
Low-cost Application Image Distribution on

Worldwide Cloud Front Server

Yang Liu†, Shi Bai†, Weiyi Zhang†, Jun Zhang‡

†Dept. of Computer Science
‡Dept. of Industrial and Manufacturing Engineering

North Dakota State University, Fargo, ND 58105,

Email: {Yang.Liu.3, Weiyi.Zhang, Shi.Bai, Jun.Zhang}@ndsu.edu

Abstract—Cloud computing opens a new area of supplement,
consumption, and delivery framework for IT services. Customers
could be able to order Virtual Applications through the cloud. To
reduce the latency time, the cloud service providers implement
some strategies (e.g., cloudfront service [1]) to speed up the
applications delivery. However, these strategies do not consider
the profit of application providers. In this paper we address the
problem which is to maximize the profit of application providers
based on the Original-Front server network model. We studied
two different scenarios and proposed two efficient heuristic algo-
rithms. Our simulation results show that our heuristic algorithms
can increase the profit of application providers significantly.

Keywords: Cloud Computing, Front Server, Application Distribu-
tion, Maximize profit.

I. INTRODUCTION

Cloud computing opens a new area of supplement, con-

sumption, and delivery framework for IT services, and it

involves over-the-Internet provision of dynamically scalable

and virtualized resources which is significant trends with

the potential to increase agility and lower costs of IT [2].

Virtual Infrastructure cloud services (e.g., [1], [5]) are virtual

hardware provider, where customers can deploy virtual servers

and run applications. The virtual server vendor which is an

emerging cloud service is the motivation of this paper. Cloud

customers could be able to order Virtual Applications which

can be delivered virtually by the cloud providers on the cloud.

Three characters are involved in this framework: virtual appli-

cation provider, cloud service provider and virtual application

customer. Virtual application providers create the applications

and put them on the original cloud storage servers which are

provided by the cloud providers. The customers purchase the

virtual applications from the application providers. It is worth

noting that customers want their orders to be delivered as fast

as possible, so they do not waste their time slot. In particular,

customers do not want to wait very long latencies associated

with transferring large objects over the Internet. However, the

original cloud storage servers do not always lie near the target

clients. And the provisioning time could be much longer than

The research developed in this paper is supported by NSF CNS-1022552,
FAR-0016614, NSF ND EPSCoR under the Infrastructure Improvement
Program FAR-0015846 and FAR-0017488.

the expected time. Therefore, a strategy is needed to speed up

delivery of the reserved applications.

To reduce the latency time, the cloud service providers

implement a front server strategy (e.g., [1]), shown in Fig.

1. This model is name Original-Front Server (OFS) Model

in this paper. Since the front servers are located near to

the terminal customers geographically and globally, when the

reservations are made by the customers, application images

can be delivered to the front server which is the nearest

one to the customer geographically. Here we assume that the

latency time for delivering the applications is shorter if the

front server is closer to the customer’s locations. Hence, the

provisioning time can be reduced significantly. Theoretically,

requests for the applications are automatically routed to the

nearest front server, so content is delivered with the best

possible performance. However, we notice that this model is

good for cloud providers but not for application providers.

Since application providers need to pay for renting the front

servers from the cloud providers. For example, the expense is

ej
k if the application providers need to put the application k on

the front server j. If the customers want to use the front service,

they have to pay the application providers and activate this

service. For example, for customer i, by making the reservation

of the application k in the front server, the cost is vi
k. Hence,

delivering the content to the nearest front server for each

customer will benefit the cloud providers but not application

providers. An efficient application images distribution strategy

is needed to maximize the profit of application providers.

Fig. 1. Illustration for Original-Front Server Model

IEEE INFOCOM 2011 Workshop on Cloud Computing

978-1-4244-9920-5/11/$26.00 ©2011 IEEE 671

In this paper, we have this assumption that application

providers have the option to decide which front servers need to

be deployed with application images. Obviously, if application

providers try to maximize the total profit Φtotal, they need

to satisfy the customers with the minimum number of front

servers. We assume that if the expected latency time for

delivering the application k to the customer j is tkexp, there

will always exist one or more front servers which can meet

the deadline. The problem we target to solve in this paper is

to maximize the profit Φtotal for application providers.

