
Performance Optimization for Cyber Foraging

Network via Dynamic Spectrum Allocation

Yang Cao1, Shiyong Yang1,2, Tao Jiang1, Daiming Qu1

1Wuhan National Laboratory for Optoelectronics, Department of Electronics and Information Engineering

Huazhong University of Science and Technology, Wuhan, P. R. China
2Department of Electronics and Information Engineering, Wuzhou University, Wuzhou, P. R. China

Abstract—Recently, cyber foraging has been proposed to
reduce the application response time and to save energy for
the mobile hosts by offloading the resource-demanding tasks to
the surrogates via wireless networks. However, communication
overheads are further aggravated in the cyber foraging network
(CFN), where multi-hosts share the same spectrum to offload
tasks. Therefore, it is important for the CFN to properly allocate
the spectrum to multi-hosts to improve the network performance.
In this paper, we deeply discuss the challenging issue of the
dynamic spectrum allocation for the infrastructure-based CFN,
and aim to minimize the total completion time of the multiple
remote tasks offloaded by mobile hosts with the constraints that
the task completion time of each remote task is less than a
preset threshold. Firstly, a system-level workflow is proposed to
handle the requests of offloading tasks for mobile hosts. Then,
we formulate the optimization problem of the dynamic spectrum
allocation for the infrastructure-based CFN. We propose an
algorithm to test the feasibility of satisfying the task completion
time constraint for each remote task simultaneously. Moreover,
we derive an optimal solution of the dynamic spectrum allocation.
Conducted simulation results show the validity of the proposed
dynamic spectrum allocation algorithm.

I. INTRODUCTION

With the rapid development of mobile hosts (MHs), e.g.,

smart phone and personal data assistant (PDA), the major

computing work-spaces for individuals are shifting toward

small handheld devices from the desktop PC. End users expect

to effectively run PC-oriented applications, such as speech

recognition, language translation, computer vision and graph-

ics on their MHs, while enjoying the freedom of mobility.

However, compared with the desktop PC, with the limitations

of the size, weight and battery lifetime, MHs are resource-

constrained to run the demanding applications, especially in

computing capability, storage capacity, and so on. There-

fore, cyber foraging was proposed to make MHs offload the

resource-demanding tasks to other stronger machines termed

as surrogates with the sufficient computing capability through

the wireless networks [1]. The offloading of demanding tasks

could benefit MHs with short application response time as well

as long battery lifetime.

This work was supported by the National High Technology Development
863 Program of China with Grant 2009AA011803, the National Science Fund
for Distinguished Young Scholars of Hubei in China with Grant 2010CDA083,
the Program for New Century Excellent Talents in the University of China
with Grant NCET-08-0217, the National Great Science Specific Project with
Grant 2010ZX03006-002 and the National Natural Science Foundation of
China with Grant 60903171.

Obviously, compared with other distributed computing sys-

tems based on wired networks, communication overheads of

the cyber foraging network (CFN) are much severe due to

the relatively higher data error probability and lower data

transmission rate in wireless networks. Of course, commu-

nication overheads include both time and energy costs during

the data exchange between the MH and the surrogate. Note

that, an over-large communication overheads may cancel the

task execution acceleration and energy reduction by offloading

tasks to the surrogates [2]. Recently, some schemes have been

proposed to reduce communication overheads for the single

MH, e.g., to reduce the amount of the data transmissions

between the MH and the surrogate by the proper task parti-

tion [3], to pre-upload the basic program data and only sends

the updated data to the surrogate during the offloading process

[4], or to reduce the link failure recovery time with the failure-

tolerant scheme [5].

However, communication overheads are further aggravated

in the CFN, where multi-MHs share the same spectrum to

offload tasks. For example, in the random access networks,

multi-MHs compete for the occupancy of the spectrum, re-

sulting in the increase of collisions and random backoff time,

then, communication overheads are enlarged and the system

performance degrades significantly. Therefore, it is indeed

needed to improve the performance of the CFN via the

dynamic spectrum allocation for multi-MHs, which has not

drawn much attention ever.

In this paper, we consider the dynamic spectrum allocation

for multi-MHs. We aim to minimize the total completion

time of multiple remote tasks offloaded by MHs in the CFN

under the constraint of the task completion time for each

remote task. We formulate the spectrum allocation problem as

an integer programming problem, and propose an algorithm

to test the feasibility of satisfying the task completion time

constraint for each remote task simultaneously. Moreover, we

derive an optimal solution of the dynamic spectrum allocation.

