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Abstract—We study data preservation in intermittently con-
nected sensor networks, wherein the sensor nodes do not always
have connected paths to the base station. In such networks, the
generated data is first stored inside the network before being
uploaded to the base station when uploading opportunity arises.
How to preserve the data inside the network is therefore an
important problem. The problem becomes more challenging
when sensor nodes have finite and unreplenishable battery
energy. In this paper, we identify, formulate and study the
data preservation problem in the intermittently connected sensor
networks under energy constraints at sensor nodes. The problem
aims to preserve the data inside the network for maximum
possible time, by distributing the data items from low energy
nodes to high energy nodes. We first show that this problem

is NP-hard. We then design a centralized greedy heuristic and
a distributed data distribution algorithm, and compare their
performances using simulations.

Keywords –Data Preservation, Algorithms, Intermittently

connected Sensor Networks

I. Background and Motivation

Data gathering is one of the important functionalities of

sensor networks. In many data gathering applications such as

object tracking [11] and intrusion detection [19], data is time-

sensitive and needs to be transmitted back to the base station

in near-real-time fashion. However, there are many applica-

tions that do not need real-time data transmission and access,

such as acoustic sensor networks [14], underwater or ocean

sensor networks [10, 22], and environmental monitoring [13,

15]. They are mainly used in scientific applications by domain

scientists to collect scientific data for further analysis. For

example, environmental scientists deploy a sensor net to study

light variations on the forest floor due to canopy closure, and

only need to collect the data months later when the experiment

is over [15]. Another example is EnviroMic [14], a large-scale

and long-term audio sensor network deployment to collect

data for bird vocalization monitoring and recording.

In such applications, there is no longer a need to maintain

base stations in the sensor field to collect real-time data. Data

generated inside the network is first stored in the network

and then uploaded to the faraway base station via different

means. These uploading opportunities could be periodic visit

by human operator or data mule [6, 7], or transmission to

the base station through wireless communication such as a

low rate satellite link [16]. We refer to such sensor networks

intermittently connected sensor networks1. The main function

of the intermittently connected sensor networks in these

applications is to collect and store the data in the network

before the next uploading opportunity arises.

There are three main factors contributing to the data loss

in such sensor networks: energy depletion of sensor nodes,

storage depletion of sensor nodes, and sensor node hardware

failure. Overcoming the obstacle of data loss and preserving

data in-network until upload opportunities arise is a new

challenge. We have addressed the storage depletion induced

data loss in our previous research [20]. In this paper, we focus

on the energy depletion induced data loss. Our goal is to

preserve the complete set of data inside the sensor network for

the maximum amount of time, considering that each sensor

node has limited battery energy.

In our model, sensory data is generated and initially stored

at some sensor nodes (referred to as source nodes). The

generated data items should then be distributed to high energy

sensor nodes (referred to as destination nodes) for the purpose

of data preservation. Ideally all the data items should be

distributed from their source nodes to destination nodes that

have the highest energy level in the network (when the source

nodes are among the highest energy level nodes, their data

need not be distributed). However, there are several challenges

to achieve that. First, due to the non-uniform energy consump-

tion during data distribution, the highest energy level nodes

before distribution are not necessarily the highest energy level

nodes after distribution. Second, for each data item, deciding

where it is distributed to and the path along which the data is

distributed is a complex decision. When each node has limited

energy, the research challenge is not to minimize the total

energy consumption during the data distribution process, but

to load balance individual energy consumption of different

sensor nodes. Third, such data distribution process, if not

managed well, could be a serious energy drain to all the

nodes involved in the process, further expediting the energy-

depletion induced data loss. Therefore, it is important to find

energy-efficient data distribution algorithm so that data can

be preserved for maximum amount of time.

1Note that intermittently connected sensor networks are different from
delay tolerant network (DTN) [3]. In DTN, mobile nodes are intermittently
connected with each other due to their mobility and low density, and
data is opportunistically forwarded by relay nodes to destination nodes.
In the intermittently connected sensor network, since all the sensors are
disconnected from base stations for substantially large period of time, data
is uploaded to the base station only when uploading opportunities arise.
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To address above challenges, we formulate the data preser-

vation problem in intermittently connected sensor networks,

with the objective to preserve the data inside the network

for maximum amount of time. We study it as a graph-

theoretic problem and show that it is NP-hard. We design

a centralized greedy algorithm to distribute and preserve the

data for maximum amount of time. The centralized nature

of algorithm is unsuitable for large scale distributed sensor

network. Therefore, we also design a distributed algorithm

and compare its performance with the centralized algorithm.