Our contribution in this paper is two-fold. First, we present

an application image distribution problem to maximize the

profit of application providers based on the Original-Front

Server model. Second, we study this problem in two scenar-

ios and propose two efficient heuristic algorithms for each

scenario to solve this problem.

In the rest of the paper, we describe the related work in

Section II. Section III demonstrates the problem statement of

our work. And the solution for this work is studied in Section

IV. We present numerical results in Section V and which is

followed by the conclusions in VI.

II. RELATED WORKS

How to provision the Virtual applications through cloud

rapidly has been study recently [6]. In paper [4], the authors

studied a fundamental storage staging problem and presented

it as a scheduling problem with capacity constraints under two

models, a continuous model and an integral model.

Similar to application distribution, content distribution has

been studied in the context of web content through Content

Distribution Networks [8], [9]. Some Content Distribution Net-

works implementations introduce related job scheduling prob-

lems. In [3], the authors studied the scheduling problem for

cache pre-filling. Many content distribution systems adopted

web caching techniques [7], where frequently accessed objects

are stored near the customers. These techniques can reduce

both access latency and network traffic.

In could computing, virtual infrastructure cloud services

(e.g., [1], [5]) are both a virtual hardware provider and a virtual

hosting premise, where customers can deploy virtual servers

and run applications. Cloud providers provide some special

web services for content delivery, such as Amazon CloudFront

[1] which cooperates with other Amazon Web Services to

serve developers and businesses an easy way to distribute

content to end customer with high data transfer speeds, low

latency, and no commitments. With a global network of edge

locations, Amazon CloudFront can deliver your static and

streaming content rapidly.

In this work, the problem we target to solve is to maximize

the profit Φtotal for application providers, and to the best of

our knowledge, this problem is rarely studied in the previous

works.

III. PROBLEM STATEMENT

In this work, the Original-Front Server (OFS) model is

adopted. By cooperating with cloud providers, application

providers serve the virtual applications to terminal customers.

In the OFS model, applications are stored on the original

storage servers initially. Customers send the application reser-

vation information to the application providers. According to

the information, the distribution strategies are proposed by

application providers and processed by the cloud providers.

We are given a set of customers C = {c1, c2, ...ct}, a

set of front servers F = {f1, f2, ...fm} and a set of virtual

applications K = {k1, k2, ...kn}. The number of reservation

of applications for each customer is different. For customer i,

hi denotes the number of applications which are reserved by

customer i, and vi
k denotes the cost when customer i makes the

reservation of application k on one front server. The cost of

transferring and retaining application k on server j is ej
k which

is the payout of application providers. The price strategies

for both cloud providers and application providers are out of

the scope of this paper. Since the capacity and bandwidth for

each front server is limited, we have the following constraint

in this work. For each front server, the maximum number of

customers which connect to one front server at the same time

should not exceed ε. When customer i reserves application

k, the expected delivery time denotes by ti,kexp. If provisioning

time ti,kpro is greater than ti,kexp, the penalty we assumed is that

customer i will request the cost vi
k back. However, even the

money is called back for the single application, the customers

are still unsatisfied if many applications cannot be delivered

in time. Hence, we state the following definition, Def. 1.

Definition 1 (Minimum Satisfaction Ratio (MSR)): A fac-

tor αi=
∑

Ki
sat∑

Ki
all

is used to represent the minimum satisfaction

ratio of customer i. Customer i reserves x applications totally

and the minimum number of applications should be satisfied

is y, where y ≤ x. In this case, αi is calculate as y
x

. If the

satisfaction ratio is less than αi, customer i has right to refuse

the payment of all the applications which have been reserved.

