
AVMM: Virtualize Network Client with a
Bare-metal and Asymmetric Partitioning Approach

Yuezhi Zhou, Yaoxue Zhang, Hao Liu
Dept. of Computer Science & Technology

Tsinghua University, China
Email: zhouyz@mail.tsinghua.edu.cn, zyx@moe.edu.cn

Naixue Xiong
Dept. of Computer Science

Georgia State University, USA
Email: nxiong@cs.gsu.edu

Abstract—This paper presents the design, implementation, and
evaluation of AVMM, a symmetric partition-based bare-metal
client virtualization approach that tries to achieve maximum
near-native performance for end-users while supporting new out-
of-OS mechanism for value-added services for network system
administration. To achieve these goals, AVMM divides the un-
derlying network client platform into two asymmetric partitions:
user and service partitions. The user partition runs a commodity
OS, which is assigned to most portions of the CPU and memory
resources and a set of peripheral devices to retain the end-
user experience. The service partition runs a specialized OS,
which consumes only the essential resources for its tasks. By
letting user OS possess the most part of resources and access
some peripheral devices directly, the AVMM overhead is reduced
greatly, improving the whole network system performance. We
have implemented a preliminary network prototype that can
support Windows and Linux. Our experimental evaluation results
show that AVMM has achieved its designed goals and provides
a feasible and efficient approach for client virtualization.

Index Terms—Asymmetric Partitioning, Desktop Virtualiza-
tion, Network Client Virtualization, Virtual Machine, Virtual
Machine Monitor

I. INTRODUCTION

The rapid advance in network desktop/personal computers
(PCs) has greatly improved end-user productivity and flexi-
bility by enabling a rich set of applications. PCs have been
ubiquitously deployed in enterprise environments, such as
universities, corporations, and governmental organizations, as
the most common clients to access abundant applications.

However, the success of PCs also creates a set of challenges
for enterprise network system administration and management.
The high management cost for administrators and end users
to maintain and manage the software, and to back up and
secure the distributed state and data has resulted in a very
high total cost of ownership (TCO). It is shown that in a
typical enterprise scenario, the annual cost of managing a
traditional PC can be multiple (up to five) times the cost of
deploying it [1]. This situation will become more serious with
the increased user demands on productivity and flexibility, e.g.,
accessing their applications and data anywhere, anytime, from
any device with similar experiences, and those form factors,
such as network ubiquity and mobility.

The power of virtualization technology has been recognized
for long to address many challenges in computing systems.
The hardware abstraction of virtual machine (VM), espe-
cially the decoupling between operating systems (OSes) and
the underlying hardware, brings out many advantages that

would be hard to achieve, such as server consolidation [2],
debugging [3], and security [4]. Due to these distinguishing
benefits, these years have witnessed widely deployments of
server virtualization products in data-centers, enterprises, and
other organizations [5].

Recently, inspired by the success of server virtualization, the
client virtualization is also proposed and practised to address
the challenges faced by traditional PCs, reducing the cost and
improving the enterprise agility [6]. Despite the overwhelming
potential advantages of client virtualization, it is more complex
and difficult to adopt them widely in enterprise environments
than server virtualization for two issues: performance and
usability.

In this paper, we first present AVMM, a bare-metal native
client (Type I) VMM with an asymmetric resources partition-
ing strategy to achieve the maximum near-native performance,
while facilitating easy supporting of value-added features
of management and security. To address the performance
challenge, AVMM classifies the underlying platform resources
into several types and allocates them to be monopolized or
shared by different asymmetric partitions. The monopolized
resources, for example, graphics or audio devices, can be
directly accessed by user OS. Observing that end-users seldom
need to run several commodity OSes (user OSes) at the same
time, this monopoly strategy can improve the overall perfor-
mance, especially the I/O performance sharply. To ease the
development and deployment of value-added services, AVMM
creates a dedicated service partition running a specialized
service OS, in which more complex and out-of-OS service
modules can be implemented and added to improve the client
management and security. Second, we implemented a prelimi-
nary prototype that can support Windows and Linux on an Intel
x86 machine, which is capable of newly emerged hardware-
assisted virtualization technology, i.e., Intel VT [7]. Finally, we
evaluated this prototype with several micro- and application
benchmarks. The results have demonstrated that AVMM can
achieve comparable performance of regular PC and better than
the client-hosted client virtualization approaches, and it is an
efficient bare-metal client virtualization with maximum near-
native performance.

