IEEE INFOCOM 2011 Workshop on Cloud Computing

Time-Critical Event Dissemination in
Geographically Distributed Clouds

Chi-Jen Wu*f, Jan-Ming Ho' and Ming-Syan Chen*f*
*Department of Electrical Engineering, National Taiwan University, Taiwan
TInstitute of Information Science, Academia Sinica, Taiwan
Research Center for Information Technology Innovation, Academia Sinica, Taiwan
{cjwu,hoho} @iis.sinica.edu.tw, mschen@citi.sinica.edu.tw

Abstract—Cloud computing has rapidly become a new infras-
tructure for organizations to reduce their capital cost in IT in-
vestment and to develop planetary-scale distributed applications.
One of the fundamental challenges in geographically distributed
clouds is to provide efficient algorithms for supporting intercloud
data management and dissemination. In this paper, we present
Plume, a generic distributed intercloud overlay for time-critical
event dissemination services. Plume aims at improving the inter-
operability of interclouds in time-critical event dissemination
services, such as computing policy updating, message sharing,
event notifications and so forth. Plume organizes these distributed
clouds into a novel quorum ring overlay to support a constant
event dissemination latency. Our numerical results show that the
proposed Plume greatly improves the efficiency as compared to
a DHT-based overlay approach and provides better scalability
than the fully-meshed approach.

I. INTRODUCTION

In the last few years, cloud computing has rapidly become
a new infrastructure for organizations to reduce their capital
cost in IT investment and to develop planetary-scale distributed
applications over the Internet. Cloud service providers, exem-
plified by Amazon Simple Storage Service (S3), Microsofts
Azure Service Platform, and Google App Engine, have to scat-
ter geographically as many datacenters as possible to support
a great number of users spread around the world. Because of
the demands, a growing number of vendors are introducing
datacenter containers [1] to support modular datacenters that
can provide predictable, repeatable components for the desired
organizations. Moreover, IT organizations/enterprises, govern-
ment/departments, universities may deploy their own clouds
in the future [2], [3]. We can imagine that, in the future, a lot
of distributed clouds, including public and private clouds, will
soon be built around the globe.

One of the fundamental challenges in large-scale geograph-
ically distributed clouds is to provide efficient algorithms for
supporting intercloud [4] data management and spread [5].
In other words, it is that intercloud applications/systems have
to interact with a set of clouds via the Internet. Especially
for time-critical services across a large geographic area, these
service providers prefer to delivery the events as early as
possible. Therefore, as the number of clouds continues to grow,
the scale of distributed clouds may achieve a planetary-scale,
with even thousand or hundred thousands of clouds. One of
major challenges in these planetary-scale distributed clouds is

978-1-4244-9920-5/11/$26.00 ©2011 Crown

to promptly disseminate the time-critical event to other clouds.

A typical example for such time-critical services considers
disaster early warning systems [6], [7]. Assume that each
country owns a disaster alert cloud for hosting the disaster
early warning system and these disaster alert clouds are
connected with the Internet. This disaster alert cloud is a
private cloud built by the weather bureau of a country. The
disaster early warning system allows end users to monitor a
large disaster, such as earthquakes, hurricanes, tsunamis etc.,
which influences many countries. In such a system, the disaster
measurement data is collected by a lot of deployed sensors,
and is gathered into the disaster alert cloud of a country for
representing a summary to disaster observers. However, if the
monitoring disaster may cause damages to other countries,
an alert notification should be rapidly disseminated to clouds
across other countries to minimize the damage.

Another example is that for financial computing services
or social networking services, such as SalesForce, Facebook
and Twitter, may spread many geographically distributed dat-
acenters (clouds) or rent an amount of datacenters across a
large geographic area. When a user updates his/her activity
with friends, the update event should quickly reflect to his/her
friends who may be served on other clouds. Those busi-
ness/social networking services need an efficient way to dis-
seminate the update events among geographically distributed
clouds to maintain the quality of user experiences. Thus how
to share and to disseminate information among geographically
distributed datacenters is critical for providing time-sensitive
services in a distributed cloud computing environment.

