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Abstract—Due to the high density of node deployment in
wireless sensor network, the sensing data of nodes in spatially
proximate locations are highly correlated. By effectively ex-
ploiting this spatial correlation in the data collection process,
unnecessary energy costs for redundant data transmission can
be largely reduced. In this paper, we focus on collecting spatial
correlated data in multi-sink scenario. The main challenge in
this scenario is that data collection process should consider
how to exploit the spatial correlation and decide which sink
the data are transmitted to at the same time. To address this
challenge, we propose an algorithm to select a subset of sensor
nodes to represent the whole multi-sink sensor network based on
the spatial correlated sensing readings. In this algorithm, only
these representatives named sources need to upload their data to
the chosen sinks. The problem is firstly formulated as a Binary
Integer Linear Programming (BILP). Since the problem is proved
to be NP-Complete, two heuristic algorithms are designed for
approximation. The simulation results show that the proposed
algorithms can largely reduce the number of the sources and
then significantly improve energy efficiency.

I. INTRODUCTION

Wireless sensor networks (WSNs) are composed of a large
amount of sensor nodes. These sensor nodes are wildly de-
ployed to construct a sensor network and accomplish the pre-
assigned tasks. One of the fundamental functions of wireless
sensor networks is data collection. Each sensor node peri-
odically collects local data of interest, such as temperature
and humidity, and reports the samples to the sink nodes.
Via the reported sensing data, the sink nodes can estimate
or reconstruct the interest phenomenon in the sensing re-
gion. In such application, all the sensor nodes are required
to continuously sample and report local environmental data.
Therefore energy efficiency becomes a key challenge for data
collection. However, due to the high density of the deploy-
ment, the observations of spatially proximal sensors are highly
correlated. It means collecting data from all sensor nodes may
cause information redundancy and consume a large amount of
unnecessary energy. Therefore this inherent spatial correlation
can be exploited to develop efficient approaches for decreasing
traffic redundancy and reducing energy consumption.

To describe this correlation and bring significant potential
advantages for energy efficiency, several algorithms and pro-
tocols have been proposed. In [1], a theoretical framework
is developed to model the spatial correlations. Based on this
framework several approaches are discussed to exploit spatial
correlation for efficient medium access. In recent research,

there are two major research directions to capture the spatial
correlation and design energy efficient data collection strate-
gies. The first one is to compress the volume of reported
information of every node. This category includes Slepian-
Wolf coding and explicit communication coding (conditional
coding). Slepian and Wolf [2] prove that it is theoretically
possible that distributed sources can encode the correlated
information at the rate of their joint entropy even if there are
no information exchanges among the sources. Unfortunately
the method requires a perfect prior knowledge of the whole
network which is always not easy to provide in the real
application. On the other hand, Cristescu et al. [3], Pattern et
al. [4] exploit the correlation through explicit communication
among sensor nodes, which a node encodes its data depends
on those data relayed by itself. The other direction is to
select a small subset of sensor nodes as the representatives
of the whole network to transmit samples to the sink. The
samples from these representative nodes are sufficient for the
reconstruction of phenomenon in the sensing region. Gupta et
al. [5] develop a set of energy efficient distributed algorithms
and competitive centralized heuristics for constructing the
correlation-dominating set in small size. Liu et al. [6] design
a cluster algorithm to group sensor nodes into several clusters
based on correlations and randomly choose cluster members
as cluster head to represent the whole cluster. Xu et al. [7]
consider the correlated data collection with mobile sinks,
therefore the representative nodes selection problem turns to
be a sink route schedule problem.

To facilitate the efficient data collection and expand deploy-
ment in large scale, it can be envisioned that sensor networks
will consist of multiple sink nodes. For these reasons, we
concentrate our attention on spatially correlated data collection
in multi-sink scenario. As shown before, most of related
work in this field focus on the data collection with one sink,
and only few work is multi-sink supported. In [8], authors
exploit the correlation by localized Slepian-Wolf Coding and
the multi-sink supported collected data transmission structure
is constructed by solving an optimization problem. In [9],
Cristescu et al. jointly optimize the transmission structure and
Slepian-Wolf Coding rate allocation across the source node in
several transmission scenarios including multi-sink scenario.
Different from prior work, we exploit spatial correlation in
multi-sink scenario by selecting a subset of sensor nodes as
sources. These sources represent the whole multi-sink wireless
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sensor network to sample the environmental surroundings and
report data to the sink nodes. The readings of non-source
nodes can be estimated by using the reported data from the
sources. The challenge of this algorithm is that the sensor node
should decide whether it is a source and which sink its data is
reported at the same time. In this paper, the problem is firstly
formulated as a Binary Integer Linear Programming (BILP).
The objective of this BILP is to minimize energy consumption
of entire data collection process. In BILP, by choosing feasible
sources and their optimal reported paths to the sinks, both
the source and the sink selection are achieved. Due to the
high complexity of BILP, two greedy heuristic algorithms are
developed for approximation. To assess the spatial correlation,
the conditional entropy is introduced in this paper. It has been
regarded as an effective technique to quantize the degree of
similarity. We assume that a node can be represented by other
nodes if their the conditional entropy is less than a threshold.