The remainder of the paper is organized as follows. In
Section II, we present our main design goals and principles.
Section III describes the general approaches of AVMM and
presents the detailed design and implementation. In Sec-
tion IV, we evaluate AVMM and present the experimental

IEEE INFOCOM 2011 Workshop on Cloud Computing

978-1-4244-9920-5/11/$26.00 ©2011 IEEE 653

results. Finally, We conclude this paper in Section V.

II. DESIGN GOALS AND PRINCIPLES

In this section, we present the three design goals of AVMM:
Maximum near-native performance, Full compatibility with
commodity OSes, and Facilitation of out-of-OS value-added
services. To achieve these above challenging goals, we adopt
the following design principles: 1). Hardware-assisted virtu-
alization. To obtain the full compatibility while provide higher
performance, AVMM employs the most recent hardware-
assisted virtualization technologies. With this hardware vir-
tualization, not only do the privilege instructions need no
emulation, but also the whole VMM implementation can be
simplified. Thus, the overall performance can be improved
potentially. 2). Asymmetric and dedicated service parti-
tion. The underlying client platform is partitioned into two
asymmetric partitions (i.e., virtual machines): user partition to
run commodity OS and service partition running a special OS
that is devoted to service, control, or management functions
for the system. 3). Single user OS and partial direct I/O
device access. The platform resources may be monopolized
or shared among the partitions. To preserve the unmodified
user experience, there is only one user partition that run a
commodity OS for end-users at one time. In this way, most
of the platform resources, such as most portions of CPU or
memories can be assigned to the user partition, while the
service partition runs with the minimum necessary resources.

III. GENERAL APPROACHES

In this section, we present the general approaches of AVM-
M, including the asymmetric partitioning strategy and the
overview of AVMM.

A. Asymmetric Partitioning

�������	
����

�������	���

����	��������	�����	���
�������	��������	
��������	���

�������������	�������	
������	��� !��	�������

�������������			
�������

���

����

�������	���

�������	
����

�������
�������		������� ��"#�	�"��	����

Fig. 1. Asymmetric partitioning

AVMM is based on the recent hardware-assisted virtual-
ization technologies introduced by mainstream vendors, for
example, Intel VT [7] or AMD-V [8]. With this hardware
virtualization, the instruction execution, access to privileged
CPU registers, and I/O port access of a VM can be selectively
trapped into the VMM by configuration. Thus, the underly-
ing platform resources, such as certain I/O devices, can be
assigned and accessed directly by a VM as required without
any VMM intervention.

Fig. 1 shows the asymmetric partitioning structure of AVM-
M. As shown in this figure, the platform resources of a client
is divided into two partitions with the help of AVMM: a user

partition which runs a commodity OS, such as Windows XP,
and a service partition that runs a specialized service OS that
will provide run-time services for user OS or other value-added
functions. Considering the factors of performance, reliability,
and security, the underlying platform resources of clients will
be dedicated to one of the partitions or shared between them
as required.

To obtain the maximum performance of the peripheral
devices that are important for user experience, those resources,
such as graphics or audio devices, can be assigned to the user
partition exclusively for direct access. These accesses of the
dedicated direct-access devices will pass-through the AVMM
without any intervention. Of course, certain resources can also
be assigned to service OS for direct access.

However, some critical platform resources that are very
important for the system control and management, such as
programmable interval timer (PIT), programmable interrupt
controller (PIC), advanced programmable interrupt controller
(APIC), must be virtualized and shared among partitions, and
accessed via the AVMM. Of course, the CPU and memory
must be shared among partitions too.

It is noted that the BIOS function should be modified to
enable the loading of AVMM and service OS first and then
the user OS.