With the dynamic scheduling of the limited spectrum, the

CFN performance is greatly improved compared with the

classic round robin (RR) [7] and earliest deadline first (EDF)

[8] schemes, which are commonly adopted by multi-tasks

scheduling in computer systems.

Totally, the contributions of this paper are summarized as

follows:

• We pose the problem of the optimal spectrum resource

IEEE INFOCOM 2011 Workshop on Cloud Computing

978-1-4244-9920-5/11/$26.00 ©2011 IEEE 659

Cloud

Virtual

Surrogates

Access Point

Moblie Hosts

W
ire

d

Wireless

Fig. 1: An infrastructure-based cyber foraging network.

scheduling for multi-tasks offloaded by MHs, which is

very important for the future implement of CFN. How-

ever, it has not drawn much attention recently.

• We propose a system workflow to handle task offloading

requests for multi-MHs.

• We propose an algorithm to test the feasibility of satisfy-

ing the task completion time constraint for each remote

task simultaneously.

• We derive an optimal solution of the dynamic spectrum

allocation for the CFN. Conducted simulation results con-

firm the effectiveness of the proposed spectrum allocation

algorithm.

II. SYSTEM ARCHITECTURE AND PROBLEM

FORMULATION

A. Network Elements

As illustrated in Fig. 1, a CFN consists of an access point

(AP) and some MHs within a certain area, where AP serves

for MHs. Suppose that a fixed AP in the CFN operates over

a certain wireless channel. MHs within the area of the CFN

service can access the CFN and share the wireless channel. We

assume the existence of a central resource scheduler (CRS) to

schedule temporal usages of the wireless channel for multi-

MHs.

Obviously, it is reasonable to suppose that a cloud [6]

supports the CFN via a wired link. Different from the cloud

in large data center that contains thousands of servers, a

CFN-oriented cloud is quite small, e.g., only owns dozens

of servers. Moreover, compared with the cloud in the remote

data centers, the CFN-oriented cloud is much closer to the

MHs and can support low latency cyber foraging services to

MHs [4]. As a result, the latency between the AP and the

cloud can be negligible. Suppose that the CFN-oriented cloud

supports scalable computing capability, which can be allocated

and mapped into multiple virtual surrogates with different

computing capabilities for dedicated occupancy according to

the demands of the MHs. The CRS manages the computing

capability allocated to the CFN.

B. Task Offloading

We define the term task as an operation of a mobile appli-

cation, e.g., using a language translator to translate speeches

newly captured by the phone microphone. A MH task consists

Time
Data Trasmission

TODt

RCDt

IdleRequest Collection

Fig. 2: The diagram of requests collection and tasks offloading.

of several sub-tasks and is partitioned into one local task

executed by the MH and one remote task executed by the

surrogate. The remote task should be offloaded to a surrogate

via wireless link. However, not all sub-tasks are suitable for

being offloaded, e.g., some sub-tasks have a large amount of

data to transfer but a relatively small amount of computations

to offload, which waste too much time and energy on data

transmission and reduce the gain of offloading computations

[2]. Moreover, the sub-tasks should be properly partitioned

to achieve the minimization of the communication overhead

according to the relationship among sub-tasks and the cyber

foraging conditions [3]. Once the remote task has been deter-

mined for being offloaded, the process has three stages:

1) Uploading Stage: When the remote task offloading pro-

cess begins, the MH sends the task program and related data

to the corresponding surrogate during the allocated time over

wireless channel. The stage ends when the transmission of the

uplink data is completed.

2) Executing Stage: When the uploading stage ends, the

executing stage begins and the offloaded task begins to execute

on its surrogate. During this stage, spectrum is not required

since there is no data exchange between the MH and its

surrogate. When the task execution is completed, the stage

ends.

3) Downloading Stage: When the task execution is com-

pleted, the downloading stage begins. The surrogate sends

back results data to the MH during the allocated time over

the wireless channel. The stage ends when the transmission of

the downlink data is completed.

The task completion time (TCT) of a remote task consists

of uplink, downlink transmission time and the time of task

execution by the surrogate. Since the execution time of the

local task only depends on the capability of the MH, we would

not take it into account in this paper. Here, the term task

denotes the remote task in this paper.