2

TABLE I

Symbols Definitions

C Set of application customers
F Set of front servers
K Set of virtual applications

vi
k

Cost of customer i by using app k

e
j

k
Cost for deploying app k on server j

t
i,k
pro Provisioning time of app k of customer i

t
i,k
exp Expected delivery time of app k for customer i

γin Income of the application provider
γout Payout of the application provider
Wi Set of eligible front servers of customer i

αi Expected satisfaction ratio of customer i

Di Set of leaves on node i

Φ Profit of application providers
V Set of intermediate nodes
W Set of leaf nodes

672

Definition 2 (Eligible Front Server): For customer i, if the

front server j can deliver the reserved application to customer

i in time, then front server j is an eligible front server for

customer i. In other words, if the latency time ti,kpro≤ti,kexp, then

server j is an eligible server to customer i. 2

Definition 3 (Maximum prOfit of Application Distribution):

Given a set of customers C = {c1, c2, ...ct}, a set of

application K = {k1, k2, ...kn}, and a set of front servers

F = {f1, f2, ...fm}, for the application provider, the income

γin is calculated as

γin=
∑t

i=1

∑hi

k=1
vi

ksi
kαi

where si
k denotes that if there exists an eligible front server

to serve customer i to use application k. si
k can be determined

by the value of xi, which is

xi = max[xi,1
k , ..., xi,j

k , ..., xi,m
k],

where, xi,j
k = [

ti,k
exp

t
i,j,k
pro

]f(j, k). f(j,k) is the decision variable

which denotes if the application k is deployed on front server

j. If xi ≥ 1, then si
k=1; otherwise, si

k=0.

For the application provider, the payout is calculated as

γout=
∑m

j=1

∑n
k=1

ej
kf(j, k),

The objective in this work is to maximize the total profit of

the application provider:

Maximize
∑t

i=1
αi[

∑hi

k=1
vi

ksi
k] -

∑m

j=1

∑n

k=1
ej
kf(j, k)

2

IV. PROPOSED SOLUTIONS

In this section, we study two different scenarios of appli-

cation distribution and present two distinguish heuristic algo-

rithms to solve the Maximum prOfit of Application Distribution

MOAD problem in these two scenarios.

A. OFS model with single application

We start with a special case where there is only one

application be provided in the OFS model. Since there is only

one application, MSR α should equal to 1 for each customer

in this case.

We construct a tree network G where the original storage

server is the root of the tree. The set of intermediate nodes V =
{n1, n2, ...ni} denote the front servers, and a set of leaf nodes

l = {l1, l2..., lj} denote the customers. (in the following, we

use front server and intermediate node interchangeably, as well

as customer and leaf node.) Let the set Di = {di
1
, di

2
, ...di

a}
represents the the leaves on intermediate node i, which also

means the customers who are routed to the front server fi.

According to the geographical location information, the set of

eligible front servers of customer i who reserved application k
is calculated and represented by Wi = {wi

1
, wi

2
, ...wi

a} where

a is no more than the number of front servers m.

Following the conditions assumed for the OFS model, the

income of front server j which is deployed with application

k is γj
in=

∑x

i=1
vi,j

k where x is the number of the customers

connected to the front server j. We use Ωj to denote the ratio

between the income and the payment of front server j,

Ωj=
γ

j
in

γ
j
out

where γj
out=ej

k.

In this case, we assume the application images have been

deployed on all of the front servers initially. Our H-MOAD

algorithm, shown in Algorithm 1, first chooses the node ni

with the minimum value Ωmin in network G. Then, if the leaf

on node ni has other eligible front nodes, it will be transferred

to the one which has the maximum value Ωmax. For example,

if leaf la has three eligible nodes which are {n1, n2, n3}, and

la currently connected to node n1. According to Algorithm 1,

if Ωn2
≥ Ωn3

, la should be transferred to n2.

On the other hand, if leaf la do not have any other eligible

node, la should be kept on the current node. After processing

the transfer, we recalculate the value Ω′

ni
for node ni. If Ω′

ni
≤

1, we remove node ni and its current leaves from network G,

otherwise, node ni is marked as ”pruned”. Then our algorithm

continues to repeat this process among the ”unpruned” nodes

until none ”unpruned” nodes left. Based on our algorithm, the

whole process should be repeated until all of the leaves and

nodes in network G achieve stable. In other words, no leaf

transfer occurs in G.