B. Overview of AVMM

In this section, we will present the general architecture
of AVMM, as illustrated in Fig. 2. AVMM runs directly
on the hardware platform and provides a full-virtualization-
alike interface to the user OS, meaning that there isn’t any
modification of the user OS kernel. As in other VMMs, the
main interfaces of AVMM can also be classified into three
aspects: CPU, memory, and I/O devices. In the following we
address each subsystem and their general design in AVMM.
Note that although our implementation is specific to an x86
machine with Intel VT, these aspects can be readily applied
to other platform and hardware virtualization with or without
minor modifications.

����	�� �������	��

����$��	%���&���

�
'(��	��� ��!��

��� �!��&
�����	

�

����	
!������

")�	 ��	
!������

"�	
!������

��"	� ���
%������

�������	������	����
�*���)"�	+�"��	�"��	

�"#�	,"��	���-�

�!����	
�����	
�������

.������	

�������

��!������

+�

Fig. 2. Overview of the AVMM architecture
1) CPU: In AVMM, the CPU is virtualized through ar-

chitectural extensions of the modern CPU, such as Intel VT
or AMD-V. With the help of Intel VT, it is straightforward
and more robust to virtualize the CPU than the software-based

654

virtualization. The user or service OS can be directly executed
without any simulation or emulation of privileged instructions.

The virtual CPU module in AVMM provides the abstraction
of a processor to partitions, managing the virtual processor
and associated virtualization events. It saves and resumes
the corresponding physical processor’s state when execution
switches between partitions as a VM Exit or VM Entry. To
get the full control of the platform, AVMM must intercept
or trap some special instructions or events critical for the
system control or management by specifying the hardware-
enable data structure, i.e., the VMCS structure in Intel VT.
These instructions or events that may incur an VMExit to be
handled by AVMM are configured as follows:

• Instructions whose execution will change the CPU state
or status must be trapped and/or virtualized to avoid
the affection on the other partition’s normal execution.
These instructions includes CPUID, HLT, PAUSE, INVD,
INVLPG, etc.

• Accesses to privileged processor states, for examples,
MOV CRx (CR0, CR3, CR4), MOV DRx, RDMSR,
WRMSR, etc., have to be intercepted. Read/write for
those involved control or status registers, such as CR0,
CR4, and time stamp counter (TSC) may need to be
shadowed, that is, the read/write access to such registers
will not cause an VM Exit, but will return/write to the
shadowed values.

• Exceptions and faults. Certain exceptions and faults, such
as page fault, need to be intercepted as VM Exit. Accord-
ingly, the corresponding virtualized exceptions and faults
need to be injected into related partitions on VM entry.

• External interrupts are all intercepted on VM Exit and
the corresponding virtualized one is injected on VM
Entry. Note that the external interrupt vector cannot
be configured to be intercepted selectively, thus every
interrupt will first be handled by the AVMM and then
injected to one partition accordingly.

The physical CPU are shared among AVMM, user or service
OSes. To guarantee the performance of user OS, most portions
of the CPU time will be assigned to it. This is implemented
by the CPU scheduler in AVMM.

2) Memory: Due to the fixed number and functions of
partitions in AVMM, the main memory is subdivided into
several contiguous areas and allocated to each partition. For
each partition, it appears to have a 0-origin memory. The
memory accesses may be trapped or checked as required by the
AVMM to ensure security or enable virtual memory-mapped
I/O (MMIO) functions.

The user partition is allocated to a contiguous physical
memory starting from the absolute location zero to the maxi-
mum that can be allocated to it. This virtual=real mapping [9]
enables that the performance overhead associated with address
relocation and paging is avoided. In addition, the DMA oper-
ation can be executed directly without any memory translation
and thus improve I/O performance.