To manage and deliver the content well, these distributed
clouds have to organize themselves into a federated intercloud
overlay network [8]-[11]. Currently, each large-scale cloud
service provider uses its own approach to manage or deliver
the content. For instance, Facebook aggregates the server log
data using a tree-based overlay [12], and Amazon’s Dynamo
leverages a fully-meshed topology for managing data across
multiple datacenters [5]. However, to meet the demand of time-
critical services, this overlay requires a fundamental property,
which is that scalability, constant dissemination delay and
robustness in the intercloud overlay should be considered cau-
tiously. Many existing overlay techniques can support the event
dissemination in distributed systems. The fully-meshed design
is the simplest way to disseminate time-critical messages to

665

each other nodes. This scheme takes constant transmission
delay easily. However, each node in the fully-meshed design
is required to maintain O(n) connections with other nodes in
a distributed system of n nodes. Thus this scheme does not
scale well in large-scale distributed systems.

Alternative approach is the tree-based design. Many tree-
based approaches have been proposed with scalability as the
main design criterion in the peer-to-peer paradigm [13]-[15].
However, most of their conception don’t aim to provide a time-
critical event dissemination, instead of they focus on efficient
event dissemination as the communication cost incurred by
delivering event among the participated nodes. Based on tree-
based design, it needs O(log n) hops to delivery events to all
nodes, where n is the number of participated nodes. Another
possible way to efficiently interconnect distributed clouds is
based on Distributed Hash Tables (DHT) overlay. DHT, such
as Chord [16], is inherently scalable and efficient at the
Internet scale. However, the most of DHT also require at most
O(log n) delivery steps [14]. Gossip-based event dissemina-
tion protocols [15] also achieved scalable and fault-tolerant,
however the most of them usually come with long delay
in transporting messages. On the other hand, time-critical
services such as those that processing financial market data
or disseminating the diaster events, have tight delivery delay
demands, thus these tree-based, DHT-based or Gossip-based
approaches may not meet the new challenge of intercloud
environments in a timely manner.

In this paper, our main focus is this problem: how quickly
updated event will be available at every clouds in a large-
scale distributed clouds environment, it is to improve the
inter-operability of interclouds in computing policy updating,
message sharing, event notifications and so forth. Specifically,
we present Plume, a generic distributed intercloud overlay for
event dissemination, that aims at forming an overlay topology
for supporting time-critical event dissemination in a planetary-
scale self-configuring overlay of clouds connected via the
Internet. The cloud nodes in Plume are organized into a novel
quorum ring overlay that is similar to the Chord ring [16].
However, the finger tables of nodes are constructed in a very
different way: each cloud node independently carries out the
finger table based on the concept of an overlay ring and the
quorum system [17]. This eliminate the need for complex
distributed overlay tree construction protocols, yet it results
an efficient one-hop overlay and allows the overlay to delivery
events without long event propagation delay. In addition, for
scalability reasons, the size of finger table maintained by each
cloud node to others is O(y/n). Extensive simulations are
conducted to evaluate the event transmission efficient of Plume
and a DHT-based design. Our numerical results show that the
proposed Plume greatly improve the efficiency as compared to
a DHT-based overlay approach and provide better scalability
than the fully-meshed approach.

In summary, this paper makes the following contributions:
1) We present a distributed intercloud protocol, called Plume,
based on a novel quorum ring to construct a low complexity
cloud-level overlay for time-critical event dissemination. Also

Plume is simple and easy to implement. 2) To the best of our
knowledge, this paper provides the first study to address time-
critical event dissemination in intercloud environments. More-
over, event dissemination provides the essential functionality
for cloud computing applications that require collaboration
with geographically distributed clouds. 3) We analyze the
performance of Plume and different designs of distributed
architectures, and also evaluate them empirically to show the
performance advantages of Plume.

