
WizCloud: Simplified Enterprise Application Management in the Cloud

Su Su Xie, Rui Xiong Tian, Le He, Qing Bo Wang,
Ying Chen

IBM Research - China
Beijing, China

{xiesusu, tianruix, lehe, wangqbo, yingch}@cn.ibm.com

Steve Ims, Jason McGee
IBM Software Group

Raleigh USA
{steveims, jrmcgee}@us.ibm.com

Abstract�Cloud computing has become a significant technology
trend for the claim of business agility, scalability, reliability and
pay-by-use billing model. Enterprises has been benefiting from
transforming their IT infrastructure to the cloud. However, the
migration of enterprise applications is hindered due to the gap
between existing enterprise application model and the new
paradigm in the cloud. It's still a tough decision for enterprises to
take the risk of re-developing mission-critical applications, which
have been proven stable for years, under new programming
models and APIs, as well as the corresponding management
paradigm. This paper describes an experimental application
management system in Platform-as-a-Service (PaaS) named
WizCloud, which intentionally targets for 1) simplifying the
deployment and management of enterprise applications and 2)
compatibility to conventional Java EE applications. Based on
Infrastructure-as-a-Service (IaaS), WizCloud can dynamically
provision a middleware environment tailored for wide varieties
of enterprise applications. Current Java EE applications can be
smoothly migrated to WizCloud with little investment on existing
applications. Moreover, some widely used patterns of enterprise
applications such as load-balancing, auto-scaling and failover
have been embedded into WizCloud in form of policies, which
can be customized according to Service-Level Agreements (SLAs)
of applications.

Keywords�Cloud Computing; Shared Middleware; Platform-
as-a-Service;

I. INTRODUCTION
As business evolves in the past years, wide varieties of

enterprises are now employing Information Technology (IT) to
deliver services to their customers. Applications in enterprises
are often distributed systems with ever increasing size and
complexity. Investment on the development, deployment and
management of those applications turns to be a significant part
of operation cost. Enterprises are now pursuing cost-effective
and flexible approaches on both their IT infrastructures and
applications.

Cloud computing can be simply defined as a new
computing paradigm where virtualized and dynamic resources
are provided as on-demand services. It is attractive to
enterprises due to its pay-by-use pricing model and advantages
including cost saving, high availability and easy scalability.
Currently, cloud computing services can be roughly classified
into three major categories: 1) Infrastructure-as-a-Service (IaaS)
to deliver computation, storage capabilities or networks as a
service to customers. For example, Amazon provides IaaS like
EC2 and S3 [1]; 2) Platform-as-a-Service (PaaS) to deliver a
computing platform and solution stack as a service to

customers. Google App Engine[2] and Microsoft Azure [3] fall
into this category and provide the capability to implement
business applications based on the interfaces exposed by such
platforms; 3) Software-as-a-Service (SaaS) to deliver software
to customers for use as a service on demand. Salesforce [4] and
many other vendors currently provide SaaS services to
customers.

Enterprises has been benefiting from IaaS, i.e. transforming
their IT infrastructure based on public or private cloud service.
They have seen dramatic cost saving by either outsourcing
their IT infrastructure or re-organizing their internal IT
resources as a centralized, on-demand service[5][6]. However,
the adoption of PaaS in enterprises is hindered due to the lack
of such a PaaS that is compatible with traditional middleware-
based application model. PaaS in the market often provide a
new set of application paradigm and runtime APIs, which
imply investment on the re-development of existing
applications. Moreover, enterprises often expect more control
on the PaaS itself to 1) make effective use of resources
according to the characteristics of their applications; 2) perform
a set of conventional administrative tasks such as cross-tier
optimization or data backup etc; 3) provide enterprise-grade
service level assurance in terms of application performance,
reliability, availability and scalability.

WizCloud arguably represents research efforts on providing
a shared middleware environment where diverse existing
applications can be hosted directly with little migration effort.
Unlike in IaaS, where the central abstraction is virtual machine,
the central abstraction in WizCloud is application. WizCloud
provides necessary middleware runtimes, artifacts inventory,
connectivity, and other resources to host rich set of applications.
WizCloud has a viewpoint on application, supporting some
particular programming models, one of which is Java EE.
WizCloud also has understanding the runtime status of the
application deeply. Patterns and operation experience in
traditional context such like load-balancing, auto-scaling has
been embedded

The paper gives an overview of WizCloud, but it does not
attempt to dive into the details. The intention of this paper is to
show the potential of PaaS in enterprise environments rather
than a guide for practitioners to re-implement a similar system.
Section 2 goes through the overall architecture of WizCloud.
Section 3 describes key concepts and design principles for the
understanding of WizCloud. Section 4 explains some detailed
design of WizCloud. Readers can find there main problems and
challenges of an enterprise PaaS and WizCloud�s solution to
them. Finally, we conclude our work at the end.