The service partition and AVMM are also allocated to a
contiguous physical memory, but starting from a fixed offset.
Similarly, this allocation can also reduce the performance
overhead of memory paging and DMA operations, only with

a fixed memory offset.
3) I/O Devices: The virtualization of other devices is more

complicated than that of CPU and memory. The other devices
in an AVMM client are shared among partitions or assigned
to one of the partitions exclusively as desired. Specifically,
from the perspective of the guest OS, its I/O devices can be
classified into three categories as follows:

Virtual device. The critical platform resources for system
control and management, such as PIT, PIC, and APIC, must be
virtualized by AVMM. To avoid guest OS kernel modification,
these devices are full virtualized in AVMM and can be
accessed by the user or service OS as normal with their
existing physical device drivers. The virtual device models and
physical drivers of these critical devices are implemented only
in AVMM and can be accessed through standard I/O interfaces
by guest OSes.

Direct-access device. These devices in AVMM client are
assigned exclusively to one partition and are monopolized
by it. To improve the end-user’s experienced performance,
especially the access performance of I/O devices, most devices
other than the above mentioned critical devices can be assigned
to and directly accessed by user OS. The I/O port and
MMIO operations of the direct-access device won’t be trapped
into AVMM, avoiding the AVMM overhead. It is noted that
the DMA device is not virtualized and accessed directly to
improve the operation performance. Due to its virtual=real
memory mapping, the user OS can access the DMA devices
as normal. However, the service OS has to take care of the
operation, but only needs to add an offset to the allocated
original memory address of the DMA operation.

Disguised device. Different from the virtual devices, the
virtual device model of a disguised device is split into two
parts in the AVMM and service OS respectively. The part
of device model in the AVMM just traps the corresponding
port I/O operations and passes them to the part of device
model in the service OS, which completes the virtual device
operations with the existing physical device drivers in the
service OS. There are two advantages of disguised devices.
First, it can support diverse devices easily by leveraging the
existing device drivers in service OS, and thus simplify the
construction of AVMM and improve the system reliability.
Second, considering the two main sources of system weakness
and vulnerability: disk and network, we can disguise them
for the user OS to provide enhanced features. For example,
the split device driver in service OS can facilitate to develop
value-added applications to enhance the system reliability and
security, such as soft devices [10].

C. Dynamic proportional-share CPU scheduling

As described before, the platform’s PIT is virtualized by
AVMM. Thus, the sharing and scheduling of CPU can be
implemented by assigning the timer’s slice to user or service
OS. To acquire the similar performance of user OS, we assign
most of the CPU, for example, 90 percent to the user OS, only
a small proportion to the service OS, about 10 percent. The
service OS can set the parameters to specify the proportions of
CPU cycles assigned to the guest OSes by calling into AVMM.

655

The limitation of this fixed proportional-share scheduling
is the lack of flexibility. For example, the idle time of one
guest OS cannot be allocated to the other. Also, if the
critical tasks to be carried out by service OS, it cannot be
executed timely, resulting in a reduced overall performance. To
address this problem, we extend it to a dynamic proportional-
share mechanism by applying two heuristics to improve the
efficiency. These two heuristics are outlined as follows: 1).
Identify the idle states and remise the cycles. If the user
OS is idle, the AVMM will let the service OS run. And if the
service OS is idle, AVMM will schedule the time to user OS. If
both are idle, the AVMM will enter idle. 2). Detect the busy
states and seizure the cycles. The AVMM will detect the
busy state or potentially busy state of service OS. If it finds,
AVMM will let the service OS to snatch up more CPU cycles.
For example, when the user OS issues a disguised hard disk
operation which will be trapped into AVMM and completed
by the service OS, AVMM will let the service OS run instantly
in the next time slice to finish the request timely.

D. Shadow page table mechanism

To retain the ultimate control of the memory resources and
protect the access from and between partitions, AVMM has
to virtualize the memory access. Due to the fixed and 1:1
virtual-to-physical allocation strategy in AVMM, it doesn’t
allocate and reclaim the physical memory dynamically and
just validates and redirects memory accesses of partitions,
simplifying the implementation of shadow memory module.
That is, the guest virtual address (i.e., guest physical address)
installed in the virtual CR3 and the guest PD and PT entries by
the user OS is directly mapped into the real physical address
and the service OS is mapped to the physical address only
with a fixed offset.