The rest of this paper is organized as follows. In the next
section, we describe the background and related work. In
Section III, we present the detailed design of the proposed
Plume. Performance analysis of Plume and other schemes are
presented in Section 4. In Section IV, we present performance
results on Plume and a DHT-based scheme. In Sections 6
and V, we discuss the further consideration and conclude this

paper.
II. RELATED WORK

Intercloud [4] is one of the latest research fields in cloud
computing research community. The one of important func-
tionalities of intercloud is that if a cloud is out of its resources,
then it could not satisfy further requests from its users.
However, intercloud may bring new business niches among
cloud service providers if these clouds can inter-operate each
other for sharing resources. Thus the demand of creating
inter-operability amongst these clouds will be occurred soon
in the future Internet. Intercloud is still in its infancy. A
few related results in the intercloud research area have been
recently proposed by cloud computing community. Therefore,
as interest in intercloud grows, so will the need for developing
technologies and tools as its building blocks.

Most research on interclod communication is still in its
early stage: focusing on the standardization of communication
protocols, dynamic computing workload migration, etc, and
there is no initial empirical results [18]. In 2010, Vint Cerf,
one of pioneers of the Internet, pointed out that the need for
inter-operability between different clouds will emerge in the
future [8]. Cisco researchers, Bernstein et al. [9], discussed
research issues around inter-cloud protocols and presented an
architecture for intercloud networks. They also indicated that
presence and messaging mechanisms of intercloud should be
designed. Buyya et al. [10] also presented research challenges
of distributed clouds, and designed a federated cloud comput-
ing environment for dynamically coordinating computing load
among distributed clouds. Cross-Cloud Federation Manager
(CCFM) [11] is another resources management design of
federated clouds.

The ADAMANT project [19] is a pub/sub middleware that
uses supervised machine learning to autonomously configure
available resources among distributed clouds. It aims at design-
ing a cloud middleware for supporting on-demand requests of
cloud resources as a part of a disaster management system.
Aneka-Federation [20] is a fully decentralized cloud overlay
based on DHT. It is used to coordinate application scheduling
and to federate resources from multiple clouds. Volley [21]

666

presents a data replication mechanism for reducing the inter-
datacenters traffic and improve user latency, it analyzes user
logs to output data migration recommendations back to the
managers of datacenters. Laoutaris er al. [3] presented the
notion of nano datacenters, which are deployed at the edge
of the networks, such as set-top-boxes. They argue that the
novel nano datacenters are better suited for new emerging ap-
plications, e.g., online gaming, interactive IPTV, etc. However,
this conceptual design requires an efficient way to inter-operate
these distributed nano datacenters.

Compared with the above efforts, we focus on the design
of intercloud network protocols and intercloud overlay archi-
tecture for time-critical event dissemination as a basic build-
ing blocks of cloud computing for many-to-many messages
sharing. We tackle the scalability and efficiency problems of
intercloud overlay, by organizing distributed clouds into a low
complexity quorum ring overlay to reduce the transmitted
latency of intercloud communications.

III. DESIGN OF PLUME

We propose a new intercloud overlay design, refers to Plume
intercloud, in distributed clouds computing environments. The
resulting overlay is then used for efficient and scalable many
to many event dissemination. In this section, we begin with
an introduction on the overview of Plume intercloud and
its assumptions. Then, we present detail design of quorum
ring overlay on which Plume is built, then present how
Plume intercloud disseminate events among distributed cloud
environments.

A. Overview of Plume Intercloud and its Assumptions

We consider an intercloud network with a set of geographi-
cally distributed clouds connected by the Internet, and each
cloud is composed of the following components: a cloud
manager, applications/services and a Plume node. We illustrate
a simple overview of a Plume intercloud in Figure 1. As shown
in Figure 1, these distributed clouds are organized into an
intercloud overlay via Plume nodes. In each cloud, there is a
physical data center management service for cloud platform
vendors, such as Amazon EC2, VMware or IBM Tivoli. An
application or service refers to a user level application or a
running service, e.g., a virtual cloud management service ',
Facebook and Twitter hosted by multiple clouds in geograph-
ically dispersed locations.