IEEE INFOCOM 2011 Workshop on Cloud Computing

643

II. WIZCLOUD OVERVIEW
Most applications running in a enterprise are built on

various middleware platforms which simplify the application
development by providing a common foundation for complex
low-level details such like state management, multi-threading,
load-balancing, database connections, etc. The core idea of
WizCloud is to provide an application hosting environment,
which can reduce the cost of IT operation and application
management by applying cloud computing technologies as well
as deployment patterns and expertise that have been established
during past years in field practices.

A. Overall Architecture
WizCloud is based on a number of design principles, which

include 1) Vertical integration across the software stack; 2)
Simplified deployment and management of applications; 3)
Resource virtualization and sharing using cloud concept; 4)
Self-management of deployments and middleware capabilities.

The high level WizCloud architecture is represented below.

Figure 1, Overall Architecture of WizCloud

WizCloud is essentially a software management system that

exposes shared middleware as a service for applications in a
cloud computing environment. WizCloud allows a pluggable
collection of middleware services to be exposed to applications
in a way that is aligned with the application itself. Moreover,
WizCloud provides a system for deploying and managing
applications on a cloud with a greatly simplified and lower cost
interaction.

WizCloud makes assumption of underlying IaaS to provide
infrastructure resources such like virtual machines, storage and
networking. By using an IaaS abstraction layer, any of those
widely-accepted products in the market can be introduced into
WizCloud via corresponding IaaS adaptor. Via this approach,
transparency is achieved to upper layer applications, as well as
the wrap of IaaS heterogeneities.

B. Core System Structure
The core of WizCloud is comprised of five fundamental sub-

systems for necessary application management functionalities.
We briefly go through them as below.

1) Kernel Service: The Kernel Services component (KS) is
the central management agent for WizCloud. It provides the
brains to manage the overall system. KS exposes a rich set of

REST APIs that allow all of the management functions of
WizCloud to be performed, including defining and deploying
application, administering the environment, monitoring and
control. KS is responsible for coordinating the interaction
between applications and underlying infrastrutures.

2) Storehouse: The Storehouse (SH) is the central artifacts
repository for WizCloud. All of those parts necessary to run
applications live in the storehouse, including the binaries and
automation scripts for products, like middleware and database
software, application binaries from users, pre-populated or
custom application templates etc. The storehouse also supports
the association of metadata with resources and the indexing
and search of contents within it.

3) Inlet: The Inlet is the user interface of WizCloud. It is a
WEB-based application that provides user interfaces (UI) for
interacting with WizCloud. The Inlet supports both WizCloud
Users and Administrators perspectives on the system. The
Inlet communicates with the Kernel Services and Storehouse
components to access information about and control the
system.

4) Instance Fabric: The Instance Fabric (IF) is an overly
established by a set of components deployed into each virtual
machine (VM). WizCloud utilizes IF as a communication
basis for managing and controlling the application deployment
and execution. A collection of VMs make up the deployment
for an application. Each VM has an Instance Agent (IA)
running. One of the IAs is elected to be the leader of the
Instance Fabric for that deployment. The leader VM also
contains an Instance Inlet (II) which provides a web interface
for managing that deployment. In WizCloud, there will be
many Instance Fabrics running simultaneously, all acting in a
self-managed fashion and coordinating with the Kernel
Service component.

5) PaaS Management: The PaaS Management (PM) is the
sub-system for the platform administrator, which provides all
necessary tools and services to manage all application
deployments in the PaaS as well as the the plaform itself.
Users can specify their application and corresponding
deployment via various modeling tools in PM. Administrators
also have their particular toolset to do system maintainence
work such as monitoring, image inventory updating,
application pattern creation, etc.