Initially, the shadow PTS is created with all of its entries
marked as invalid, using the present (P) flag bit in them.
However, in an x86 machine, the processor will set the
accessed (A) bit and dirty (D) bit in the PD and PT entries
automatically. These various events initiated by guest OS
needed to be trapped into the AVMM can be classified into
the following groups.

1. Page fault. The page fault may be generated by a guest
OS normally, for example, if the requested guest page is not
in the guest PTS. In this case, the fault should be raised to
and handled by the guest OS. As described before, the page
fault may also be generated by the inconsistency between
the shadow and guest PTS, for example, the shadow PD or
PT entries are marked as not present or their R/W bits are
not consistent with the guest one. In this case, AVMM needs
to maintain the shadow PTS according to the guest PTS, by
allocating new PT pages, and/or update the relevant flag bits
in PD or PT entries as described before, and then re-execute
the page-faulted instruction.

To intercept the MMIO operations of certain PCI devices or
the PCI configuration transactions that needed to be virtualized
from the guest OS, the MMIO memory pages are also set with
not present. Thus, when a guest OS accesses those MMIO
pages, it will create a page fault. Of course, these page faults
should be passed to and handled by the MMIO handler module

in AVMM.
2. TLB operation. the TLB operation, for example, IN-

VLPG, issued by the guest OS, must also be trapped and
handled by AVMM due to the possible inconsistency incurred
between the guest and shadow PTS. After the AVMM takes
control, it first modifies the shadow PTS to emulate the desired
effect of INVLPG by setting the relevant shadow PD or PT
entries as not present and then executes INVLPG with the
faulting address to remove the invalid physical TLB entries.
Noted that if all entries in the shadow PT are not present, this
shadow PT can be deallocated and the parent PD entries is
set as not present. After that, it needs to reloads CR3 with its
current value to flush the physical TLB.

3. Address space switch. When a guest OS attempts to load
from or store to CR3 or initiate a task switch, the address space
will be changed, resulting in the invalidation of the entire TLB.
Therefore, the AVMM must take control and disable the whole
shadow PTS to emulate the desired effects.

E. Resource discovery and allocation

As described before, AVMM can assign an I/O device to
one partition for exclusive usage. This means that the assigned
device must not be used or shared by other partitions. In
AVMM, we use a resource hidden technique to assign and
hide resources for guest OSes. The memory is allocated and
hidden to guest OS by intercepting the access of advanced
configuration and power interface (ACPI) tables [11]. When
a guest OS accesses the PCI configuration space of devices
by accessing the 0xCF8 and 0xCFC I/O port or the MMIO
memory1, these accesses will be trapped into AVMM. If the
device is needed to be assign to it, AVMM will return the real
configuration space, otherwise it will return Null to hide them
from the guest OS. If a device is hidden to one guest OS,
its corresponding MMIO resources will also be hidden by the
shadow memory module. If a device is virtualized or disguised
by AVMM, the space reading operation will return the virtual
configuration space of it. AVMM must emulate and virtualize
their PCI base address register (BAR) and other registers to
be accessed by the guest OS later.

IV. IMPLEMENTATION AND EVALUATION

We have implemented AVMM on an Intel Dual Core
machine. We also carried out several experiments to evaluate
the performance of AVMM using established benchmarks.
Here we are primarily interested in the following questions:
(1) What is the performance of the virtual CPU and memory?
And how does it compare against the performance of native
and client-hosted virtualization? (2) What is the performance
of the direct-access device and how does it compare with
other approaches? (3) What is the value-added disguised
device performance? And how does it impact on the system
performance?

In all our experiments, the AVMM client machine is config-
ured as an Intel Dual Core E6300 1.86 GHz machine, with a 1
GB DDR2 667 MHz RAM, a 1 Gbps Intel network card, and

1PCI Express defines the enhanced configuration access mechanism, which
allows an OS to access the configuration registers via memory-mapped address
space [12].