Hence, for the scenario in Figure 1, if the user changes
the cloud computing policy of the cloud manager, then the
Plume node acts as a middleware service that disseminates
the new policy to the rest of Plume nodes of clouds through
the Plume intercloud. In other words, a Plume node preforms
a connectivity gateway for a cloud utilizing control and
data plane mechanisms to coordinate other distributed clouds.
Moreover, a newly cloud can be deployed or join into a Plume
intercloud, the new deploying cloud needs to initiate a Plume
node for communication with other existing clouds.

I As well as CloudStatus [22] or CloudSwitch [23], it is designed as a hosted
service for monitoring and managing user’s applications or services.

Cloud3 o
—~

Services ‘ <
[Cloud Manager | Cloud 4

\

e R,

Cloud 2)
Services — || - (ko
Cloud Manager _— [\/ 7 \\‘ p
: ./ Plume Intercloud \
|
’ A
Plume node \‘7’ / >

YN\

CI d5
Cloud 1 =

‘ Services
Services ‘ Event Notification O Cloud Manager
| Cloud Manager_| A =

Plume node
% r\ &Users

Computing policies updating

Fig. 1. An overview of a Plume intercloud network.

In this work, we assume that communications in a Plume
intercloud are treated as an event dissemination. We explore
the one-to-many event dissemination scenario, and it easily
extends Plume to support many to many event dissemina-
tion. Formally, we assume that an intercloud network is an
undirected graph G = (V| E) with nodes V corresponding
to Plume nodes and edges E corresponding to unidirectional
overlay links. Let u,v € V, an edge e(u,v) € E indicates
that v and v know each other and can communicate directly
through the intercloud overlay. In addition, we assume that
distributed clouds are uniquely identified. In what follows, we
describe our Plume intercloud in detailed descriptions.

B. Plume Intercloud

A Plume intercloud organizes the Plume nodes of these
distributed clouds into an intercloud overlay based on the
Quorum Ring Overlay (QRO) topology. We will describe it
later. Plume intercloud ensures that any Plume node only
needs at most 2 hops to reach any other Plume nodes in
the intercloud network. Thus it can offer a constant dis-
semination latency for time-critical event delivery in large-
scale distributed cloud computing environments. Specifically,
a Plume intercloud as a middleware provides an interface
for the cloud services or applications to share event among
these distributed clouds, which consists of the basic primitive
function calls: 1) Disseminate(e) operation to disseminate an
event e to other clouds, 2) Join() and Leave() operation for a
Plume node to join or depart a Plume intercloud, 3) Relay(e)
operation that is invoked when a Plume node receives an event
e and 4) a simple Stabilize() process that runs periodically
at each Plume node and maintains the QRO topology.

The QRO topology of Plume intercloud exploits the sim-
ple concepts of an overlay ring [16] and the grid quorum
system [17] to make Plume intercloud scalable and efficient
in event dissemination. As well as Chord ring, the overlay
ring topology in QRO is easily imposed on it by defining the
Successor(t) and the Predecessor(i) operations to maintain
the ring edges of a Plume node i. The two operations return
both successor and predecessor of the position for a Plume

667

T

)
P V'\"/\\;»,«*/’v/\ J].
L 7

_)
'

R] .
; e q Cloud 3)
- Cloud 8 o ! J %,
Y/ ;
[Y Y ;
\ v ! ¢ '
) [1 ’ 1
| v J' _
[e
/<~J‘— = TV P)
¢ (o S & 1 cloud4
g-Table ¢ Cloud7 g’ """ &0
N %

3 R .
N ‘\ S

LE
4 5 6 /,,,\ e \)
: i] clouds
H 818 Caowsebd o
An example of Quorum Ring Overlay of 9 distributed clouds.