III. KEY CONCEPTS OF WIZCLOUD
In this section, we present a few important concepts and

design details of WizCloud. They are the key to understand 1)
how WizCloud significantly simplify the management of
enterprise applications from a logic view, which turns the
management stuffs from middleware-oriented into application-
oriented; 2) how WizCloud provide the backward compatibility
to conventional middleware environments, which implies
existing enterprise application can run on WizCloud with little
or even no development efforts.

WEB UI
(Inlet)

PaaS Management Storehouse

Cloud Application Runtime

IaaS Abstraction/Adaptor

Kernel Services

Instance Fabric

644

A. Application Model
An application in WizCloud is tentatively organized as a

combination of functionality and qualifiers relating to service-
level agreements and user intention on runtime behavior of the
application. The application model supported by WizCloud
accordingly contains a set of application components, policies
and the links between them, as illustrated as Figure 2.

Figure 2, Conceptual Illustration of Application Model

Application components are the basic elements of an

application model. They represent the middleware resources
needed by the application. Each type of component contains
a set of attributes for configuration either at deployment time
or runtime. For example, an application server requires the
configuration of the application�s .war file and some version
information. WizCloud provides templates of those common
middleware, such as WEB server, application sever, database
server, etc., to satisfy most enterprise applications. By
choosing different application components as well as their
attributes, users can manipulate and customize tailored
middleware environment for their applications as their needs
during deployment time.

A link describes one kind of dependency between the
source and target application components. One type of link
may also contain attributes for configuration. For example, a
data source link is used to describe the dependency between
the web application running on Tomcat and the database on
Mysql.

Many policies could be attached to and imposed on the
given application components. A policy in WizCloud contains
a set of attributes that describe the expectation upon the non-
functional constrains for attached components. Policies should
be applicable to the attached application components.

The application model reveals the two main objective of
WizCloud, i.e. the compatibility with existing enterprise
applications as well as simplifying the management of them.
Functionality of an application is represented by corresponding
application components, which is purposely compatible with
conventional models. Existing applications can thus be easily
migrated to WizCloud since changes to software artifacts such
like .war files and SQL scripts are not mandatory.

Policies in WizCloud are the key to simply the management
of enterprise applications. In most of conventional middleware
environments, there are often dedicated operation teams, rather
than development teams, to handle non-functional qualifiers
such as load-balancing, scalability or reliability. Expertise and
deep knowledge of middleware products and solutions are
required, which significantly increase the IT operation cost.

WizCloud has found that these qualifiers generally are often
implemented with very similar components and structures
across different applications, like load-balancers, firewalls and
so on. These well-understood patterns has been generalized and
embedded into WizCloud. In WizCloud, an administrator no
longer needs to specify an application as combination of group
of middleware instances and some supporting structure like
load-balancers. Instead, he should only indicate the needs of
load-balancing and scalability for the application by specifying
application components with appropriate policies imposed on.

B. Software Stack As Plug-ins
PaaS is often thought as a virtualized application hosting

platform, which provides application runtime environments.
Based on bare computing resources provided by underlying
IaaS, PaaS need to construct software stacks for applications
such as operating system and middleware. There are many
options how to relate IaaS resources with software resources
across applications. WizCloud adopts the most straightforward
one, i.e. running middleware instances of an application on a
dedicated set of virtual machines.

WizCloud is a system for enabling Platform-as-a-Service.
It is composed as a base system and extensions. The base
system provides a framework for user experience, i.e. UI,
services to create and mange deployments of user applications
and a repository for system and user artifacts. Middleware and
services for user applications are extensions to the base system.
Such extensions, which are called �plug-ins�, provide the
runtime environment for applications. Plug-ins include
middleware binaries, application packages, management
scripts and other software components used by application
execution and management.

A plug-in is distributed and stored in WizCloud as an
archive file, within which different metadata, middleware
binary and all kinds of scripts are organized in directory
convention. There is a compact contract of interaction between
the base system and extensions. The contract defines how a
plug-in is employed in application modeling and management,
i.e. specification of UI generation, as well as how the base
system to realize, tailor the resources in the plug-in for an
application and do corresponding lifecycle management.

C. Consistent Resource Model
PaaS can be also looked as an integration platform for

enterprise applications, where resources and services from
different layers and domains converge. For example, a CRM
application can be based on the enterprise�s internal IaaS while
storing non-critical data into Amazon S3 and invoking the
Microsoft Live service for messaging. It�s no doubt a huge
challenge for a PaaS to consolidate heterogeneous management
information from separate domains into a consistent and logical
view.