C. System Workflow and Performance Metrics

As depicted in Fig. 2, the CRS collects the requests of

offloading tasks from MHs periodically. During the start of the

period, there is a time duration termed as request collection

duration (RCD). Denote tRCD as the length of the RCD which

is fixed. During the RCD, the MHs that require task offloading

services should send their request packets to the CRS through

the wireless channel with a random access manner. Suppose

that a task weight set is included in the request packet sent by

the MH, which is the requirement of offloading the task. When

the time for the RCD is expired, The CRS would not accept

660

new requests. Then, the CRS allocates channel usage time

to multi-tasks according to their task weight sets. During the

following task offloading duration (TOD), multi-tasks begin

to receive offloading services from the CFN. Denote tTOD

as the length of the TOD, which equals to the time for

completing all the offloading tasks. It makes sense to suppose

that tRCD ≪ tTOD, therefore, we ignore the delay resulted

from the RCD when compute the TCT for each task.

To evaluate the performance of the offloading process,

we firstly concern about the TCT of each task, which is

denoted as tTCT. To ensure that mobile users have satisfactory

experience, the tTCT of each task should not exceed its preset

threshold. An offloading task is failed if its tTCT exceeds

the preset threshold. Moreover, tTOD is another performance

metric of the CFN, which is the required time of completing all

the tasks during an offloading period. The scheduling objective

of the CRS is to minimize tTOD with the constraint of the

tTCT for each task. The benefit of minimizing tTOD has two

advantages: 1) the reduction of tTOD improves the utilization

efficiency of the sparse spectrum resource; 2) the period of

offloading process in CFN is shorter with the reduction of

tTOD, which brings the improvement of the service capacity

in the CFN.

D. Problem Formulation

Obviously, the CRS in the infrastructure-based CFN man-

ages the usage of one wireless channel that has a certain band-

width and a scalable amount of computing capability units.

Channel usage time and multi-units of computing capability

could be allocated to one task. Suppose the minimum time unit

for the resource allocation in the CFN is a time slot, and the

CRS schedules resource for slots during the TOD. We define

a time slot and a wireless channel combination as a spectrum

tile (ST), which is the minimum unit for the spectrum resource

allocation. Suppose that one ST can only be allocated to one

task for its uplink or downlink data transmission. For one task,

the utility of the wireless channel is s1 bits per slot, the utility

of one computing capability unit is s2 computations per slot,

s1, s2 > 0. s1 has relationship with the quality of the wireless

channel, s2 has relationship with the hardware conditions of

the computing processors and the operating system. In this

paper, we assume that both s1 and s2 keep constant during

the TOD for simplification.

Suppose during the current RCD, M requests of offloading

tasks have been collected by the CRS, where M ≥ 1. The task

i has a task weight set wi = {ui, qi, di, c
rented
i , tdeadline

i },

i ∈ [1, M], where, ui (bits) is the amount of the data for

uplink transmission, di (bits) is the amount of the data for

downlink transmission, qi is the amount of computations for a

task. crented
i is the amount of the computing capability units

rented by the MH for the task i. tdeadline
i (slots) is the deadline

of completing the task i, i.e., the preset threshold for the TCT

of the task i.

The CRS allocates resource for all the tasks. Suppose that

the beginning of the TOD is the slot 1. For the slot k, k ∈

[1, tTOD], the ST allocation policy is termed as ak. Let

ak =

i, if uplink,

0, if unused,

−i, if downlink,

(1)

which presents that the CRS allocates the k-th ST to the uplink

(positive) or downlink (negative) transmission for the task i.

ak = 0 denotes that the k-th ST is not allocated to any task.

The computing capability unit allocated to task i is fixed to

crented
i , i = 1, 2, ..., M . Obviously, we only need to consider

the dynamic allocation of STs.