Algorithm 1 Single App H-MOAD(G)

1: Construct sets of intermediate nodes V , V ′, and V ′′;

2: V ← {n1, n2, . . . , ni}; V ′ ← V ; V ′′ ← ∅;

3: for each leaf i in G do

4: Connect i to the node nnea which is nearest node to i;

5: end for

6: while V 6= V ′′ do

7: Find the node ni with the minimum value Ωni

min;

8: for each leaf l in the set Dni
do

9: if |Wl| > 1 (El is the set of eligible nodes of l) then

10: Transfer l to the node nmax which is the node with

the maximum value in set Wl .

11: end if

12: end for

13: if Ω′

n ≥ 1 then

14: Mark n as ”pruned”;

15: else

16: Delete ni and leaves in D′

ni
;

17: end if

18: Repeat step 6 to step 15; Move node ni to set V ′′.

19: end while

Let’s use an example in Fig. 2(a) to illustrate Algorithm

1. In this example, we simply assume that the payout of

the application k on each front server is the same which

is ek = 10, and the income from each customer who uses

front service is vk = 5. Initially, leaves are automatically

routed to the nearest nodes, shown in Fig. 2(a). Following

to Algorithm 1, in the first iteration, node N4 is selected due

to Ωk
N4

= 5

10
which is the minimum value in network G.

673

(a) The original network (b) Iteration 1

(c) Iteration 2 (d) Iteration 3

Fig. 2. Illustration of Algorithm 1

From the set of eligible nodes of leaf l9 Wl9 = {N3, N4},

we choose node N3 as a target node to which leaf l9 can

be transferred, shown in Fig. 3(b). There is no leaf left on

node N4 after transferring leaf l9 to N3. Hence, node N4

is deleted from the network, in other words, the image of

application k will not be deployed on front server N4. In the

second iteration, since Ωk
N2

= Ωk
N3

= 15

10
, node N3 is selected

randomly. The sets of eligible nodes of leaves l7, l8 and l9
are Ek

l7
= {N2, N3}, Ek

l8
= {N3}, Ek

l9
= {N3}, respectively.

Only leaf l7 is transferred to node N2 in this iteration, shown

in Fig. 2(c). Since the value Ω′k
N3

= 10

10
= 1 which means

N3 can be kept in the network and marked as ”pruned”. Fig.

2(d) illustrates the third iteration. The same situation happens

on node N1. Leaves l2 and l3 are transferred to N2, and the

value of node N1 is Ω′k
N3

= 5

10
which means N1 should be

deleted from the network. At this time, the network get stable.

Consequently, N1 and N3 are chosen to be distributed with

application images.

B. OFS model with multi-applications

Now we need to generalize our approach to the networks

with multiple applications. For the general network model,

the number of applications are k. The value of MSR α is

assigned to each customer. In this multi-application model,

we present a multi-layer strategy which could separate the

MOAD problem into numbers of subproblem. Our Multi-apps

H-MOAD algorithm, shown in Algorithm 2, is implemented

on each subproblem. It is worth noting that in this multi-

layers OFS model, we aim to maximize the profit of the

whole network, not only in the single layer. And we adopt

a new factor ϕ = 1

βi−αi
and calculate the value by the

formula Ωmin=

∑ x,q
i=1

v
q
ik

βi−αi∑ x,q
i=1

e
j,q

k

. A set of tree networks Gmul =

{g1, g2, ...gk} is constructed to demonstrate the multi-layers

model. Each tree network represents a layer, and only one

application are considered in each layer. Algorithm 2 illustrates

our Multi-application heuristic algorithm.

