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Abstract—Cloud computing is a new infrastructure environ-
ment that delivers on the promise of supporting on-demand
services in a flexible manner by scheduling bandwidth, storage
and compute resources on the fly. IPTV services like Video
On Demand (VoD) and Live broadcast TV requires substantial
bandwidth and compute resources to meet the real time re-
quirements and to handle the very bursty resource requirements
for each of these services. To meet the needs of the bursts of
requests, each with a deadline constraint for both VoD and
LiveTV channel changes, we propose a resource provisioning
framework that allows these services to co-exist on a common
infrastructure by taking advantage of virtualization. We propose
an optimal algorithm that provides the minimum number of
servers needed to fulfill all requests for these services. We prove
this optimality in a general setting for any number of services
with general deadline constraints. By using real world data
from an operational IPTV environment, our results show that
anticipating and thereby enabling the delaying of VoD requests
by up to 30 seconds gives significant resource savings even under
conservative environmental assumptions. We also experiment
with different scenarios (by varying the deadline constraints,
changing the peak to average ratios of the constituent services)
to compute the overall savings.

I. INTRODUCTION

As IPTV-based television becomes more popular, one of the

biggest challenges service providers face today is to support

users’ voracious appetite for entertainment video across the

various IPTV services (Live TV, Video on Demand etc). To

cater to the different users and their needs, providers provision

for the peak demands of each service. However, since the

resource demands of none of these services is constantly or

even concurrently at the peak, provisioning for the peak is

sub-optimal.

In this paper, we investigate the potential of utilizing virtu-

alization to support multiple services like Video On Demand

(VoD) and Live broadcast TV (LiveTV). We explore how we

can carefully configure the cloud infrastructure in real time to

sustain the large scale bandwidth and computation intensive

IPTV applications (e.g. LiveTV instant channel changes (ICC)

and VoD requests). In IPTV, there is both a steady state and

transient traffic demand [1]. Transient bandwidth demand for

LiveTV comes from clients switching channels. This transient

and highly bursty traffic demand can be significant in terms

of both bandwidth and server I/O capacity. The challenge

is that we currently have huge server farms for serving

individual applications that have to be scaled as the number of

users increases. In this paper, we focus on dedicated servers

for LiveTV ICC and VoD. Our intent is to study how to

efficiently minimize the number of servers required by using

virtualization within a cloud infrastructure to replace dedicated

application servers.

Fig. 1. LiveTV ICC and VoD packet buffering timeline

When there are multiple services (in this context, VoD and

LiveTV ICC) that coexist, and if some services have very

high peak to average ratios, multiplexing can help to reduce

the total resource requirements. LiveTV ICC is emblematic

of such a service, with a large amount of correlated requests

arriving periodically. In this paper, we adapt the servicing of

VoD requests to the predictably bursty LiveTV ICC requests

using the cloud platforms capability to provision resources

dynamically. We obtain the minimum number of servers (i.e.,

virtual machines) required by carefully studying the tradeoffs

offered for a composite service environment (with a goal

of meeting the needs of the peak of the sums) as opposed

to the sum of the peaks (when the services are provisioned

independently). There is a large peak to average ratio for

LiveTV ICC. The real time aspect of entertainment content

requires us to provision resources to handle peak demand.

Moreover, the ICC demand is very peaky, using resources only

for a very short period of time. VoD on the other hand has a

relatively steady load and imposes delay bounds.

In our virtualized environment, ICC is managed by a set

of VMs. The number of such VMs created would be driven

by the predictor described above (note that a (small) number

of VMs would typically be assigned to each distinct channel).

Similarly, for the VoD service, we would configure a number

of VMs based on the currently active VoD sessions, and would

be adapted to meet user demand. When a physical server

complex is shared for these services, it is desirable that we

minimize the total number of VMs deployed (thereby the

resources used) to satisfy all these requests. The provisioning
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Fig. 2. Typical IPTV architecture

approach described above effectively uses virtualization to

achieve this minimization of resource usage. Because VMs

can be spawned quickly ( [2]), the orchestration procedure

exploits the prediction to do so in anticipation of an ICC load

impulse. Furthermore, it causes the VoD VMs to serve existing

sessions at a faster rate prior to the onset of the ICC load, and

then quiesce these VMs during the ICC spike. This is show

in Figure 1.