II. Related Work

Most of the sensor network research assumes a multiple-to-

one communication pattern, i.e., data sensed at different sen-

sor nodes is directly communicated back to one or more base

stations. The data preservation in a intermittently connected

sensor network studied in this paper is a dramatic shift from

the current sensor networking paradigm, and has not attracted

much attention from the sensor network research community.

Consequently, the important problem of maximizing data

preservation time in sensor network has not been studied

before. The most related work to ours is by Tilak et al. [21].

They propose to store the data in the network and propose

collaborative storage techniques to efficiently manage data in

storage constrained sensor networks. However, they do not

address storing data under energy constraints. In this paper,

we consider the energy constraint at individual node and

focus on preserving data using data distribution technique,

with the goal of maximizing data preservation time. The

data preservation time maximization is related to network

lifetime maximization. Below we provide a brief survey on

the current research on data distribution and network lifetime

maximization in sensor networks.

Luo et al. [15] were the first to study data distribution for

disconnected operations in sensor networks. They present a

cooperative storage system for sensor networks called Enviro-

Store, to improve the utilization of the network’s data storage

capacity. Tang et al. [20] further formalize this problem and

show that it is equivalent to the minimum cost flow problem,

which can be solved optimally. They also design an energy-

efficient distributed data redistribution algorithm. Both work

focus on storage depletion (storage overflow) induced data

redistribution and are not concerned with maximizing data

preservation time due to energy depletion of sensor nodes,

which is the topic of this paper.

Maximizing network lifetime has been a very active re-

search area in sensor networks. Different research work

define network lifetime differently. Chang and Tassiulas [2]

propose a shortest cost path routing algorithm for maximizing

network lifetime based on link costs that reflect both the

communication energy consumption rates and the residual

energy levels at the two end nodes. They define lifetime as

the time when network partition takes place. Park and Sahni

[18] study a sequence of routing requests, each of which

is for a source and destination pair. They define lifetime as

when the first routing request can not be successfully routed.

Xue et al. [24] and Kalpakis et al. [9] study the maximum

lifetime data gathering problem considering data aggregation.

Recently, Xiong et al. [23] propose polynomial-time and near

optimal integer program-based algorithms; Zhang and Shen

[25] maximize network lifetime through balancing energy

consumption for uniformly deployed data-gathering sensor

networks. In [9, 23–25], the network lifetime is defined as

the time when the first node depletes its energy.

Our work differs from previous work in the following as-

pects. Unlike previous research which almost always assumes

that data is transmitted immediately to the base station, our

work involves moving the data inside the network in order to

preserve it for as long as possible, and hence does not involve

transmission scheduling. Consequently, the data preservation

time in our work is defined as the time when the preservation

of any data item can no longer be satisfied. Our definition is

more general since both energy depletion of the first sensor

and network partition do not necessarily cause the data loss

and the violation of data preservation.

III. Problem Formulation

Network Model. The sensor network is represented as a

general graph G(V,E), where V = {1, 2, ..., N} is the set

of N uniformly distributed nodes, and E is the set of edges.

Two nodes are connected by an edge if they are within

the transmission range of each other, thus can communicate

directly. Let dij denote the shortest path distance (in terms of
number of hops) between nodes i and j.
There are a set of p data items D = {D1, D2, ..., Dp}, each

of which has unit size2 and is initially generated and stored

at some sensor node, called its source node. We assume that

each data item is stored in a distinct source node, therefore

there are p source nodes in the network. We assume that the

storage capacity of each node is one unit i.e. each sensor

(including source nodes) can only store one data item. Let Vs

denote the set of source nodes. Without loss of generality, let

Vs = {1, 2, ..., p}, and let data item Di be stored at node i.