Main contributions of this paper is listed as follows:
• Multi-sink supported: Different from prior works, our

work exploits the spatial correlation in multi-sink sce-
nario by selecting several nodes as representatives to
complete the data collection task. The proposed algorithm
inherits the strong points of multiple sinks and takes
advantage of the spatial correlation. Both characteristic
can reduce the number of sensor nodes taking part in the
data collection process.

• Joint optimization: We formulate a optimization problem
jointly considering the source node selection and the
reported sink selection. A data collection process with
minimized energy consumption is established by solving
this problem.

The rest of this paper is organized as follows. In the next
section, several important problem definitions are introduced.
In section III, the correlation set selection problem is modeled
as a BILP, and it is proved to be NP-Complete. In section
IV, two heuristic algorithms are proposed for approximation
of BILP. Results of simulation are shown in the section V.
Finally, some conclusions are discussed in section VI.

II. PRELIMINARIES

A. Network model and Assumptions

The network of sensors and sinks is represented as a graph
G = (V, E), where V is the set of nodes, and E is the set
of wireless links. Let SN denote the set of sensor nodes and
SK denote the set of sink nodes, SN ∩ SK = V . We define
Ω = {(s, k) : s ∈ SN , k ∈ SK} as a set of source-sink pairs.
All the sensor nodes have a fixed transmission range rxt. Let
dij denote the distance between node i and node j. A link (i, j)
∈ E exists only if dij < rxt. A sensor node is called source if
it is assigned to report its sensing readings. We assume that a
source generates reports at a fixed rate and the reports can be
transmitted to sinks through single or multi-hop transmissions.
A sensor node is considered as a relay if it is on a route from
a source to the sink. The nodes which are neither sources nor
relays will be at sleep state to reduce the energy consumption.

It is assumed that the transmission power is automatically
managed by the sensor nodes. During the transmission, the
sensor nodes are capable to adjust their transmission power
depending on the transmission distance. Consequently, the
energy consumption for sending a bit data is a function of
transmission distance. Therefore, we formulate energy model
as c = etrans + βdα + erec, where etrans and erec are distance
independent and can be fixed as a constant. βdα is distance
dependent. It indicates the radiated power necessary to trans-
mit one bit over a distance d, where α is the exponent of the
path loss (2≤α≤5), β is a constant [J/(bit·mα)]. Additionally,
for a source, it is assumed that the amount of energy consumed
for sensing a bit data is constant, denoted by cs.

B. Correlation Model

In a given sensor network, we assume that the spatial
correlation degree of two nodes is proportional to the distance
between them. In this case, a model frequently encountered
in practice is the Gaussian Random Process, which spatial
data X measured at N sensor nodes follow an N-dimensional
multivariate normal distribution [10]:

f(X) =
1

(
√
2π)N |Σ|1/2

e−
1
2 (X−µ)TΣ−1(X−µ) (1)

where Σ is the covariance matrix and µ is mean vector. The
diagonal elements of Σ are the variances Σii = σ2

i . The rest
of Σij are the covariances of readings from node i and node
j. Under our assumption, Σij is a function of the distance of
two nodes. In this paper, we use Σij = σ2

i e(dij/θ1)
θ2 (θ1>0,

θ2∈(0, 2]) [11] for analysis and simulations.
Suppose the sensor set Nm

u is the m-hop open neighbor
set of node u, i.e. the elements in Nm

u are all within m
hops from node u. The power set of Nm

u is denoted by
P (Nm

u ). To evaluate the correlation between node u and set
W ∈ P (Nm

u ), we utilize the conditional entropy evaluation
technique. Since data at all nodes are assumed to quantized
with the same quantization step and actually the differential
entropy differs from discrete one only by a constant [10], the
differential entropy is introduced instead of discrete entropy
in this paper. The differential entropy of a N-dimensional
multivariate normal distribution GN (µ, Σ):

h(GN (µ,Σ)) =
1

2
log(2πe)N |Σ| (2)