Algorithm 2 Multi-Apps H-MOAD(G)

1: Construct sets of intermediate nodes V , V ′, and V ′′;

2: V ← {nq
1
, nq

2
, . . . , nq

i }; V ′ ← V ; V ′′ ← ∅;

3: for each leaf i in Gq do

4: Connect i to the node nnea which is nearest node to i;

5: end for

6: while V 6= V ′′ do

7: Find the node n with the minimum value

Ωmin=(
∑x,q

i=1

v
q
ik

βi−αi
)/

∑x,q

i=1
ej,q
k where βi is the

number of remained applications to leaf i in all of the

layers;

8: for each leaf l in the set Dq
n, where Dq

n is node n’s

leaf set do

9: if |Wl| > 1 then

10: Transfer l to the node nmax which is the node with

the maximum value in the set Wl;

11: end if

12: end for

13: if Ω′

n ≥ 1 then

14: Move n to set V’;

15: else

16: Delete n and the leaves in D′

n;

17: end if

18: Repeat step 6 to step 15; Move node n to set V ′′.

19: end while

(a) The original network (b) Iteration 1

(c) Iteration 2 (d) Iteration 3

Fig. 3. Illustration of Algorithm 2

In the layer q, customer i has a set of eligible front server

which represented by W i,q = {wi,q
1

, wi,q
2

, ..., wi,q
a }. For the

front server j, the income is

γj,q
in =

∑x,q

i=1
vq

ik
αi

where x is the number of the customers connected to the front

server j. The profit for the application provider in layer q is

Φq
j=γj,q

in − γj,q
out=

∑x,q

i=1
vq

ik
αi -

∑x,q

i=1
ej,q
k

.

We use the following example to illustrate algorithm 2,

674

TABLE II
EXAMPLE

Symbols Value Symbols Value Symbols Value

αl1 0.5 βl1 0.9 ϕl1 2.5
αl2 0.5 βl2 0.8 ϕl2 3.3
αl3 0.6 βl3 0.75 ϕl3 6.7
αl4 0.6 βl4 0.9 ϕl4 3.3
αl5 0.4 βl5 0.6 ϕl5 5
αl6 0.4 βl6 0.9 ϕl6 2
αl7 0.7 βl7 0.8 ϕl7 10
αl8 0.7 βl8 0.95 ϕl8 4
αl9 0.5 βl9 0.7 ϕl9 5

shown in Fig. 3. The value of α, β and ϕ for each leaf can

be found in Table. II. In layer q, we simply assume that the

payout for each front server is eq
k = 10, and the income from

each customer can be calculated by γj,q
in =

∑x,q
i=1

v
q
ik

βi−αi
where

vq
ik

=1 in this example. Algorithm 2 is implemented on each

layer with considering the MSR α. First, we calculate the

value Ω of each node, where ΩN1
= 12.5

10
, ΩN2

= 10.3
10

, ΩN3
= 14

10
,

ΩN4
= 5

10
. Hence, in the first iteration, node N4 which has

the minimum value in network Gq is selected. We choose

node N3 as a target node to which leaf l9 can be transferred.

Since N3 is another eligible node for l9. We delete N4 after

the transfer, since no leaf left on N4, shown in Fig. 3(b).

In iteration 2, we recalculate the value for each node where

ΩN1
= 12.5

10
, ΩN2

= 10.3
10

, ΩN3
= 19

10
. Obviously, node N2 should be

selected. The sets of eligible nodes of leaves l4, l5 and l6 are

Ek
l4

= {N1, N2}, Ek
l5

= {N2}, Ek
l6

= {N2, N3}, respectively.

According to 2, leaf l4 is transferred to node N1 and l6 is

transferred to node N3 in this iteration, shown in Fig. 3(c).

At this time value of node N2 ΩN1
= 5

10
≤ 1 which means N2

should be deleted from Gq . Fig. 2(c) illustrates the second

iteration. In the third iteration, neither the leaves on node N1

nor the leaves on node N3 have other eligible nodes, which

means network Gp achieve stable. As a result, N1 and N3

are chosen to be distributed with application images in this

case. The similar processes will be performed in all of the

rest layers.

V. NUMERICAL RESULTS

In this section, we presented numerical results to evalu-

ate the performances of our solutions. We implemented our

Heuristic Algorithm, which was denoted as H-MOAD in the

figures. For comparison, we also implemented the scenario

without optimization which aims to satisfy all the customers.

This scenario was denoted as Original Distribution in the

figures. All our simulation runs were performed on a 2.8 GHz

Linux PC with 2G bytes of memory. We used different network

topologies in a 100 × 100 sq. units playing field to evaluate

our proposed solutions. All the front servers and customers

were randomly distributed in the playing field.