WizCloud use a consistent resource model to achieve the
service-management integration, flexibility and simplicity.
Manageable entities are modeled as resources in granularity of
management requirements from customers. These resources
will be organized in tree hierarchy to represent different level
of details. Each resource is defined as 1) structural information,

645

which is used for hierarchical resource tree construction; 2)
metrics, which is the resource status to be collected and
monitored at runtime; 3) properties, which is the configuration
items for the resource at runtime as well as at design time; 4)
actions, which is the set of operations supported by the
resource.

One or more related resources are implemented as a plug-in,
which specifies the codes and scripts for WizCloud to adapt to
the heterogeneity of the resources. An application of WizCloud
can run across multiple virtual machines, each of which
contains only one part of application resources. The fully
resource tree will be constructed at runtime via the agent
framework of WizCloud we�ll discuss later in the paper. Here
we have an example how the resource tree is established for a
WEB application with a two-node middleware cluster (WAS1
and WAS2) and a database server (DB2) in Figure 3 and 4.

Figure 3, Resources on individual server instances

Figure 4, Consolidated Resources Tree

IV. DETAILS IN WIZCLOUD DESIGN

A. Application Instantiation
Before an application is deployed and serves their

customers, PaaS needs to prepare the middleware runtime for
it. As mentioned earlier in the paper, application model in
WizCloud provides users only a logic view to an application.

WizCloud needs to instantiate the application by provisioning
customized infrastructure resources and software resources,
such as virtual machines, middleware instances and specified
configurations etc.

Users will specify functional requirements and non-
functional qualifiers of an application as an application model.
WizCloud will transform the application model into a physical
layout in form of �virtual machine templates�, which indicate
1) type and number of virtual machines to acquire from IaaS;
2) software stack, i.e. middleware instances and supporting
software, on each virtual machine; 3) specified configurations
for each virtual machines and software pieces to reflect
policies and dependency between application components.

There is a clearly defined interaction interface between the
base system of WizCloud and plug-ins for the transform. On
the user�s request for application deployment, WizCloud
performs the transform process automatically by invocation on
plug-ins specified in the application model. Since no human
intervention is required, it significantly reduces the effort for
application deployment, as well as the expertise of the user.
It�s up to the plug-in developer to decide how to tailor the
software resources, i.e. middleware and their configurations,
according to related stuffs in the application model.

B. Agent Framework and Application Activation
There is an agent framework in WizCloud that runs across

all virtual machines of an application. Each agent is composed
of three components as follows:

1) Agent runtime, which serves as the runtime
environment to handle RESTful requests, as well as
transmission protocol related issues. On arrival of
requests, it maps the requests to corresponding service
interfaces and invokes the related services.

2) Service interfaces, which are interfaces to be invoked
by agent runtime to perform some functions. Some of
the interfaces are implemented by WizCloud itself to
provide a set of common services across enterprises or
applications. These interfaces and their corresponding
implementations are built-in services. Other interfaces
are left to plug-in developers for middleware-specific
or system-specific functions. These interfaces and
their implementation are for extended services.

3) Metadata and scripts, which are the incarnations of
the service interfaces. Each service may depend on
some metadata and is executed through one or more
scripts. Shell scripts and Python scripts are intrinsic to
be supported by WizCloud. However, other kinds of
scripts can also be supported so long as corresponding
agent runtime are loaded.

In current WizCloud implementation, the agent runtime is
based on Simple Agent Framework (SAF) which includes an
execution engine, metadata handler, agent runtime, and REST
framework. It is responsible for receiving RESTful requests
and invoking relevant services to support the management
functions. Services are implemented for corresponding
management functionalities at different levels. For example, to
support the starting/stopping of an application, application
availability service and appliance availability service should

WAS1

 was

heap app

ds1 ds2

WAS2

 was

heap app

ds1 ds2

 DB1

ds1 ds2

db2

�

Heap

Solution

 was

heapapp

ds1 ds2

ds1 ds2

db2 heap

Solution

Consolidated Resource
View

646

be in place. They are responsible respectively for coordination
of the actions taken for all related components in the
application, and, for acquiring or releasing all the bare
computation resources such as virtual machines.