Energy Model. Each sensor node (including the source node)

i has a finite and unreplenishable initial energy Ei. Energy

consumption in data preservation can be expressed as the

number of messages transmitted during the data distribution

process. Since number of messages transmitted from any

sender to any receiver equals the number of hops between

them, we use the number of hops to measure the energy

consumption of transmitting the data item.3 More specifically,

for each node, sending or receiving a data item costs 0.5 units

of its energy. Therefore, if a node is the sender or the receiver

of a data item, it incurs 0.5 units of energy; if a node is an

intermediate node relaying the data item, it incurs 1 unit of its

energy (by both sending and receiving it). This assumption is

consistent with the model that energy consumption of sending

2Although, in this paper, we assume all the data items have the same unit
size, our work can easily be extended to the case when data items have
different sizes.

3We are aware that the first order radio model [5] is a more realistic energy
model, wherein the energy consumption depends on the distance between
nodes. For uniformly deployed sensor nodes, the number of hops is a good
approximation of the energy consumption. Liu et al. [12] and Nuggehalli et
al. [17] also assume that transmitting one packet (or data item) of unit size
over one hop consumes one unit of energy.
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a data item equals the number of hops between the sender

and the receiver. Therefore total energy consumption in the

entire network is the total number of hops all the data items

traverse in the data distribution process. We also assume that

there exists a contention-free MAC protocol (e.g. [1]) that

provides channel access to the nodes.

Data Preservation Time.We assume that the energy draining

rate of each sensor is a constant c, meaning that each node

depletes c units of energy per round, in addition to the energy
consumption if it participates in the data preservation. The

constant energy depletion rate has been demonstrated by

Jurdak et al. [8]. If a node’s energy is depleted, its stored data

gets lost. The data preservation time of the sensor network is

defined as the time when the first data loss occurs due to the

energy depletion of the sensor node that stores it. Obviously, if

there is no data distribution taking place, the data preservation

time of the network equals the minimum energy among all the

source nodes divided by c. To prolong the data preservation

time, it is necessary to move data from nodes with low energy

level to nodes with high energy level. Before formulating the

data preservation problem, we first present our assumptions

and notations below.

Assumptions and Notations. The data distribution process

takes place in rounds, starting from round 1. In each round,4

the p data items are distributed from one node to another for

the purpose of data preservation. We assume that the data

distribution in any round starts at the beginning of that round

and finishes before the end of that round.

Table I lists all the notations. St
j denotes the node storing

Dj at the beginning of round t. Since St+1
j is also the

node storing Dj at the end of round t (assuming energy

of St+1
j is not depleted), we call St

j source node and St+1
j

destination node of Dj in round t, meaning that Dj is

distributed from St
j to St+1

j in round t. It is possible though,

that St
j = St+1

j , meaning that Dj is not distributed in round

t. V t
s = {St

1, S
t
2, ..., S

t
p} is the set of source nodes at the

beginning of round t, we have V 1
s = Vs = {1, 2, ..., p}.

Therefore, V t+1
s is also the set of the nodes storing data items

at the end of round t. The distribution path of Dj in round t,
denoted as P t

j : St
j, ..., S

t+1
j , is the sequence of distinct nodes

along whichDj is distributed from St
j to S

t+1
j in round t. The

data preservation strategy up until round t is the combination
of all the distribution paths for all the data items, in all the

rounds up until round t.
In each round, the energy consumption of a node consists

of two parts: one due to energy draining rate and the other

due to the node’s involvement in the data distribution. The

remaining energy level of node i at the end of round t is:

Et
i = Et−1

i − c−

p∑

j=1

xt
ij ,

where xt
ij is the energy cost of node i in distributing Dj

in round t. xt
ij = 0.5 if in round t, node i is either source or

destination node of Dj , but not both, that is, i = St
j 6= St+1

j

4We assume that the duration of each round is long enough such that data
items can be distributed via multi-hop paths from one node to another.

Fig. 1. Illustration of Observation 1 using a linear sensor network with
three nodes. The number in the parenthesis indicates the initial energy level
of each node. Node 1 is the only source node, with one data item. If node
1 waits before its energy depletes to zero to distribute its data item, node 2
already depletes its energy and causes network partition.

or i = St+1
j 6= St

j ; xij = 1 if node i is an intermediate node

relaying Dj in round t, that is, i ∈ P t
j and i /∈ {St

j, S
t+1
j };

and xij = 0 if i is not involved in the data distribution of Dj

in round t, that is, i /∈ P t
j .