656

an Intel G965 Express Chipset Family Graphics Card. Its hard
disk is virtualized as an NBD device that is provided with an
NBD server. The NBD server is configured as an Intel Xeon
Quad Core 1.6 GHz machine, with a 4 GB DDR2 667 MHz
RAM, a single Hitachi 160 GB 15000 rpm SATA hard disk,
and a 1 Gbps onboard network card. The AVMM machine and
the NBD server are connected with a TP-Link TL-SG1048 full
1 Gbps Ethernet switch.

We also compare the AVMM client performance with a
regular PC that has the same hardware configuration as the
AVMM client but with a local 250 GB Seagate 7200 rpm
SATA hard disk, and a client-hosted VM (CHVM), which is
virtualized as with 256 MB memory (the optimal size recom-
mended by VMware) and 20 GB hard disk using VMWare
Workstation 6.5 hosted by Windows XP professional (SP2)
with NTFS 3.1 file system on the same regular PC hardware2.

The AVMM client, regular PC and the VMware VM all run
Windows XP Professional SP2 with NTFS 3.1 or a desktop
Linux (kernel version 2.6.21) with ext3 file system to test their
performance in Windows or Linux environment respectively.
The AVMM service partition runs a customized Linux (kernel
version 2.6.21) and an NBD client (version 2.9.9). The NBD
server runs Red Hat Enterprise Linux Server 5.1 (kernel
version 2.6.18) on ext3 file system and NBD server (version
2.9.9).

A. CPU

We test the CPU performance in Linux, by running lmbench
3.0 [13]. The CPU subset of lmbench consists of 34 arithmetic
microbenchmarks, which can be divided into two groups: a
simple tests group with arithmetic like add/mul and a complex
tests group with arithmetic like div/mod. A shorter complete
time means better performance. We find that the simple tests
performance of both AVMM and CHVM are very close to
native, even without enough precision to differentiate them.
However, AVMM shows a similar performance to native in
the complex tests, and much better than CHVM, as shown
in Fig. 3. CHVM encounters an overhead of 10% to 15%
over native in the following 8 tests: integer div (ID), integer
mod (IM), int64 div (ID64), int64 mod (IM64), float div (FD),
double div (DD), float bogomflops (FB), double bogomflops
(DB). Worse in the test of integer mod parallelism (IMP),
CHVM needs 3 times as long as native to complete the
operation. However, AVMM has an overhead of less than 4%
over native in all these tests.

Our CPU performance evaluation shows that, by using a
bare-metal VMM approach, AVMM can achieve a closely
near-native performance and better than client-hosted VMM
approaches. This may be because in a client-hosted virtual
machine, user-level applications have to compete against both
VMM and host OS for the CPU resources, resulting in more
overhead than in AVMM.

2Since VMware Workstation is a very mature and common commercial VM
solution, we argue that it can represent a general client-hosted VM approach.

ID IM ID64 IM64 FD DD FB DB IMP
0

5

10

15

20

25

30

35

40

45

A
ve

ra
ge

 T
im

e
(n

an
os

ec
on

d)

Native
CHVM
AVMM

0

20

40

60

80

100

Allocate Small B
lock

Write

Read Cached

Read Uncached

Large RAM

Page Faults

%
 o

f n
at

iv
e

(h
ig

he
r i

s
be

tte
r)

CHVM
AVMM

Fig. 3. Lmbench CPU benchmarks. Fig. 4. Memory benchmarks.

Simple Test Medium Test Complex Test
0

50

100

150

200

250

300

A
ve

ra
ge

 F
ra

m
es

 P
er

 S
ec

on
d

Native
CHVM
AVMM

CS − low CS − high Quake 3 − low Quake 3 − high
0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 F
ra

m
es

 P
er

 S
ec

on
d

Native
CHVM
AVMM

Fig. 5. PerforamceTest 3D graphics. Fig. 6. Computer games benchmarks.