Fig. 2.

node ¢ maintaining the adjacency relations in the overlay ring.
However, the event dissemination scheme that uses the simple
ring overlay requires at last 5 hops for delivering events to an
intercloud network of size n.

To accelerate the event dissemination time, each Plume node
maintains a set of Plume nodes, refers to g-table, to expedite
the event dissemination operations. The g-table is constructed
based on the grid quorum system. A formal definition of a
grid quorum system is as follows.

DEFINITION: A grid quorum system () is an universal set
of logical points U = {1,2,...,n} that is arranged as a \/n X
\/n array. A subset ¢; C) is defined as the set of points on
the row and the column passing through logical point ¢ in the
array. Thus, it is clear that ¢; N g; # null, for any point ¢ and
7, 1 <4,7 < n. Based on the definition, for any logical point
i, the size of ¢; is 24/n — 1 in a grid quorum system.

For an instance, in Figure 2, in which the grid quorum @ of
size v/9x /9 is filled with number 1,...,9. The g2 is {1,3,5,8},
and g7 is {1,4,8,9}. It is clear that g; N g7 # null.

Before a Plume node joins the Plume intercloud, it has to
get an identifier in the grid quorum by manually configure or
by centralized assignment. In a \/n x \/n grid quorum system,
a Plume node with a grid identifier can easily pick one column
and one row of entries and these entries will become its g-table
in a Plume intercloud overlay. More precisely, at Plume node
i, its g-table consists of a row; and a col; entries. Then this
Plume node can obtain its ring edges and g-table by asking
any existing Plume nodes in the Plume intercloud. Thus, the
Plume nodes can construct the QRO topology according to
their ring edges and g-tables respectively. Note that the size
of ring edges plus g-table in some Plume nodes is 21/n, e.g.,
when a Plume node with the grid point 7 = 0 (mod /n) or i =
1 (mod /m). As an example, suppose we have nine distributed
clouds as in Figure 2. The Plume node in Cloud 2 has g-table
{1,3,5,8} and its ring edges {1,3}. Plume node in Cloud 7
has g-table {1,4,8,9}. In addition, there are ring edges {6,8}
in Plume node 7.

We now show that the construction of the quorum ring
overlay using the grid quorum results in each Plume node

can reach any Plume node at most two hops.

LEMMA 1: In a stable Plume intercloud network of n nodes,
each Plume node can reach any other Plume nodes in a two
hops route.

Proof: In a grid quorum system of /n X y/n points,
for each grid point ¢ has a quorum set, ¢; that contains a
full column and a full row of elements in the array. By the
definition of a grid quorum system, in any grid quorum system,
¢i N g; # null for any grid point ¢ and j, 1 < ,5 < n. Let
k be the some grid points in g; N g;. Thus, for any grid point,
j ¢ q;, the grid point 7 can reach j by passing one of grid
points, [€ k. Then it is clear that any Plume node ¢ in a
quorum ring overlay can reach any other plume nodes in a
two hops route. []

Next we discuss how a Plume node maintain its g-table. In
a Plume intercloud, every Plume node initiates a Stabilize()
procedure to maintain the disconnected Plume nodes in its g-
table. The presences of Plume nodes in g-fable can easily be
aware by exchanging heartbeat messages with ring edges and
Plume nodes in its g-table periodically. If failure Plume node
7 € the column of Plume node ¢’s g-table then the Plume node
1 can replace it by any active Plume nodes in the row; of the
failure Plume node j. For example, in Figure 2, if the cloud
5 is disconnected with the Plume intercloud then cloud 2 will
replace it by cloud 4 to maintain the overlay connectivity. Or
if the cloud 1 is disconnected with the Plume intercloud then
cloud 7 will replace it by cloud 2.

LEMMA 2: If each Plume node in the Plume intercloud
retains the correct ring edges, i.e., successor and predecessor,
then the g-table of Plume nodes can be recovered from any
Plume node failure after a stabilization time.