II. A TYPICAL IPTV ARCHITECTURE

Let us examine the architecture of an IPTV infrastructure

that has been deployed nationwide to support both live broad-

cast TV and Video-On-Demand (VOD) delivery. Figure 2

shows a typical IPTV architecture for deploying LiveTV and

VoD services.

Typically LiveTV is multicast from distribution servers

(D-servers) using IP Multicast (PIM-SSM in this case [3]),

with one group per TV channel. However, supporting instant

channel change (ICC) [1] requires a unicast stream to each

STB for a short period of time. When a user tunes to a

TV channel by joining a particular multicast group for that

channel, the content has to be delivered to the STB and fill its

playout buffer. Since we wish to keep the switching latency

small to satisfy the desired user experience, this unicast stream

has to be delivered at a higher rate than the streaming rate

of the video. The playout point may in fact comprise a few

seconds of video to be played out to accommodate all the

variability observed in the video delivery system. Although

there are several solutions to mitigate the switching latency

and realize instant channel change for the user [1], [4], in

this paper we consider the approach by vendors of deployed

equipment that delivers the video for the new channel at an

accelerated rate using a unicast stream from the server at the

VHO. The playout buffer is thereby filled quickly, and keeps

switching latency small. Once the playout buffer is filled up

to the playout point, the STB joins the multicast group to

receive content, without continuing to impose a load on an

individual basis on the VHO server complex. Other than ICC,

broadcast of Live TV has a significant multicast component

and supporting LiveTV multicast requires, relatively, smaller

amounts of VHO server resources. The primary scalability

challenge for LiveTV is the server resources for ICC. ICC adds

a transient demand proportional to the number of users concur-

rently initiating a channel change event. We have observed that

there is a dramatic burst load that is placed on the D-servers

by correlated channel change requests from consumers. This

results in very large peaks occuring on every half-hour and

hour boundaries. The peak to average ratio can be multiple

orders of magnitude and these peaks last for a few seconds

(of the order of 10-30 seconds, required to fill the playout

buffer). This means that the D-servers are over-provisioned for

the majority of the time. It would be highly desirable to smooth

out this very “peaky” load on the D-servers, and share these

servers at non-peak instants to provide other services. Video-

on-Demand (VoD) on the other hand has a relatively small

number of servers currently, but is expected to grow. Each VoD

request is satisfied with a unicast stream. While VoD servers

also experience varying load from the subscriber population,

the load is somewhat steady over these time scales of a half-

hour or one-hour intervals. The receiving set-top boxes (STBs)

also have sufficient storage to be able to buffer several seconds,

or even minutes of video in high-speed memory (of course,

there is a disk that could also store hours of video, but it is not

used as part of the playout buffer to the decoder and display

and is not considered here). By adapting the VoD delivery rate

from the servers and pre-buffering the VoD content on the

STB, we can easily adapt to the potential (un)availability of

the server for short time intervals. This enables us to consider

re-using the VoD server for meeting the LiveTV ICC request

load.

Thus, there is a natural sharing possible of both LiveTV

services and VoD on a common server complex. Our project of

consolidation through virtualization is particularly compelling

for a service provider because we do not necessarily need to

modify the source code for the D servers and VoD servers. We

can view a VM as a container for each of these server imple-

mentations, and thus rapidly prototype a shared server complex

that integrates both these services. We think additional servers

that are used for ad-insertion and other capabilities may also

be integrated together, thus bringing down the cost, footprint

and power consumption of the server complex in a VHO.

III. COMPUTATION OF RESOURCES FOR SERVICES WITH

DEADLINE CONSTRAINT

There have been multiple efforts in the past on modeling to

estimate the resource requirements for serving arrivals within

a certain delay constraint, especially in the context of voice

processing, including VoIP assuming Poisson processes [5].

We are different from these efforts since our results apply

for any general arrival process. Our optimization algorithm

computes the minimum number of servers needed based

on the sum of the peaks of the composite workload. We

also examine the amount of server resources required as the

deadline constraint is varied. We then examine the benefit of

multiplexing diverse services on a common infrastructure, and

show how by dynamically adjusting the resources provided to

a particular service while delaying the other service can bring

significant savings in resource requirements in comparison to

provisioning resources for each of the services independently.