B. Memory

We next evaluate the memory performance of AVMM and
also compare it against native and CHVM, by using the
PerformanceTest 7.0 Memory Standard Suite. Fig. 4 shows the
relative test results of native, CHVM, and AVMM.We observe
that in the first four sub-tests, AVMM shows a slowdown
of 2% to 4% against CHVM. This overhead of AVMM is
due to its primary implementation of the shadow page table
algorithm. We also observe that both CHVM and AVMM
encounter a sharp performance decrease in Large RAM test.
AVMM achieves a performance 157% better than CHVM. This
shows that AVMM has a better memory performance than
CHVM when encountering too much paging due to its static
memory allocation strategy. We also ran lmbench 3.0 in Linux
environment to measure the page fault time. This benchmark
times how fast a page of file can be faulted in. We ran the
benchmark for five trials and the average is: Native (1.33 ms),
CHVM (8.53 ms), and AVMM (4.69 ms). We can see that
AVMM achieves a performance nearly two times as good as
CHVM in page fault test.

C. Graphics

In this section, we study the direct-access device perfor-
mance in AVMM. As an example, we evaluate the graphics
card performance. We first ran PerformanceTest 7.0 Graphics
Suite in Windows environment to measure the performance
of 3D graphics card, using Microsoft Direct3D 9.0 graphics
library. Three test scenarios have been provided: Simple,
Medium and Complex. There are two resolutions in our exper-
imental setup: low resolution (800x600) and high resolution
(1024x768). We evaluate the graphics by the term of frames
per second (FPS) [14], which is a standard evaluation metric
for 3D Graphics.

Fig. 5 shows the performance of native, CHVM, and AVMM

657

respectively in low resolution. We can see that CHVM en-
counters a 50% slowdown over native in both Simple and
Medium tests. This overhead mainly comes from a lot of
virtualization works involved with graphics card and DMA.
Since both graphics card and DMA device are direct-access
devices in AVMM and can be accessed directly by the user
OS, AVMM do not have any graphics related virtualization
overhead except the interrupts injection. Therefore, AVMM
only has a performance dropping of 15% over native in Simple
test, and 12% in Medium test. We attribute the 12% to 15%
dropdown to the CPU and memory overhead and the related
interrupt injections. For 3G games test shown in Fig. 6, CHVM
encounters a slowdown of 15% to 88% over native in different
cases. However, AVMM shows a slowdown of no more than
19% in all these cases. The graphics performance evaluation
shows that AVMM can achieve a very close performance to
native in the direct-access device access, thus increasing the
end-users experiences sharply, especially in the graphics- and
video-intensive applications.

D. Disk

We finally evaluate the performance of the disguised NBD-
based hard disk in AVMM environment, by using the Iome-
ter [15] performance tool. Here we also compare its perfor-
mance against native hard disk and client-hosted VM disk.

For sequential disk access, the native sequential read/write
throughput increases with request sizes, and saturates to about
53MB/s when the request size is larger than 16KB (see Fig. 7).
However, CHVM has a big slowdown over native, with a
throughput of no more than 13MB/s. Surprisingly, AVMM
can achieve a throughput two times as high as CHVM in
most cases, and even outperforms native when the request size
is larger than 32KB in sequential read. The reason may be
that the NBD server has a faster hard disk (15000 rpm) than
the native (7200 rpm). For random disk access, the read/write
throughput of AVMM increases with the request size far more
sharply, which is at least 3 times higher than native or CHVM
on average. One reason is that the NBD server has a faster
hard disk than native. Since seek time dominates disk random
access, a faster disk can save a lot of disk access time. Another
reason could be that the NBD server has a larger memory (4
GB) than native(1 GB), so that it can have a large cache.

V. CONCLUSIONS

We have developed AVMM, a bare-metal client-side VMM
for network desktop virtualization. AVMM can achieve maxi-
mum native performance by assigning most portions of CPU
and memory resources and a set of peripheral devices to be
used exclusively by a user OS. In addition, AVMM supports to
add new value-added services easily in a dedicated partition.
We have implemented a preliminary prototype based on an
Intel-VT enabled platform and performed several experiments
to evaluate AVMM. We showed that by leveraging the recent
hardware-assisted virtualization, the bare-metal AVMM can
achieve closely comparable performance to native and bet-
ter than network client-hosted VM approaches. Future work
includes further optimizing performance, implementing and