The TCT of the task i is expressed as tTCT
i = t

up
i + tse

i +
tdown
i , where, t

up
i is the time for completing the uplink data

transmission, tse
i is the time for the task execution at the

surrogate, tse
i = ⌈ qi

s2·c
rented

i

⌉, where ⌈g⌉ denotes the nearest

integer greater than or equal to g. tdown
i is the time for

completing the downlink data transmission. Since the tTCT
i

is determined by the ST allocation policy ak, we have

tTCT
i = max{k : ak = −i},

i = 1, 2, ..., M.
(2)

The time of completing M tasks in the CFN is

tTOD = max{tTCT

1 , tTCT

2 , ..., tTCT

M }. (3)

For each task, tTCT
i ≤ tdeadline

i . Therefore, the optimization

problem is expressed as

min tTOD

s.t. tTCT
i ≤ tdeadline

i , i = 1, 2, ..., M.
(4)

Given task weight set wi, i = 1, 2, · · · , M , the objective

function is to find the optimal ST allocation policy ak, k =
1, 2, ..., tTOD. Obviously, this integer programming problem

is a non-deterministic polynomial-time (NP) hard problem.

However, we can obtain the optimal solutions by exploring

the structure of this problem. In the following sections, we

firstly give a feasibility test for the TCT constraints.

III. FEASIBILITY TEST

As discussed in Section II, an offloaded task is failed when

its TCT is longer than the corresponding deadline. However,

it is difficult to satisfy all the TCT constraints simultaneously

since the total spectrum of the CFN is limited. In this section,

we propose an algorithm to certify whether all the TCT

constraints can be satisfied simultaneously or not. The main

idea of the proposed method is to from back to front allocate

STs for the data transmission of each task from the ST whose

index is equal to the task’s TCT constraint. As depicted in

Fig. 3, the algorithm firstly allocates STs to the downlink data

transmission of each task one by one with a certain order,

and then allocates STs to the uplink data transmission. If at

least one feasible ST allocation policy exists to satisfy the M

TCT constraints simultaneously, we consider that the M TCT

constraints have passed the feasibility test and vise versa.

Denote n
up
i and ndown

i as the required number of STs

for the uplink and downlink data transmission of the task

i, respectively. Obviously, n
up
i = ⌈ui

s1

⌉, ndown
i = ⌈ di

s1

⌉,

661

Time

Spectrum

1a

2

deadline
t

dealine

M
t 1

deadline
t

1

d
t

2a k
a

2

d
t

(a) Test for downlink data transmission

Time

Spectrum

1a

c

M
t 1

c
t

(b) Test for uplink data transmission

ST allocated to

downlink data

ST allocated to

uplink data
Unused ST

Fig. 3: Proposed algorithm for the feasibility test.

i = 1, 2, · · · , M . Detailedly, the proposed algorithm includes

the following steps:

Step 1: Sort the index of the M tasks with a certain

order. There are totally M ! different orders, denoted as

{o1,o2, · · · ,oM!}. Without loss of generality, go to the next

step with the first order o1.

Step 2: Suppose the current order is m1, m2, · · · , mM .

Allocate STs to the downlink data transmission of the task

mi, i = 1, 2, · · · , M . If the tdeadline
mi

-th ST of the spectrum is

occupied by other task, find forward an unused ST. The unused

ST indicates the ST that is not allocated to any tasks for the

data transmission. Label the index of the first unused ST as Di

and update tdeadline
mi

= Di. Calculate the count Ni of unused

STs ahead tdeadline
mi

-th ST. If Ni +1 < ndown
mi

, the feasible ST

allocation policy cannot be obtained under the current order,

go to Step 1 and try the next order. Otherwise, from back to

front allocate successive ndown
mi

unused STs from the tdeadline
mi

-

th ST for the downlink data transmission of the task mi. If the

ST allocation for the downlink data transmission of M tasks

is completed, go to the next step.

Step 3: Denote tdi , i = 1, 2, · · · , M as the index of the first

ST that is allocated to the downlink data transmission of the

task i. Let tci = tdi − tse
i , i = 1, 2, · · · , M . Sort tc1, t

c
2, · · · , tcM

in a descend order, label as tch1
≥ tch2

≥ · · · ≥ tchM
. Allocate

the STs to the uplink data transmission of the task hi, i =
1, 2, · · · , M . If the tch1

-th ST is not an unused ST, find forward

the unused ST and label the index of the first unused ST as

Ui. Calculate the count Ci of unused STs ahead Ui-th ST. If

Ci < n
up

hi
, the feasible ST allocation policy cannot be obtained

under the current order, go to Step 1 and try the next order.