Given W, the conditional entropy of node u can be calculated
by:

h(u|W ) = h(u,W )− h(W )

=
1

2
log(2πe)N+1 |ΣW∗ | − 1

2
log(2πe)N |ΣW |

=
1

2
log 2πe

|ΣW∗ |
|ΣW |

(3)

where W∗ = W ∪ {u}, and N is the number of elements in
set W.
Definition 1.(Correlation Set) Given Node u and a subset of its
m-hop neighbors W, i.e. W ∈ P (Nm

u ), if h(u |W ) is smaller
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than a correlation threshold ε, then W is called a correlation
set of node u. It means that the sensing readings of node
u can be estimated by the readings from nodes in W with
high confidence. All the correlation set of node u consist of a
collection Du.
Remark 1.(Correlation Set Selection Problem) By effectively
exploiting the spatial correlation among nodes, correlation sets
are selected to represent the whole network and report the
data to the chosen sinks. The correlation set selection problem
jointly considers selecting correlation sets and their reported
sinks to minimize energy consumption.

III. PROBLEM FORMULATION

In this section, we formulate the correlation set selection
problem as a Binary Integer Linear Programming (BILP).
This BILP is a twofold problem: 1) selecting correlation
sets as sources. The process decides whether a node can be
represented by its correlation set. 2) minimize the transmission
cost from these sources to the sinks. This process selects the
optimal sink to upload data. The network is assumed to be
connected, that is, at least one path exists between sensors
and sinks. We also assume that data from a sensor can be
collected by any sink.

A. BILP formulation

First, we need to introduce the following notations:
• cij is the energy cost of the link (i,j), calculated by the

energy model cij = etrans + βdijα + erec, where dij is
the distance between node i and node j.

• cs is the energy consumption for sensing, which is a
constant.

• lsk is a binary variable equal to 1 if node s is selected as
a source, and it transmits data to the sink k.

• f skij is a binary variable. It equals 1 only when node s
selected as a source sends data to the sink k and also the
link (i,j) is on the path from s to k.

• Wv
s is a correlation set of node s and the number of

elements in Wv
s is |Wv

s |. Ds denotes the collection of
set Wv

s .
• χsk

v is a binary variable equal to 1 if correlation set Wv
s

is selected to represent node s.
The correlation set selection problem can be formulated as

follows:

Given : cij , cs, Ds

Find : χsk
v , lsk, fsk

ij

Minimize : C =
∑

(s,k)∈Ω

(
∑

(i,j)∈E

fsk
ij cij + lskcs)

Subject to :

(4)

∑
j∈SN

(fsk
sj − fsk

js ) = lsk, ∀(s, k) ∈ Ω ∀s ∈ SN (4.a)

∑
j∈SN

(fsk
k j − fsk

jk ) = lsk, ∀(s, k) ∈ Ω ∀k ∈ SK (4.b)

∑
j∈SN

(fsk
ij − fsk

ji ) = 0, ∀(s, k) ∈ Ω,

∀i ∈ V, s.t i ̸= s, i ̸= k (4.c)

χsk
v ≤ 1

|W v
s |

∑
j∈W v

s

ljk ∀W v
s ∈ Ds (4.d)

∑
k∈SK

 ∑
v:Wv

s ∈Ds

χsk
v + lsk

 = 1 ∀s ∈ SN (4.e)

∑
k∈SA

lsk ≤ 1 ∀s ∈ SN (4.f)

fsk
ij ≤ lsk , ∀(s, k) ∈ Ω,∀(i, j) ∈ E (4.g)

The objective function in (4) minimizes the overall energy
consumption which includes two parts. One part is the sensing
cost consumed by all sources. The other part is the transmis-
sion cost consumed by nodes on the paths from the source to
the sinks. Hence, in order to minimize the energy consumption,
we need to reduce the number of sources and limit the number
of non-source nodes as relays taking part in the transmission.
Constraints (4.a), (4.b) and (4.c) express the conservation of
traffic flows. Each source generates a flow, which is collected
by a sink. Constraint (4.d) ensures that if correlation set Wv

s

is selected by node s as the representatives to send data to
sink k, all the nodes in set Wv

s will be selected as sources. In
other words, until all the nodes in Wv

s are sources, Wv
s can be

used to estimate node s. Constraint (4.e) imposes that node s is
either selected as a source or represented by a correlation set.
Constraint (4.f) ensures that data from node s can be collected
only by one sink. Constraint (4.g) expresses that all the flow
variables from node s to sink k are 0 unless node s is selected
as a source and reports data to sink k.