1 2 4 8 16 32 64 128
0

10

20

30

40

50

60

70

80

Request Size(KB)

Th
ro

ug
hp

ut
(M

B
/s

)

Native
CHVM
AVMM

1 2 4 8 16 32 64 128
0

10

20

30

40

50

60

70

Request Size(KB)

Th
ro

ug
hp

ut
(M

B
/s

)

Native
CHVM
AVMM

(a) Sequential Read (b) Random Read

1 2 4 8 16 32 64 128
0

10

20

30

40

50

60

Request Size(KB)

Th
ro

ug
hp

ut
(M

B
/s

)

Native
CHVM
AVMM

1 2 4 8 16 32 64 128
0

5

10

15

20

25

30

35

40

45

Request Size(KB)

Th
ro

ug
hp

ut
(M

B
/s

)

Native
CHVM
AVMM

(c) Sequential Write (d) Random Write

Fig. 7. Disk read/write throughput.

demonstrating the value-added functions, and applying AVMM
in real-world scenarios.

REFERENCES

[1] A. Gillen, F. W. Broussard, R. Perry, and S. Dowling, “Optimizing
Infrastructure: The Relationship Between IT Labor Costs and Best
Practices for Managing the Windows Desktop, IDC White Paper,”
http://www.microsoft.com/virtualization/en/us/products-desktop.aspx,
2006.

[2] W. Vogels, “Beyond server consolidation,” Queue, vol. 6, no. 1, pp.
20–26, 2008.

[3] S. T. King, G. W. Dunlap, and P. M. Chen, “Debugging operating
systems with time-traveling virtual machines,” in Proceedings of the
2005 Annual USENIX Technical Conference. USENIX, April 2005,
pp. 1–15.

[4] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh, “Terra: a
virtual machine-based platform for trusted computing,” SIGOPS Oper.
Syst. Rev., vol. 37, no. 5, pp. 193–206, 2003.

[5] L. McLaughlin, “Virtualization in the Enterprise Survey: Your Virtual-
ized State in 2008, CIO,” http://www.cio.com/article/168401/, 2008.

[6] J. McKendrick, “The 2009 Share Survey: To-
tal Enterprise Virtualization, Unisphere Research,”
http://www.microsoft.com/virtualization/en/us/products-desktop.aspx,
2009.

[7] R. Uhlig, G. Neiger, D. Rodgers, A. Santoni, F. Martins, A. Anderson,
S. Bennett, A. Kagi, F. Leung, and L. Smith, “Intel virtualization
technology,” IEEE Computer, vol. 38, no. 5, pp. 48–56, May 2005.

[8] AMD Inc., “AMD Virtualization (AMD-V) Technology ,”
http://www.amd.com/us/products/technologies/virtualization/Pages/amd-v.aspx,
2009.

[9] T. L. Borden, J. P. Hennessy, and J. W. Rymarczyk, “Multiple operating
systems on one processor complex,” IBM Syst. J., vol. 28, no. 1, pp.
104–123, 1989.

[10] A. Warfield, S. Hand, K. Fraser, and T. Deegan, “Facilitating the
development of soft devices,” in Proceedings of the USENIX 2005
Annual Technical Conference, April 2005, pp. 378–382.

[11] Hewlett-Packard Corp., Intel Corp., Microsoft Corp., Phoenix Tech.
Ltd., and Toshiba Corp., “Advanced configuration and power interface
specification, revision 3.0b,” 2006.

[12] PCI-SIG, “PCI Firmware Specification, Revision 3.0,” 2005.
[13] L. McVoy and C. Staelin, “lmbench: portable tools for performance

analysis,” in ATEC ’96: Proceedings of the 1996 annual conference on
USENIX Annual Technical Conference. Berkeley, CA, USA: USENIX
Association, 1996, pp. 23–23.

[14] Motherboards.org., “How to Benchmark a Videocard,”
http://www.motherboards.org/articles/guides/1278 1.html, 2009.

[15] Iometer., “Iometer project,” http://www.iometer.org/, 2009.

658