Proof: In a stable Plume intercloud network of n nodes,
the Stabilize() procedure starts at a Plume node p by sta-
bilizing its ring edges, i.e, successor and predecessor which
have already the correct entries for any Plume node. After
another run of stabilization, the successor of p’s successor
becomes correct, and so on. After at most /n stabilization
runs, Plume node p can correct all of row entries in its g-table.
After stabilizing row entries, each Plume node has correct
row entries. And the remained col entries can be retrieved by
asking these stabilized row entries. []

C. Event Dissemination Mechanism

Minimizing the event dissemination time is important to
a time-critical event service, we contend that. We develop a
quick event dissemination algorithm, in which time-critical
events are disseminated to all Plume nodes via the g-table
edges of the QRO topology. Based on the QRO topology,
Plume intercloud can typically provides swift event dissem-
ination in large-scale distributed clouds. For simplicity, we
assume that the QRO is with a perfect grid quorum, al-
though the algorithm can tolerant node failure. The event
dissemination algorithm can be invoked by any Plume node
to initiate a disseminating operation among its g-table edges.
The event dissemination algorithm is represented as follows.
In algorithm 1, we assume that a Plume node i requires to

668

Algorithm 1 Plume Disseminate(e) Algorithm

1: /* Plume node s is invoked to disseminate an event e */
2: for all Plume node i € s’s g-table do

3: ettl < 2

4: Send(e, 7)

5: end for

Algorithm 2 Plume Relay(e) Algorithm
1: /* Plume node r receives an event e from s */
if e.ttl -1 < 0O then
return
end if
if Plume node r € cols then
for all Plume node ¢ € row, do
ettl + 1
Send(e, 7)
end for
else if Plume node r ¢ col; then
/* the event dissemination operation is done */
return
: end if

R e A

—
W N = O

disseminate events to every other nodes in a Plume intercloud.
And algorithm 2 presents the Relay(e) operation in a Plume
node r that receives an event e from s.

As previously mentioned, the event dissemination algorithm
of Plume intercloud does not requires a complex dissemination
algorithm, the simple event dissemination technique can ex-
hibit much improve event dissemination time based on the low
diameter property of QRO topology. For an instance, in Figure
2, the Plume node s of Cloud 2 is invoked to disseminate an
event to other clouds in the Plume intercloud. Thus, these
Plume nodes of Cloud 1, 3, 5 and 8 receive the event from s
directly. And the Plume nodes of Cloud 5 and 8 € col; will
relay the event to Cloud 4, 6 € rows and Cloud 7, 9 € rows
respectively.

In discussing the average dissemination delay in Plume
intercloud, we simplified the transmission delay as hop counts,
i.e., one signal hop costs a delay of 1.

LEMMA 3: In a stable Plume intercloud network of n
nodes, the average dissemination delay caused by the Plume
intercloud is equal to 2(2_771‘/5)

Proof: In a stable intercloud network of m nodes, the
originator Plume node disseminates the events to its g-table
with one hop, and these Plume nodes in its g-table should
relay the events with another hop. Therefore, given any Plume
node in the Plume intercloud, the size of g-table Plume nodes
receive the event with a delay of 1. The size of g-table is
2y/n—1. And there is a total of (n—2+/n) Plume nodes receive
the event with a delay of 2. Thus, the total dissemination delay
in Plume intercloud is approximately equal to 1 x (2y/n) +
2 x (n — 2y/n) = 2(n — y/n) and the average dissemination
delay in Plume intercloud is 2(7;_771‘/5) [|

1.0 R
0.8 ;iée:g{yw
¥
o
06 y,
w 4 x
a J /
0 04 Jd
<
/%
0.2 /* *’
7:835 —x— King-topology
0.0 X —x— Brite-topology ||

1 1 1
0 100 200 300 400 500
End-to-End Latency (ms)

Fig. 3. End-to-end latency distribution over all pairs of King topology and
Brite-topology