B. Problem Complexity Analysis

It is straightforward that the correlation set selection prob-
lem in this paper is NP, that is, we can examine whether
a given set of sources can be used to represent the whole
network and whether the paths from them to the sinks satisfy
energy efficiency constraints in polynomial time. To prove
the problem is NP-hard, firstly we make some assumptions.
Suppose that there exists a virtual link between any two sinks,
and the energy cost of these virtual links are extremely high.
In order to conserve the energy, no sources will choose a
path including a virtual link. Therefore, the addition of the
virtual links will not affect the report path selection from
sources to sinks. Considering a special case, all the sink
nodes are also sources and the energy cost of these actual
links are equal. Then in this case, the correlation set selection
problem turns to be a connected correlation dominating set
problem. All the sources from the correlation sets and a
subset of non-source nodes who are on data report paths
consist of a dominating set and the other non-source nodes
can be estimated by at least one subset of dominating set. The
connected correlation dominating set problem is NP-hard as
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the minimum dominating set problem which is well known
to be NP-hard [12]. Therefore, the correlation set selection
problem is NP-Complete.

IV. HEURISTIC ALGORITHM

Due to the high computation complexity of BILP, we
develop two heuristic algorithms for correlation set selection
problem. Each algorithm tries to select a set of sources and
choose the optimal sink to collect the data. Firstly some
assumptions are made for the algorithms: 1) all the sensor
nodes have a prior knowledge about the locations of the
sinks. 2) each sensor node has three status: source, represented
and undecided. 3) each node has a weight associated with a
sink node, denoted by ω(sj , an) =

Ej

Dist(sj ,an)
, where Ej is

the residual energy of node sj , Dist(sj , an) is the distance
between node sj and sink nodes an. Before introducing
two algorithms, a weight-based correlation set construction
algorithm is shown as follow:

Algorithm 1 Weight-Based Correlation Set Construction
1: With m-round message exchanging, sensor node u ac-

quires its m-hop neighbors’ information, including node
ID, status, residual energy, location, etc. The information
is stored in NeighborList Nm

u .
2: Node u selects a subset of Nm

u as N ∗m
u = {sj |sj ∈ Nm

u ,
the status of sj is source or undecided}. Then node u
calculates the weight of the nodes in the set N ∗m

u .
3: For each sink node, node u selects the nodes with

higher weight as sets N ∗m
u (an) = {sj |ω(sj , an) >

ω(u, an), sj ∈ N ∗m
u }.

∪
an∈SK

N ∗m
u (an) = N ∗m

u .
4: Let P (N ∗m

u (an)) denote the power set of N ∗m
u (an).

W∗v
u (an) is vth element of P (N ∗m

u (an)). If h(u|W∗v
u ) is

less than a correlation threshold ε, W∗v
u (an) is selected

into CSList D∗
u.

5: After calculating all weight-based correlation set, node
u broadcasts a CSNotify message, including its ID and
CSList D∗

u.
6: When receiving a CSNotify message, a neighbor node sj

records the received information if its ID in the CSList.

A weight-based correlation set of a sensor node is composed
of the nodes who have energy advantages compared to itself.
The energy advantage indicates more residual energy or less
distance to a sink. Both parameters are related to the improve-
ment of energy efficiency. Therefore, it is more feasible to
represent a node by one of its weight-based correlation set
for saving energy and balancing the energy cost. Based on
this idea, we have designed two heuristic algorithms to select
correlation sets on the behalf of the whole network.

A. Correlation First Algorithm

In Correlation First algorithm, each node selects the weight-
based correlation set with smallest conditional entropy to rep-
resent itself. As discussed in previous section, the conditional
entropy is referred as to an index of similarity of two elements.
Therefore, the node can be estimated with highest confidence

by the set with smallest conditional entropy. Algorithm 2
shows the details of Correlation First Algorithm.