Otherwise, from back to front allocate successive n
up

hi
unused

STs from the Ui-th ST for the uplink data transmission of the

task hi. If the ST allocation for the uplink data transmission of

the M tasks is completed, the feasible ST allocation policy is

found, i.e., the M TCT constraints have passed the feasibility

test.

If for all orders, there is no feasible solution to satisfy all

of the M TCT constraints, the M TCT constraints are beyond

the capability of the CFN.

In the next section, we will show a derived optimal solution

of the optimization problem (4) under the existence of at least

Time

Spectrum
dealine

M
t

1

deadline
t

(a) Initial ST allocation state

(b) ST allocation for the uplink data transmission

ST allocated to

downlink data

ST allocated to

uplink data
Unused ST

Time

Spectrum
d

M
t

1

d
t

1

last
U

(c) Adjusting ST allocation for the downlink data transmission

1

deadline
t

Time

Spectrum
d

M
t

1

d
t

1

last
U

1

deadline
t

deadline

M
t

deadline

M
t

Fig. 4: Proposed algorithm for adjusting the initial feasible

ST allocation state to the candidate policy.

one feasible solution.

IV. PROPOSED OPTIMAL SOLUTION

In this section, we propose an effective method to find

the optimal ST allocation policy under the existence of at

least one feasible solution. The main idea of the proposed

method is to adjust the initial feasible ST allocation states to

candidate policies, and then pick out the optimal one from all

the candidate policies.

Suppose there are totally K feasible ST allocation policies

under different orders from the feasibility test in the previous

section, 1 ≤ K ≤ M !. In each feasible ST allocation policy,

we clear the ST allocation for uplink data transmissions while

reserve the ST allocation for downlink data transmissions. This

operation forms K new uncompleted ST allocation policies,

termed as initial ST allocation states for finding the optimal

ST allocation policy.

For a given initial ST allocation state (see Fig. 4 (a)),

we propose the following algorithm to adjust the initial ST

allocation state to the candidate policy of the optimal policy.

Step 1: Sort the index of the M tasks with a certain

order. There are totally M ! different orders, denoted as

{o1,o2, · · · ,oM!}. Without loss of generality, go to the next

step with the first order o1.

Step 2: Suppose the current order is m1, m2, · · · , mM .

Allocate STs to the uplink data transmission of the task mi,

i = 1, 2, · · · , M . Denote tdmi
as the index of the first ST that

is allocated to the downlink data transmission of the task mi.

Calculate the count Ci of unused STs ahead tdmi
-th ST. If

Ci < nup
mi

, go to Step 1 and try the next order. Otherwise,

from front to back allocate successive nup
mi

unused STs for

the uplink data transmission of the task mi from the unused

ST with the minimal index. Denote U last
i as the index of the

last ST that is allocated to the uplink data transmission of

the task mi. If tdmi
− U last

i − 1 < tse
mi

, go to Step 1 and

try the next order. Otherwise, allocate STs to the uplink data

662

transmission of the next task. If the ST allocation for the uplink

data transmission of M tasks is completed, go to the next step.

Step 3: Adjust the ST allocation of the downlink data

transmission of M tasks to minimize the time of completing

all M tasks (Fig. 4 (c)). The principle of the adjustment is

to minimize the number of unused STs. For the downlink

data transmission of the task i, i = 1, 2, · · · , M , if there

exist Bi unused STs between the (U last
i + tse

i)-th ST and the

tdi -th ST, sequentially move forward the indexes of STs for

the downlink data transmission of the task i till there is no

unused ST between the (U last
i + tse

i)-th ST and the first ST

for downlink data transmission of the task i. Otherwise, keep

the indexes of the STs for the downlink data transmission of

the task i unchanged. If the adjustment for the ST allocation

to the downlink data transmission of M tasks is completed,

record the resulted policy, and then go to Step 1 and try the

next order.

Step 4: After all the orders have been traversed, we obtain

some recorded policies. Pick out the policy with the minimal

total task completion time from recorded policies as the

candidate policy under the given initial ST allocation state.

For the K initial ST allocation states, we can obtain K

candidate policies. Pick out the policy with the minimal total

task completion time from the K candidate policies as the

optimal solution of the optimization problem (4).

The proposed method traverses all the possible orders of

both uplink and downlink allocations of all the tasks and

allocates successive unused STs to each task, therefore, the

optimal solution exists among the trial solutions.