This would reflect the amount of ’cloud resources’ required

with multiple real-time services in the cloud infrastructure.
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A. Single Service

Suppose there is a sequence of time instants during which

a number of requests arrive to an incoming queue, denoted by

c(n) for n = 1, · · ·N . Each request has a deadline of m time
units to be completely served after its arrival. In this case, a

question arises as to what is the server capacity needed so

that all the requests arriving at each of the n time instants are

served with no request missing its deadline.

When m = 0, no request can have any delay and thus the
number of servers that are needed is exactly the peak of c(n)
(max1≤n≤N c(n)). We find the trade-off between the number
of servers needed and the deadline constraint tolerable. In

addition we will assume that all the requests arriving within

a time interval N have to be served within the same time

interval.

The following theorem gives the number of servers needed

to serve the requests within their deadline.

Theorem 1: Suppose that the incoming arrivals to a queue

at time i is ci, 1 ≤ i ≤ N . Each of the request arriving at time

i has a deadline of min(i + m,N). In this case, the number
of servers given by,

S =

⌈

max

{

max
1≤i≤i+j≤N−m

∑i+j

n=i c(n)

m + j + 1
,

max
0≤k<N

∑k

j=0 c(N − j)

k + 1

}⌉

, (1)

is necessary and sufficient to serve all the incoming requests.

In case there is no restriction on all the requests being served

by time N , this is equivalent to lengthening the process c(i)
to a length N + m arrival process where c(i) = 0 for i > N .

This gives us the following corollary.

Corollary 2: Suppose that the incoming arrivals to a queue

are time i is ci, 1 ≤ i ≤ N and no request is arriving for times

i > N . Each of the request arriving at time i has a deadline

of i + m. In this case, the number of servers given by,

S =

⌈

max
1≤i≤i+j≤N

∑i+j

n=i c(n)

m + j + 1

⌉

, (2)

is necessary and sufficient to serve all the incoming requests.

Corollary 3: When the service cannot have any delay, (or

m = 0), the number of servers that is necessary and sufficient
is given by max1≤n≤N c(n).
We will prove Theorem 1 in the remaining part of the

section.

We will first show the necessity of S servers. There are

c(j) requests arriving at time j and at most S requests can

leave the queue. If
∑i+j

n=i c(n) > (m + j + 1)S, the number
of requests arriving from times [i, i + j] cannot have departed
in m + j + 1 time starting from time i. Thus, some request

will miss the deadline. So,
∑i+j

n=i c(n) ≤ (m + j + 1)S for

all i + j ≤ N − m. Further, if
∑k

j=0 c(N − j) > (k + 1)S,
the requests arriving in last k + 1 time would not have gone

out of the queue. Thus,
∑k

j=0 c(N − j) ≤ (k + 1)S for all
k < N . This proves that the expression of S given Theorem

1 are necessary.

We will now prove that the number of servers given in

Theorem 1 are sufficient. For the achievability, we use a first-

in-first-out (FIFO) strategy for servicing the queue. We serve

the first S packets in the queue at each time based on FIFO

strategy if there are more than S packets waiting in the queue.

If there are less than S packets in the queue, we serve all the

requests. We will show that with S given as in Theorem 1 and

using this strategy, no request will miss the deadline.

Consider a time instant i. Suppose that the last time before

i that the queue became empty be j−1 (There exist such point
since the queue was empty at 0 and hence this point would be
last if there was nothing else in between). If i < j+m, then the

packets that have arrived from j to i have not missed deadline

yet. If i ≥ j + m, the packets that should have departed from

time j to i should be at-least
∑i−m

n=j c(n) and since this is
≤ (m + 1 + i−m− j)S = (i− j + 1)S, these packets would
have departed. So, no request from time j to i has missed

deadline. This is true for all i, j that have deadline m time

units away.