Data preservation time, denoted as T , is the round by the

end of which the first data loss occurs, that is, |V T
s | = p and

|V T+1
s | < p. The goal of the problem is to find an optimal

data preservation strategy such that T is maximized.

TABLE I

NOTATION SUMMARY

Notation Explanation

St
j The node storing Dj at the beginning of round t

P t
j

The distribution path of Dj in round t

xt
ij

The energy cost of node i in distributing Dj in round t

Et
i The remaining energy level of node i at the end of round t

V t
s The set of nodes storing data items at beginning of round t

T The data preservation time: |V T
s | = p and |V T+1

s | < p

Observation 1: To maximize T , the source nodes Vs

should not wait to distribute their data right before they

deplete their energy. That is, node i ∈ Vs should not wait

until round dEi

c
e to distribute its data Di.

This can be illustrated by a simple example of three node

sensor network, shown in Fig.1. Each edge is of unit hop.

Node 1 is the only source node, with one data item. The

number in the parenthesis indicates the initial energy level of

each node. The energy draining rate of each sensor is given

by c = 1. Before node 1 waits until its energy depletes to

zero, node 2 already depletes its energy and causes network

partition, thus preventing node 1 from distributing data to

node 3. Therefore, the data distribution decision of each

source node should be made earlier than when its energy is

depleted. In this example, if the energy level of node 2 equals

1, the data should be distributed immediately in round 1.

Lemma 1: There exists an optimal distribution strategy

which finishes distributing all data items in round 1.

Proof: Let TOPT denote the maximum T achieved by an

optimal data preservation strategy. In this optimal strategy,

for each data item Dj , denote its destination node in round

t as (St+1
j )OPT and the distribution path in round t as

(P t
j )

OPT , where 1 ≤ t ≤ TOPT . Now we design a new data

preservation strategy: in round 1, set the destination node of

data item Dj as (STOPT

j )OPT , and Dj’s distribution path

as (P 1
j )

OPT , (P 2
j )

OPT , ..., (PTOPT

j )OPT ; for rounds greater

than 1, Dj stays at (S
TOPT

j )OPT and is not distributed.5

5Note that if a relay node v is visited multiple times in Dj ’s distribution
process, then all the distribution paths between the first and last visit of v
are redundant and can be omitted.
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We claim that the above data preservation strategy achieves

TOPT . This is because if there exists an optimal solution

wherein some data item is distributed in multiple rounds and

finally reaches its final destination node, it can be distributed

in round 1 from its source node to the final destination node,

following the same sequence of distribution paths. Such a

strategy retains the energy level at each node in the network

at the end of round TOPT . Therefore, this data preservation

strategy, which only takes place in round 1, is also an optimal

data preservation strategy and achieves TOPT .

A destination node post distribution is defined as the node

which finally stores the data item, and the data item is not

distributed again out of this node. Let Emin be the minimum

energy level among all destination nodes, post distribution.

Theorem 1: Maximizing the data preservation time in the

network is equivalent to maximizing Emin.

Proof: Observation 1 and Lemma 1 essentially indicate that

the data preservation problem is a static problem wherein

the optimal data preservation strategy is to distribute all the

data to final destination nodes in the first round itself. By

way of contradiction, let’s assume that for an optimal data

preservation strategy OPT , the minimum energy among all

the destination nodes post distribution is not the maximum

among all the data preservation strategies. That is, it is

less than the minimum energy of destination nodes post

distribution in another data preservation strategy OPT
′

. In

this case, the minimum energy destination node in OPT
′

depletes its energy later than that of the minimum energy

destination node in OPT , yielding a longer data preservation
time than that of OPT . This contradicts with the assumption
that OPT yields maximum data preservation time.

From Theorem 1, the following algorithm constitutes the

optimal data preservation strategy: Find each data item a des-

tination node and a path to distribute the data from its source

node to its destination node under the energy constraint at

each node, such that the minimum energy among all the des-

tination nodes is maximized, post distribution. Here if a data

item’s destination node is its source node, it is not distributed.

Theorem 1 essentially says that the optimal data preservation

strategy is independent of the energy draining rate c, that is,
the optimal data preservation strategy remains unchanged for

different c. However, the maximum data preservation time

does depend on c, and equals the minimum energy among all

the destination nodes post distribution divided by c. Below,
we formulate a static problem without using draining rate

c and round t, which is equivalent to the data preservation

problem. We call it static data preservation problem.