V. SIMULATION RESULTS

In this section, we conduct some simulations to show the

validity of the proposed scheme. We randomly generate the

task weight sets. In every task weight set, the data amount is

denoted by the required number of STs and the computation

amount is denoted by the expected task execution time (slots)

by the surrogate. For the generated task weight sets, we

firstly test the feasibility through using the proposed algorithm

presented in Section III. If the generated task weight sets

pass the feasibility test, we find the optimal allocation policy

through using the proposed algorithm in Section IV.

Table I lists four generated task weight sets that have passed

the feasibility test. Fig. 5 shows the corresponding optimal ST

allocation policy obtained by the proposed algorithm. As seen

from Fig. 5, the optimal policy has no unused ST, which means

that the optimal policy fully utilizes the spectrum. Therefore,

the total task completion time tTOD is the shortest.

We also compare the proposed algorithm with two classic

task scheduling algorithm, i.e., the round robin (RR) [7]

and the earliest deadline first (EDF) [8] algorithms. The

RR algorithm aims to ensure the fairness among multi-tasks,

therefore, it allocates the equal time duration to every task

in turn. The EDF algorithm gives the highest priority to the

shortest deadline task, which is based on the deadline-driven

rule.

TABLE I: Task weight sets of 4 tasks

Uplink Computation Downlink Deadline

(STs) (Slots) (STs) (Slots)

Task-1 14 7 3 98

Task-2 6 21 5 62

Task-3 7 25 5 45

Task-4 7 19 6 69

100 − 150 150 − 200 200 − 250 250 − 300
0

20

40

60

80

100

TCT Constraint Range (Slots)

T
as

k
 F

ai
lu

re
 R

at
io

 (
%

)

RR

EDF

Optimal

Fig. 6: Task failure ratio versus TCT constraint range with

different algorithms.

The uplink and downlink data amounts are generated uni-

formly within range [10, 50]. The task execution times are

generated uniformly within range [20, 100]. We measure per-

formance metrics from 10000 Monte-Carlo runs. Final results

are obtained through calculating the average value.

For the first scenario, the task deadlines (TCT constraints)

are generated uniformly within range [100, 150], [150, 200],
[200, 250] and [250, 300], respectively. Supposed that the

generated parallel M tasks have at least one feasible ST

allocation policy when all of the M task deadlines are satisfied

simultaneously. We fix M = 3. The RR and EDF schemes

cannot ensure that the actual TCT for every task is below

its TCT constraint. We define the task failure ratio as the

ratio of the failed tasks number to the number of all handled

tasks during a certain time duration. The task failure ratio

versus different TCT constraint range for different algorithms

is depicted in Fig. 6. Obviously, the task failure ratios of the

RR algorithm and EDF algorithm are decreasing as the TCT

constraint range becomes looser, whereas the task failure ratios

of the proposed algorithm are always zero.

For the second scenario, the task deadlines (TCT con-

straints) are generated uniformly within range [200, 300].
We vary the number of tasks M from 3 to 5. Total task

completion time versus tasks number with different algorithms

are illustrated in Fig. 7. We can observe that the proposed

algorithm outperforms the other two algorithms significantly

with different number of tasks.

VI. RELATED WORK

Recently, cyber foraging, also is termed as computation of-

floading, has been paid much attention. Most of existing works

mainly focus on the mechanisms of the offloading task for a

663

Task 1

Uplink

Time1 105 15 20 25 30 35 40 45 50

Task 2

Uplink

Task 3

Uplink

Task 4

Uplink

Task 1

Downlink

Task 2

Downlink

Task 3

Downlink

Task 4

Downlink

Fig. 5: Optimal allocation policy.

3 Tasks 4 Tasks 5 Tasks
0

100

200

300

400

500

T
o
ta

l
T

as
k

 C
o
m

p
le

ti
o
n
 T

im
e

(S
lo

ts
)

RR EDF Optimal

Fig. 7: Total task completion time versus the number of the

tasks with different algorithms.

single MH. An offloading framework was proposed in [11],

in which authors considered the reduction of the computation

on MHs to achieve energy efficiency. In [3], the aim of the

developed method is to reduce the task execution time via

computation offloading under the constraint of the memory.