But, after the last time j−1 when the queue becomes empty,
we also need to see if all the requests have been served by

time N since deadline for some packets here would be more

stringent. Let j − 1 be the last time instance when the queue
becomes empty. Then, from that point, number of packets that

entered the queue are
∑N

n=j c(n). This is ≤ (N − j + 1)S
which are packets that can depart from time j to time N . Thus,

there are no packets remaining to be served after time N .

B. Extension to more services

In this subsection, we will extend the result in Theorem 1 to

more than one services. Let there be k services c1(i), · · · ck(i)
for 1 ≤ i ≤ N . Each of these services have a deadline

associated for the requests, service cj with deadline constraint

mj . In this case, the number of servers needed are given in

the following theorem.

Theorem 4: Suppose that there are k arrival processes cj(i)
for 1 ≤ j ≤ k and 1 ≤ i ≤ N to a queue at time i. Request

cj(i) arriving at time i has a deadline of min(i + mj , N).
In this case, the number of servers given by (3) at the top of

next page, is necessary and sufficient to serve all the incoming

requests.

In case there is no restriction on all the requests being served

by time N , this is equivalent to lengthening each incoming

processes to a length N + max(m1, · · ·mk) arrival process
where cj(i) = 0 for i > N . This gives us the following

corollary.

Corollary 5: Suppose that there are k arrival processes

cj(i) for 1 ≤ j ≤ k and 1 ≤ i ≤ N to a queue at time

i and no request is arriving for times i > N . Request cj(i)
arriving at time i has a deadline of i + mj . In this case, the

number of servers given by,
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S =

⌈

max

{

max
1≤i≤i+t≤N,t≥min(m1,···mk)

∑k

j=1

∑i+t−mj

n=i cj(n)

t + 1
, max
0≤l<N

∑k

j=1

∑l

i=0 cj(N − i)

l + 1

}⌉

, (3)

S =

⌈

max
1≤i≤i+t≤N,t≥min(m1,···mk)

∑k

j=1

∑i+t−mj

n=i cj(n)

t + 1

⌉

, (4)

is necessary and sufficient to serve all the incoming requests.

Corollary 6: When none of the services can have any delay,

(or mj = 0), the number of servers that is necessary and

sufficient is given by max1≤n≤N

∑k

j=1 cj(n).
The proof of necessity follows along the same lines as the

proof of theorem 1. For the sufficiency, we use the strategy

of Earliest Deadline Scheduling rather than FIFO which says

that sort the requests by deadline and if there are less than

S requests, serve all and otherwise serve the first S requests.

Similar steps prove that none of the request misses deadline

with this strategy and thus a detailed proof is omitted.

IV. CLOUD ARCHITECTURE FOR IPTV

Figure 3 shows a cloud-based architecture for providing

on-demand services. Each service has a dynamic pool of

resources, including computing, network, and storage, which

are allocated from cloud providers.

For each service, we first establish a workload model, that

predicts the volume of incoming requests over time and (thus

the resource needed at a given point in time to satisfy these

requirements). This can be based on historical data analysis,

external event hints, etc. In the context of IPTV, apart from the

regular diurnal pattern that exists for all services, LiveTV ICC

has a large number of correlated requests arriving periodically.

Second, our architecture allows each service to expose a set

of control mechanisms for varying the resource requirements

without sacrificing service quality. Virtualization enables many

of these control mechanisms. For example, after speeding up

VOD content delivery, we can simply pause the VOD-related

VMs, and dynamically allocate VMs [2] to handle the LiveTV

ICC workload.

The core of our architecture is a service orchestrator that

takes the individual workload models of all the services as

input. Effectively, the orchestrator acts as an overseer that

1) understands the resource requirements of each service,

and 2) decides on the adaptation methods to reduce the

overall resource consumption. We plan to address this as an

optimization problem. In particular, the service orchestrator

divides the continuous time domain into bins that start on

T0, T1, .... At the beginning of a time bin Ti, the orchestrator

first executes scheduled operations for that bin, such that the

allocated resources for each service are updated. Based on the

most recent workload model prediction, the orchestrator then

adds or modifies scheduled operations on Tj (j > i).
V. RELATED WORK

There are mainly two threads of related work, namely cloud

computing and scheduling policies. Cloud computing has

Service 1 Service 2 Service N......
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Fig. 3. Cloud IPTV architecture

recently changed the landscape of Internet based computing,

whereby a shared pool of configurable computing resources

(networks, servers, storage) can be rapidly provisioned and

released to support multiple services within the same infras-

tructure [6]. Due to its nature of serving computationally inten-

sive applications, cloud infrastructure is particularly suitable

for content delivery applications. Typically LiveTV and VoD

services are operated using dedicated servers [4], while this

paper considers the option of operating multiple services by

careful rebalancing of resources in real time within the same

cloud infrastructure.