Problem Formulation. A distribution function is defined as

r : D → V , indicating that data item Di ∈ D is distributed

from node i (note that node i is the source node of Di) to

node r(i) ∈ V . Let Pi : i, ..., r(i) be the distribution path

of Di, denoting the sequence of distinct sensor nodes along

which Di is distributed from i to r(i) (i = r(i) indicates that
node i is also Di’s destination node, which means Di is kept

in its source node i and need not be distributed). Let Vd be

the set of the destination nodes of the data distribution, i.e.

Vd = {r(1), r(2), ..., r(p)}. Let E
′

i denote node i’s energy
level after the distribution of all data items is done, and let

xij be the energy cost incurred by node i in distributing the

data item Dj from node j to r(j). Then,

E
′

i = Ei −

p∑

j=1

xij , ∀i ∈ V (1)

where xij = 0.5 if either i = j 6= r(j) or i = r(j) 6= j,
xij = 1 if i ∈ Pj and i /∈ {j, r(j)}, and xij = 0
otherwise. Here, i could be either the source node of Dj

or the destination node of Dj , but not both (with cost 0.5), or

an intermediate relaying node (with cost 1), or not involved

with the distribution (with zero cost).

The objective of the static data preservation problem is

to find a distribution function r and a set of paths P =
{P1, P2, ..., Pp}, to distribute each of the p data items, such

that the minimum energy among all the destination nodes Vd

is maximized post distribution, i.e.

max
r,P

min
1≤i≤p

E
′

r(i), (2)

under the energy constraint that

E
′

i ≥ 0, ∀i ∈ V, (3)

which implies that any node can not spend more en-

ergy than its initial energy level. The maximum data

preservation time of the entire network is therefore

max
r,P min1≤i≤p E

′

r(i)/c.
Theorem 2: The static data preservation problem is NP-

hard.

Proof: We show that the disjoint connecting paths (DCP)

problem [4], which is known to be NP-hard, is a special case

of the decision version of our problem. The DCP problem

is as follows. Given a graph G(V,E) and a set of p disjoint

source and destination vertex pairs (si, ti), where si, ti ∈ V
for 1 ≤ i ≤ p, the goal is to find whether there are p vertex-

disjoint paths P (s1, t1), P (s2, t2), ..., P (sp, tp) in G.
In our static data preservation problem, for all the nodes in

V , let the p source nodes be S = {s1, s2, ..., sp}, and let T =
{t1, t2, ..., tp} be another p nodes, and T∩S = φ (empty set).

Then assign the energy level of each node in T as E � 1,
and the energy level for other nodes in (V −T ) (including S)
as 1. We claim that to determine whether the maximum data

preservation time of the network is (E − 0.5)/c is the same
as solving DCP problem, whether there exist p vertex-disjoint
paths connecting the source and destination vertex pairs.

On one hand, if the maximum data preservation time equals

(E−0.5)/c, it must be the case that each data item in one of

the nodes in S is distributed to one of the nodes in T . Since
sending and receiving any data item for each node costs 0.5

units of energy, and all the nodes in (V −T ) have energy level
of 1, the p redistribution paths {P (i, r(i))}, 1 ≤ i ≤ p, must
be mutually vertex-disjoint. On the other hand, if there exist

p vertex-disjoint paths connecting p source and destination

vertex pairs, these p paths can be used to distribute the p
data items. In this case, the energy level of each node in T
is E− 0.5, therefore maximum data preservation time equals

(E − 0.5)/c.

599



IV. Data Distribution Algorithms

Centralized Data Distribution Algorithm (CDA). Since the

static data preservation problem is NP-hard, we propose a

centralized heuristic as follows. The key idea is to distribute

data to the nodes with highest energy level at the moment

of distribution, while not using these nodes as intermediate

relaying nodes for data distribution.

Algorithm 1: Centralized Data Distribution Algorithm

Initiation: all the data items are marked as not distributed,

all the nodes with data items are marked as source nodes,

all the nodes (including the source nodes) are marked

as non-destination nodes.