In [5], authors analyzed the performance of the offloading

systems in mobile wireless environments, where surrogates

may become unreachable due to the mobility of the MH. In

[9], a cyber foraging system supporting easy development of

mobile cyber foraging applications was presented. In [13],

a routing scheme was proposed for computation offloading

systems in an ad hoc network. Different from all above works,

our work focuses on the spectrum allocation for multiple

parallel tasks offloaded by MHs to achieve an optimal network

performance.

Obviously, task scheduling is one of the most important

issues in the context of parallel and distributed computing

systems, which draws much attention. In [10], an optimization

problem of finding an optimal staging schedule for virtual

appliances delivering according to the network bandwidth was

proposed and solved in the context of Global Infrastructure

Cloud Service. The optimization of the jointly allocating

computing and wavelength resources for establishing multi-

ple virtual infrastructures in federated computing services is

proposed in [12]. In [8], algorithm for fair scheduling in grid

computing systems was proposed and compared with other

classic scheduling schemes, e.g., earliest deadline first (EDF)

and the first come first served (FCFS) schemes. Our work

focuses on the optimal spectrum allocation for multi-tasks, in

which both communications and computations are considered.

VII. CONCLUSIONS

In this paper, we formulated and analyzed the optimization

problem of the dynamic spectrum allocation. We also proposed

an algorithm to test the feasibility of satisfying the task com-

pletion time constraint for each remote task simultaneously.

Moreover, we derived an optimal solution to the dynamic spec-

trum allocation. Conducted simulations showed the validity of

the proposed dynamic spectrum allocation algorithm.

REFERENCES

[1] M. Satyanarayanan, “Pervasive computing: vision and challenges,” IEEE
Personal Communications, vol. 8, no. 4, pp. 10-17, 2001.

[2] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: can
offloading computation save energy?,” Computer, vol. 43, no. 4, pp. 51-
56, 2010.

[3] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and D. Milojicic, “Adaptive
offloading for pervasive computing,” IEEE Pervasive Computing, vol. 3,
no. 3, pp. 66-73, 2004.

[4] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for
VM-based cloudlets in mobile computing,” IEEE Pervasive Computing,
vol. 8, no. 4, pp. 14-23, 2009.

[5] S. Ou, Y. Wu, K. yang, and B. Zhou, “Performance analysis of fault-
tolerant offloading systems for pervasive services in mobile wireless
environments,” IEEE ICC, pp. 1856-1860, 2008.

[6] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G.
Lee, D. Patterson, A. Rabkin, and I. Stoica, “Above the clouds: A berkeley
view of cloud computing,” EECS Department, University of California,
Berkeley, Tech. Rep. UCB/EECS-2009-28, 2009.

[7] M. Sakata, S. Noguchi and J. Oizumi, “An analysis of the M/G/1 queue
under Round-Robin scheduling,” Operations Research, vol. 19, no. 2, pp.
371-385, 1971.

[8] N. Doulamis, A. Doulamis, E. Varvarigos, and T. Varvarigou, “Fair
scheduling algorithms in grids,” IEEE Transactions on Parallel and

Distributed Systems, vol. 18, no. 11, pp. 1630-1648, 2007.
[9] M. Kristensen, “Scavenger: Transparent development of efficient cyber

foraging applications,” IEEE PerCom, pp. 217-226, 2010.
[10] A. Epstein, D. Lorenz, E. Silvera, and I. Shapira, “Virtual appliance

content distribution for a global infrastructure cloud service,” IEEE

INFOCOM, pp. 1-9, 2010.
[11] G. Chen, B.-T. Kang, M. Kandemir, N. Vijaykrishnan, M. Irwin,

R. Chandramouli, “Studying energy trade offs in offloading computa-
tion/compilation in Java-enabled mobile devices,” IEEE Transactions on

Parallel and Distributed Systems, vol. 15, no. 9, pp. 795-809, 2004.
[12] X. Liu, C. Qiao, and T. Wang, “Application-specific, agile and pri-

vate (ASAP) platforms for federated computing services over WDM
networks,” IEEE INFOCOM, pp. 2656-2660, 2009.

[13] K. Yang, S. Ou, and H.-H. Chen, “On effective offloading services
for resource-constrained mobile devices running heavier mobile Internet
applications,” IEEE Communications Magazine, vol. 46, no. 1, pp. 56-63,
2008.

664