IV. PERFORMANCE EVALUATION

In this section, we present the details of the framework
used for the experiments. Our implementation of a packet-
level simulator and two intercloud overlay designs, including
Plume and a DHT-based intercloud [20], was written in Java.
We implement one of the most popular DHT system, Chord, as
the event dissemination overlay [14]. We apply two physical
topologies to simulate Internet networks. 1) King-topology:
This is a real Internet topology from the King data set.
The King data set delay matrix is derived from Internet
measurements using techniques that described by Gummadi
et al [24]. It consists of 2,048 DNS servers. The latencies
are measured as RTTs between the DNS servers. 2) Brite-
topology: This is a AS topology generated by the BRITE
topology generator [25] using the Waxman model where alpha
and beta are set to 0.15 and 0.2, respectively. In addition, HS
(size of one side of the plane) is set to 1,000 and LS (size
of one side of a high-level square) is set to 100. Totally, the
Brite-topology consists of 1,000 nodes.

The simulated topology places every Plume node at a
position on the King-topology or the Brite-topology, chosen
uniformly at random. Every simulation results is the average
50 runs. The average delay of King-topology is 77.4 millisec-
onds and 96.2 milliseconds in the Brite-topology. In Figure 3,
we show the CDF of the King-topology and the CDF of the
Brite-topology.

First, we investigate the event dissemination latency of
intercloud overlay designs. Figure 4 plots the average event
dissemination latency of both two intercloud designs in the
Brite-topology with the 95% confidence interval. Figure 5
plots these results in the King-topology. As shown as Figure 4
and 5, for Plume intercloud, the average event dissemination
latency dose not grow with the number of Plume nodes.
However, in Chord-based design, an event dissemination op-
eration that may visit a logarithmic number hops to delivery
event to other clouds [14]. The expected event dissemination
latency for Plume intercloud is about 150 milliseconds in
King-topology and is approximately 200 milliseconds in Brite-
topology. The confidence intervals are computed over 50
independent runs.

669

T T T T

Brite-topology
— Chord-based A

(=2}
o
o

)

c

9]

©

- 500]
c

k]

g

£ 400 - R
]

1)

]

o 300]
€

g

D200 s S -
= £

ag 100 L L L L L L L L

< 0 600 1200 1800 2400 3000 3600 4200

Number of Plume Nodes

Fig. 4. Average event dissemination latency vs. number of Plume nodes in
the Brite-topology

King-topology
T T T

T T T T

2 600 |]
S —+— Chord-based

© —— Plume

- 500]
c

K<l

E

£ 400 | |
Q

3

B 300+ |
c

2

w200 |
% e Hemomrmmmmm e Fooommmmemm e X

2 100 - L L L L L L L
< 0 600 1200 1800 2400 3000 3600 4200

Number of Plume Nodes

Fig. 5. Average event dissemination latency vs. number of Plume nodes in
the King topology

Figure 6 plots that the relative performance of various
intercloud overlay designs in the event dissemination latency
for two different network topologies. We run experiments in
which the number of Plume nodes is set to 1024. As shown in
Figures 6, the curve for Chord-based design has a flatter tail in
the King-topology. This is due to the fact that the distribution
of physically link latency in king-topology is more skewed
than the distribution of Brite-topology. These results show
that Plume provides a suitable technique for time-critical event
dissemination services.

V. CONCLUSIONS

We present Plume, an initial design of an intercloud overlay
for efficient time-critical event dissemination in large-scale
geographically distributed cloud computing environments. The
design of Plume avoids the bottlenecks of centralized ap-
proaches or long dissemination latency of tree-based and DHT-
based approaches. Overall, Plume intercloud achieves constant
event dissemination latency, it can be used as a building
block of intercloud for deploying efficient time-critical event
dissemination services in distributed cloud environments.

REFERENCES

[1] K. Church, A. Greenberg, and J. Hamilton, “On delivering embarrass-
ingly distributed cloud services,” Proc. of ACM HotNets, 2008.