BEGIN

while (there is still data item not yet distributed)

Find the non-destination node that has the maximum

energy level;

if (this node is a source node)

Mark its data item as distributed (even though this

data item is not really moved), mark this node as

a non-source node as well as a destination node;

else //this node has one free storage

Mark it as a destination node;

Find the source node that is closest to this

destination node (in term of number of hops),

distribute its data item to this destination node

along the shortest path that has least number of

destination nodes; if all the shortest paths have the

same number of destination nodes (as intermediate

nodes), choose the shortest path with the minimum

number of its included destination nodes, and

with the minimum energy of its included destination

nodes the highest among all the shortest paths;

Mark this data item as distributed;

Mark this source node as non-source node;

Update the remaining energy level of all the

nodes on this shortest path;

end while;

RETURN minimum energy among destination nodes.

END. ♦

Distributed Data Distribution Algorithm (DDA). Each

source node X performs the following:

1. Node X broadcasts an “offload” message to all its

neighbors (limited to one hop neighbors only) with its

remaining energy level.

2. A neighbor node Y upon receiving this “offload” mes-

sage, checks if (its energy level ≥ energy level of X).6

i. If No, neighbor node Y discards the message.

ii. If Yes, neighbor node Y checks if (Y has storage

space available).

a. If No, neighbor node Y discards the message.

b. If Yes, neighbor node Y replies back to X an

ACK message with its remaining energy level.

6Note that if Y receives multiple “offload” messages, it processes them
one by one.
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Fig. 2. Data preservation time with respect to the source nodes ratio. Initial
energy is between 1 and 100. Energy draining rate c is 1 unit/round.
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Fig. 3. Data preservation time with respect to the energy draining rate.
Initial energy is between 1 and 100. Source node ratio is 50%.

3. After node X receives all the ACKs from its neighbor-

ing nodes (within a timeout interval), node X sends its

data item to the neighbor with the highest energy level,

and deletes the data item from its storage.

4. If node X does not receive any ACK after the timeout

interval, it keeps the data item.

The neighbor node that obtains the data item from source

node X is now a source node, and follows above algorithm

to distribute the data item.

V. Performance Evaluation

In this section, we present the simulation results and discus-

sions. We adopt a grid-like topology to represent the sensor

network (note that our proposed algorithms are applicable to

other topologies). In all cases, the transmission range of the

sensor is one unit, the length of each grid edge. The network

size is 5 × 5. We randomly choose the source nodes in the

network and vary the number of source nodes as a fraction

of the network size, from 10%, 20%, ..., to 90%, 100%. Each

source node initially has one data item. The storage capacity

of each node is 1 unit. Each data point is an average over

five runs. In all plots, we show error bars indicating the 90%

confidence interval.

Fig. 2 and Fig. 3 show the data preservation time (in terms

of number of rounds) as a function of source node ratio and

energy draining rate, respectively, with the initial energy level
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Fig. 4. Data preservation time with respect to the source nodes ratio. Initial
energy is between 1 and 10000. Energy draining rate c is 1 unit/round.
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Fig. 5. Data preservation time with respect to the energy draining rate.
Initial energy is between 1 and 10000. Source node ratio is 50%.

of each node randomly chosen between 1 and 100. Fig. 2

shows that CDA achieves data preservation time larger than

60 rounds when source node ratios are less than 50%. It

also shows that with the increase of the source nodes in the

network, data preservation time decreases for both CDA and

DDA. This is because the more source nodes, the more data

items need to be distributed, which costs more energy and

therefore decreases the data preservation time. When every

node is a source node, CDA and DDA perform the same since

all the data stay with its source node. For most of the source

node ratio range, DDA performs worse than CDA due to its

localized behavior and the number of overhead messages in

DDA. Fig. 3 shows that the performance of CDA and DDA

for different energy draining rates. Fig. 4 and Fig. 5 show the

same comparison, with the initial energy level of each node

randomly chosen between 1 and 10000.

VI. Conclusion and Future Work

We study data preservation in intermittently connected

sensor networks and formulate it as a graph-theoretic prob-

lem. We show that this problem is NP-hard and design a

centralized greedy heuristic and a distributed data distribution

algorithm. We compare their performances via simulations.

In future, we plan to incorporate storage constraint into our

problem, and explore the tradeoff between storage and energy

resources towards maximizing data preservation time.
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