C. Application Tweak at Runtime
In conventional middleware environment, the structure of

an application, which includes hardware and software stacks,
configuration for the middleware and the number of instances,
is relatively static. However, PaaS has the potential of re-
shaping the applications structure dynamically since resources
can be provisioned at runtime. Due to auto-scaling and high
availability policies, virtual machines as well as middleware
instances can be created or destructed automatically from time
to time according to runtime status of an application.

In PaaS, users have less control of the platform as before.
For example, the exact middleware instances existing at any
given point of time are determined automatically according to
pre-set policies. This invisibility to the runtime structure of
application raises an important question of how to do (re-
)configuration on a running application with diverse concerns
due to reasons such like external requirement change or
optimization. Traditional management tools will fail here
because of the gap between the logical view of the application
and its physical structure. The problem gets even harder
because direct touch on middleware instances is often required
in many of enterprise environments. Conventional
administrative tasks and skills, such as cross-tier optimization,
still make much sense there.

WizCloud provides the capabilities of application tweak,
i.e. changing an application�s properties at runtime, at two
levels. At the first level, users can do application-centric tweak
in a view aligned with the application model. It implies that
users can stay at a higher level and speak in the language of
their intentions instead of concrete configuration items of
related middleware. The second level provides a resource-
centric view. Users can change middleware�s behavior so long
as plug-in developers provide the support in the resource
model.

WizCloud provides necessary consolidation at both levels,
i.e. applying configuration change to all related middleware
instances regardless the dynamics of application structure.
WizCloud will maintain the up-to-date configuration of the
application and guarantee eventual consistence of middleware
instances. For example, if one virtual machine happens to
crash before the request�s arrival, the new set of configuration
items will be applied when the virtual machine is restarted.
Moreover, to keep application continuity, WizCloud adopts a
rolling strategy during application tweak if the configuration
changes require restart of the middleware or virtual machines.

D. Flexible Policy Support
On of promising feature of cloud computing is its pay-by

use model, which implies more effective resource use and less
human intervention for the application in PaaS. To achieve
that, PaaS have to adopt a policy-based management approach
to dynamically change the resource set and behavior of
applications. In another viewpoint, policy objectives are

particularly difficult to meet in the multi-application setting of
PaaS due to potential resource contention.

Given the feature of fast and dynamic resource provision,
WizCloud is trying to provide a policy framework that is more
flexible than in conventional middleware environments. Based
on the consistent resource tree discussed in the earlier section,
WizCloud can support policies on finer grained resources
across the boundary of middleware instances. For example,
Users can be charged on the database connection pool size.
It�s very natural to specify a policy to get the pool size
increase in peak hours and shrinks on light workload.

There is an experimental policy sub-system in WizCloud
to support that type of policies. Users can express their non-
functional qualifier in a comprehensive form. For example, 1
million concurrent users with response time less than 1 second;
elastic database connection to guarantee the request rate of no
less than 1000 per second. The implementation of policies will
be packaged as plug-ins of WizCloud. Policy developers will
transform the application level policy specification into some
execution over the application�s consistent resource tree. Such
execution often includes metric collection, condition check
and action invocation of related resources, which is in form of
some policy compliance scripts in a particular domain
language. At runtime, there is a policy engine in WizCloud
that periodically collect the metrics of all resources in the
application and check against the condition. Whenever some
condition is triggered, the policy engine will schedule a series
tasks to change the behavior of affected middleware or invoke
kernel service to do resource related work.

CONCLUDSION
In this paper, we present the key ideas on the design and

implement of an enterprise-oriented PaaS, which simply the
deployment and management of enterprise applications. And
more importantly, the platform is compatible with conventional
middleware models, which implies the avoidance of re-
investment on acquiring or development for those existing
applications. The future work of WizCloud involve two
aspects: 1) design and implement the management agent
framework to make it general to diverse applications; 2)
explore computing resource optimization vertically, not
individual PaaS layer to meet economic and application
performance requirement.

REFERENCES

[1] Amazon Web Services, http://aws.amazon.com.
[2] Google App Engine, http://code.google.com/appengine/.
[3] Microsoft Windows Azure,

http://www.microsoft.com/windowsazure/windowsazure/.
[4] Salesforce, http://www.salesforce.com.
[5] Xing Jin, Ruth Willenborg, et al, �Reinventing virtual appliance�, IBM

Journal of Research and Development, 2009.
[6] Xinhui Li, Ying Li, et al, �The method and tool of cost analysis for

cloud computing�, IEEE international conference on cloud computing,
21-25 Sep. 2009.

647