[2] “Datacenter dynamics - gartner: private clouds to enjoy more investment
through 2012 than public services,” http://www.datacenterdynamics.com,
2009.

Fig.

[3]
[4]
[5]
[6]
[7]
[8]
[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]
[18]

[19]

[20]

[21]

[22]
(23]
[24]

[25]

670

1.0}
0.8 f —+— Chord-based
06 / - Plume
L b3
8 0.4 /
0.2
0.0 Brite-topology
L
o
[}
King-topology

800 1200

0 400
Event Dissemination Latency

1600 2000

6. The CDF of event dissemination latency in Brite and King topology

N. Laoutaris, P. Rodriguez, and L. Massoulie, “Echos: Edge capacity
hosting overlays of nano data centers,” ACM SIGCOMM CCR, 2008.
“Wikipedia-intercloud,” http://en.wikipedia.org/wiki/Intercloud.

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
amazon’s highly available key-value store,” Proc. of ACM SOSP, 2007.

“Disaster alert network,” http://www.ubalert.com/.

“The australian early warning network, availabile at
http://www.ewn.com.au/.”

V. Cerf, “Technology review: Integrating the clouds,”

http://www.technologyreview.com/computing/24173/, 2010.

D. Bernstein, E. Ludvigson, K. Sankar, S. Diamond, and M. Morrow,
“Blueprint for the intercloud-protocols and formats for cloud computing
interoperability,” Proc. of IEEE International Conference on Internet
and Web Applications and Services, vol. 0, pp. 328-336, 2009.

R. Buyya, R. Ranjan, and R. N. Calheiros, “Intercloud: Scaling of
applications across multiple cloud computing environments,” Proc. of
IEEE International Conference on Algorithms and Architectures for
Parallel Processing, vol. 0, pp. 328-336, 2010.

A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “How to enhance cloud
architectures to enable cross-federation,” Proc. of IEEE International
Conference on Cloud Computing, vol. 0, pp. 337-345, 2010.
“Facebook developers page, inc, availabile at
http://developers.facebook.com/opensource/.”

S. Girdzijauskas, G. Chockler, Y. Vigfusson, Y. Tock, and R. Melamed,
“Magnet: practical subscription clustering for internet-scale pub-
lish/subscribe,” Proc. of ACM DEBS, pp. 172-183, 2010.

W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P. Buchmann,
“A peer-to-peer approach to content-based publish/subscribe,” Proc. of
ACM DEBS, pp. 1-8, 2003.

D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of
aggregate information,” Proc. of IEEE FOCS, p. 482, 2003.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
Proc. of ACM SIGCOMM, 2001.

M. Maekawa, “A sqrt(n) algorithm for mutual exclusion in decentralized
systems,” ACM Trans. Comput. Syst., 1985.

I. Sriram and A. Khajeh-Hosseini, “Research agenda in cloud technolo-
gies,” Proc. of ACM Symposium on Cloud Computing, 2010.

J. Hoffert, D. Schmidt, and A. Gokhale, “Adapting distributed real-
time and embedded publish/subscribe middleware for cloud-computing
environments,” Proc. of ACM/IFIP/USENIX Middleware, 2010.

R. Ranjan and R. Buyya, “Decentralized overlay for federation of
enterprise clouds,” Handbook of Research on Scalable Computing Tech-
nologies, IGI Global, 2010.

S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, A. Wolman, and H. Bhogan,
“Volley: Automated data placement for geo-distributed cloud services,”
Proc. of USENIX NSDI, 2010.

“Cloudstatus technologies, hyperic, inc.” http://www.cloudstatus.com/.
“Cloudswitch, inc.” http://www.cloudswitch.com/.

K. P. Gummadi, S. Saroiu, and S. D. Gribble., “King: Estimating latency
between arbitrary internet end hosts,” Proc. of ACM IMW, 2002.

A. Medina, A. Lakhina, I. Matta, and J. Byers, “Brite: An approach to
universal topology generation,” Proc of ACM MASCOTS, 2001.

