates 0.05 0.075 0.1 0.125 0.15

original 89.4 309.9 739.4 1788.4 2223.5

Type I 40.0 124.1 293.2 588.1 1089.0

Type II (on Cloud) 6.3 10.2 22.1 22.9 29.9

Type II (in Host) 3.8 7.8 14.2 22.1 31.2

Type III 6.5 8.9 12.5 14.6 24.5

The hierarchial parallelization algorithm will not effect the
complexity, it only reduces the processing time for each area.
Nevertheless, this feature is particular useful for TVWS due
to the large scale of the power coverage areas of PUs. For the
SBL-based SS algorithm, a VM should process sensing data
at least from a PU, which prevents from partitioning the area
into very small processing blocks.

Table V and VI show the mean squared errors (MSE) of

TABLE V
THE MSES OF LOCATION UNDER DIFFERENT MEASUREMENT RATES

Measurement rates 0.05 0.075 0.1 0.125 0.15

original 0.138 0.091 0.075 0.060 0.050

Type I 0.180 0.09 0.068 0.057 0.048

Type II 0.414 0.276 0.212 0.162 0.167

Type III 0.510 0.306 0.217 0.190 0.158

0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Mean Squared Errors of Locationing for Different Measurement Rates

Measurement Rate

M
ea

n 
S

qu
ar

ed
 E

rr
or

 

 
original
type 1
type 2
type 3

Fig. 5. The average mean squared errors of the SBL-based SS algorithm
versus the measurement rates. The result doesn’t include the false alarms and
missing detection cases.

estimation. Table V shows the MSEs in the locationing of the
PUs, and Table VI presents the MSEs of the reconstructed
PPM. If the radiation power of a PU is 5KW, one scale in
our simulations corresponds to 15km. As a result, the MSE
in locationing is around 1.8 km when measurement rate is at
0.1. More results on MSEs are presented in Fig.5 and 6.

Table VII and VIII show the missing ratios and the false
alarm ratios of the different types of the implementation

0.04 0.06 0.08 0.1 0.12 0.14 0.16
0.01

0.012

0.014

0.016

0.018

0.02

0.022
Mean Squared Errors of PPM by Different Measurement Rates

Measurement Rate

M
ea

n 
S

qu
ar

ed
 E

rr
or

 

 
original
type 1
type 2
type 3

Fig. 6. The average mean squared errors of the SBL-based SS algorithm
versus the measurement rates. The result doesn’t include the false alarms and
missing detection cases.

687



TABLE VI
THE MSES OF PPM UNDER DIFFERENT MEASUREMENT RATES

Measurement rates 0.05 0.075 0.1 0.125 0.15

original 0.020 0.017 0.015 0.014 0.012

Type I 0.022 0.019 0.018 0.015 0.012

Type II 0.020 0.017 0.015 0.013 0.013

Type III 0.022 0.017 0.015 0.014 0.011

TABLE VII
THE MISSING RATIOS UNDER DIFFERENT MEASUREMENT RATES

Measurement rates 0.05 0.075 0.1 0.125 0.15

original 0.09 0.04 0.04 0.04 0.04

Type I 0.108 0.02 0.011 0 0

Type II 0.11 0.04 0.02 0 0

Type III 0.13 0.03 0.01 0 0

methods for the SBL-based SS algorithm. For the Type II,
it appears to have a higher false alarm ratio in an area without
PU. To resolve this problem, we set a threshold for the
estimated power. With this mechanism, we can find for all
of the proposed algorithms that they exhibit consistent results
either in the false alarm ratios or the missing ratios.

V. DISCUSSIONS AND FUTURE WORKS

A CRCN was proposed for cooperative SS in TVWS. Based
on the SBL algorithm, a cooperative SS algorithm was tested
on Microsoft’s Windows Azure Cloud platform. Making use of
the multi-threading features of the Windows Azure platform,
a hierarchial parallelization method was proposed to improve
the processing speed of the SBL-based SS algorithm on the
Cloud. According to our simulation studies, the performance
of the SS algorithm can be greatly improved with the parallel
computing capacity and the MapReduce-like programming
model of the Cloud. Under the framework of CRCN, more

0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.02

0.04

0.06

0.08

0.1

0.12
False Alarm Ratios of Different Measurement Rates

Measurement Rate

F
al

se
 A

la
rm

 R
at

io

 

 
original
type 1
type 2
type 3

Fig. 7. The false alarm ratios of the SBL-based SS algorithm versus the
measurement rates. The power of PU is 30 and the noise is zero mean with
variance equal to 2 in this simulation case. Each point runs for 100 times.

TABLE VIII
THE FALSE ALARM RATIOS UNDER DIFFERENT MEASUREMENT RATES

Measurement rates 0.05 0.075 0.1 0.125 0.15

original 0.12 0.04 0.01 0 0

Type I 0.108 0.102 0.011 0.011 0

Type II 0.03 0.03 0.02 0 0.01

Type III 0.10 0.03 0.02 0.04 0.04

0.04 0.06 0.08 0.1 0.12 0.14 0.16
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Missing Ratios of Different Measurement Rates

Measurement Rate

M
is

si
ng

 R
at

io

 

 
original
type 1
type 2
type 3

Fig. 8. The missing ratios of the SBL-based SS algorithm versus the
measurement rates.The power of PU is 30 and the noise is zero mean with
variance equal to 2 in this simulation case. Each point runs for 100 times.

advanced algorithms or ideas on cooperative SS or spectrum
resource scheduling can be tested for CR in TVWS.

REFERENCES

[1] J. Mitola and G. Q. Maguire, “Cognitive radio: Making software radios
more personal,” IEEE Personal Communications, vol. 6, no. 4, pp. 13–18,
Aug. 1999.

[2] M. A. McHenry, NSF spectrum occupancy measurements project sum-
mary, shared spectrum co. report, Aug. 2005.

[3] FCC, Second report and order and memorandum opinion and order,
FCC 08-260, Nov. 2008.

[4] M. E. Tipping, “Sparse Bayesian learning and the relevance vector
machine,” Journal of Machine Learning Research, vol. 1.

[5] H. Harada, H. Murakami, K. Ishizu, S. Filin, Y. Saito, H. N. Tran,
G. Miyamoto, M. Hasegawa, Y. Murata, and S. Kato, “A Software
Defined Cognitive Radio System Cognitive Wireless Clouds ,” in IEEE
proceeding of IEEE Global Communications Conference (GLOBECOM).
Washington DC, USA.

[6] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing
on Large Clusters,” Communications of the ACM, vol. 51, no. 1, pp.
107–113, Jan. 2008.

[7] D.-H. Tina Huang, S.-H. Wu, and P.-H. Wang, “Cooperative Spectrum
Sensing and Locationing: A Sparse Bayesian Learning Approach,” in
Proc. IEEE GLOBECOM. Miami, USA, Dec. 2010.

[8] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles : Exact
signal reconstruction from highly incomplete frequency information,”
IEEE Trans. on Information Theory, vol. 52, no. 2, pp. 489–509, Feb.
2006.

688