In our simulation, the number of front servers was set to

20. The cost ej
k of deploying an application on a front server

was set to 20. The cost of customer by using a particular

application was set to 3. We also set the constraint ε that the

number of customers connected to one server can not be more

than 50 in our simulations. In our simulation, we implemented

the scenario of OFS model with single application. The

scenario of OFS model with multiple applications will be

further studied and implemented in our future work.

We test the performances in terms of the profit of application

providers, satisfaction ratio of customers, and number of

deployed front server of our solution, which were shown in

Fig. 4 and Fig. 5. Fig. 4 illustrated that H-MOAD always has

a better performance of profit. Another observation is that as

the number of customers increased, the profit also increased.

For the satisfaction ratio, both H-MOAD and Original Dis-

tribution have the similar performance. The satisfaction ratio

of Original Distribution is a little better than the one of H-

MOAD, since the Original aims to satisfy all the requirements

of the customers. Fig. 6 shows us that, compare to the

original distribution, our H-MOAD protocol can satisfy the

near maximum number of customers with much less front

servers.

To sum up, our simulations demonstrated that the H-MOAD

protocol achieves similar satisfaction ratio as the optimal

solution, while increasing the profit of application providers.

Hence, the H-MOAD protocol is suitable for Original-Front

Server framework.

200 300 400 500 600
0

200

400

600

800

1000

1200

1400

1600

Number of Customers

P
ro

fi
t

o
f

A
p

p
 P

ro
v
id

er
s

H−MOAD

OAD

Fig. 4. profit of Application Providers

200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

1.2

Number of Customers

S
a

ti
sf

a
ct

io
n

 R
a

ti
o

 o
f

C
u

st
o

m
er

s H−MOAD

OAD

Fig. 5. Satisfaction Ratio of Customers

675

200 300 400 500 600
0

5

10

15

20

25

Number of Customers

N
u

m
b

er
 o

f
D

ep
lo

y
ed

 F
ro

n
t

S
er

v
er

s

H−MOAD

OAD

Fig. 6. Number of Deployed Front Servers

VI. CONCLUSIONS

In this work, we studied the Maximum prOfit Application

Distribution (MOAD) problem, which seeks to provide an

efficient strategy for the application providers to maximize

profit. We studied two different scenarios in terms of single

application and multi-applications. Furthermore, we proposed

two fast heuristic algorithms which is called H-MOAD and

Multi-app H-MOAD to solve the MOAD problem. Our sim-

ulation results show that the H-MOAD protocol can increase

the profit of application providers.

REFERENCES

[1] Amazon Elastic Compute Cloud (EC2), http://aws.amazon.com/ec2.
[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,

G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, Above the
clouds: A berkeley view of cloud computing, University of California,
Tech. Rep., 2009.

[3] R. Cohen, L. Katzir, and D. Raz, Scheduling algorithms for a cache
pre-filling content distribution network, in INFOCOM, vol. 2, 2002, pp.
940-949.

[4] A. Epstein, D. H. Lorenz, E. Silvera, I. Shapira, Virtual Appliance Content
Distribution for a Global Infrastructure Cloud Service, INFOCOM’10

Proceedings IEEE, Mar. 2010.
[5] Google App Engine, http://code.google.com/appengine.

[6] E. Kotsovinos, T. Moreton, I. Pratt, R. Ross, K. Fraser, S. Hand, and T.
Harris, Global-scale service deployment in the XenoServer platform, in

Proceedings of the First Workshop on Real, Large Distributed Systems

(WORLDS’04), Dec. 2004.
[7] M. Rabinovich and O. Spatschek, Web caching and replication, Boston,

MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2002.
[8] A. Vakali and G. Pallis, Content delivery networks: Status and trends,

IEEE Internet Computing, vol. 7, no. 6, pp. 68-74, 2003.
[9] D. C. Verma, Content Distribution Networks: An Engineering Approach.

New York, NY, USA: John Wiley & Sons, Inc., 2002.

676