VI. EXPERIMENTS

We set up a series of experiments to see the effect of

varying firstly, the ICC durations and secondly, the VoD

delay tolerance on the total number of servers needed to

accommodate the combined workload. All figures include a

characteristic diurnal VoD time series (in pink) and a LiveTV

ICC time series (in blue). Based on these two time series,

the optimization algorithm described in section III computes

the minimum number of concurrent sessions that need to be

accommodated for the combined workload. The legends in

each plot indicate the duration that each VoD session can be

delayed by. Figure VI shows the superposition of the number

of VoD sessions with a periodic LiveTV ICC session. The

duration or the pulse width of the ICC session is 15 seconds

(i.e. all ICC activity come in a burst and lasts for 15 seconds).

We now compute the total number of concurrent sessions

that the server needs to accommodate by delaying each VoD

session from 1 second to 30 seconds in steps of 5 seconds.

It is observed that as VoD sessions tolerate more delay the

total number of sessions needed reduce to the point (15 sec

delay) at which all ICC activity can be accommodated with the

same number of servers that are provisioned for VoD. On the

other hand, if the VoD service can afford only 1 second delay,

the total number of sessions that need to be accommodated is

roughly double (LiveTV ICC peak in red + VoD peak (blue)).
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Fig. 4. Total # sessions needed with a 15 sec
ICC pulse width - Synthetic trace
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Fig. 5. Total # sessions that needed with a 30
sec ICC pulse width - Synthetic trace
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Fig. 6. Algorithm computed every 30 min, #
concurrent sessions needed with a 30 sec hold
time for ICC - Synthetic trace
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Fig. 7. # concurrent sessions needed with a 15
sec hold time for ICC - Operational trace
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Fig. 8. # concurrent sessions needed with a 30
sec hold time for ICC - Operational trace
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Fig. 9. Algorithm computed every 30 min, #
concurrent sessions needed with a 30 sec hold
time for ICC - Operational trace

Figure VI shows a similar effect, the only difference here is

that the Live TV ICC pulse width is now 30 seconds.

Figure 7 and 8 shows the total number of concurrent

sessions needed to accommodate the combined workload of

VoD and LiveTV ICC requests. The traces are obtained from

an operational IPTV environment in a relatively large VHO.

We note that as VoD requests are delayed up to 30 seconds the

total server bandwidth reduce by about 17.5%. In all there is

a 21.67% saving in server bandwidth compared to sum of the

peaks and 17.5% saving compared to peak of the sum with a

30 sec wait time allowed for VoD.

In the previous experiments we computed the minimum

number of concurrent sessions that need to be supported

based on observations over the entire day. Figure 9 shows

the minimum number of concurrent sessions needed based

on optimizing every half hour. Note that the peak number

of sessions still coincide with Figure 8. However, as the

load reduces, the number of concurrent sessions that need to

be supported also reduce, thus tracking the diurnal pattern.

Figure 6 shows similar observations, however, the LiveTV ICC

trace is synthetically generated that peaks for 30 seconds every

half hour.

VII. CONCLUSIONS
We investigate how an IPTV service can leverage cloud

computing to schedule resources in an optimal manner. We

provide an analysis that computes the minimum number

of servers needed to accommodate a combination of IPTV

services, namely VoD session and Live TV instant channel

change bursts. By anticipating the LiveTV ICC bursts that

occur every half hour we can speed up delivery of VoD

content by prefilling the set top box buffer. This helps us to

dynamically reposition the VoD servers for accommodating

the LiveTV bursts that typically last for 15 to 30 seconds at

most. Our results show that anticipating and thereby delaying

VoD requests gives significant resource savings.
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