Algorithm 2 Correlation First Algorithm
1: Node u whose status is undecided runs Algorithm 1, and

sorts all the weight-based correlation sets in D∗
u according

to the conditional entropy calculated by (3).
2: Node u selects W∗v

u (an), the set with smallest entropy, to
represent itself, then marks its status represented.

3: Node u broadcasts a selection result, including its ID,
status, and W∗v

u (an). The nodes in W∗v
u (an) change their

status to source.
4: Source sj in the selected set W∗v

u (an) chooses an as
its destination sink node. Among the one-hop neighbors
with same destination an, nodes sj selects node sc whose
weight ω(sc, an) is largest as the next-hop node. If there
are several candidates for the next-hop, nodes sj randomly
selects a source node among them to break even.

Since each node chooses most correlated set as its repre-
sentative, the estimated distortion is theoretically minimized.
It suggests that the algorithm can be designed to reduce energy
consumption with estimation accuracy guaranteed. However,
the analysis of estimate error between the source and the
represented nodes is out of the scope of this paper.

B. Distance First Algorithm

In Distance First algorithm, each node chooses the nearest
sink as its optimal destination, and selects weight-based cor-
relation sets with the same destination as the representative
candidates. Among the candidates, the one whose average
weight is largest will eventually be chosen. The average weight
is defined as

ωaverage(W
v
u (an)) =

∑
sj∈Wv

u (an)

ω(sj , an)

|W v
u (an)|

where |W∗v
u (an)| is the number of nodes in W∗v

u (an). Algo-
rithm 3 demonstrates the details of Distance First Algorithm.

Algorithm 3 Distance First Algorithm
1: If the status is undecided, node u runs Algorithm 1.

Suppose sink an is the nearest sink from u, then node
u marks an as the optimal destination.

2: Node u sorts W∗v
u (an) based on the average weight, and

the most weighted one is chosen as the best set to represent
node u.

3: Node u marks itself represented and broadcasts a message
including its status and the selected set W∗v

u (an). Then
node sj in W∗v

u (an) assigns its status as source.
4: Source node sj greedily chooses a node nearer to sink an

as the next-hop node. If there are several candidates in the
neighborhood, a source node is chosen with a priority.
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The Distance First algorithm is designed to minimize the
report hops from the sources to the sinks. By represented by
nodes nearer to a sink, the algorithm can reduce the total
energy consumption of entire data collection process. The
performance of the two algorithm is evaluated by simulations
in the next section.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
two algorithms. The results are derived from three sets of
simulations that elicit various interesting properties of our
algorithms. In all three simulations, the multi-sink sensor
network is randomly generated. Each node collects informa-
tion from 2-hop neighbors. The energy model parameters
are set as etrans=erec=50nJ/bit, β=100pJ/bit/mα, and α=4
[11]. The transmission range is set to 8m. The correlation
threshold ε is set at the neighborhood of 0.1. It is adjustable
in different scenarios. In these simulations, the power model
σi

2 e(dij/θ1)
θ2 is used to model the correlation of the sensor

readings. σi
2 is set to 5, θ2 is fixed as 2. Since θ1 is directly

decides the relationship between correlation and distance, it
varies in different scenarios.

A. The impact of the number of sink nodes

In this simulation, 200 sensor nodes are randomly deployed
in a 50m×50m square area. θ1 is set as 30. The number
of sink nodes varies from 1 to 8. Fig.1 shows that energy
consumption is decreased with a increase in the number of
sinks. When the number of sinks is less than 4, the energy
consumption drops more than 50%. However, this trend of
the decrease is limited. The drop of the energy consumption
becomes slight after the number of sinks is larger than 6. The
increasing amount of sinks can shorten the distance between
the sensor nodes and the sinks. While the number of sinks
exceeds a threshold, its impact on energy consumption is
weaken. It is because that most of the sources have been within
a short range of sinks. Therefore the improvement brought by
increasing the number of sink nodes is limited. Comparing the
two algorithms, Correlation First Algorithm consumes more
energy than Distance First Algorithm. The reason is that in
order to maintain a theoretically estimated accuracy, more
nodes are required to report its data.

B. The impact of sensor node density

In this scenario, we study the impact of the number of
deployed sensor nodes on the number of sources and the total
network energy consumption. The number of sensor nodes
varies from 150 to 400 in a 100m×100m area. The other
parameters are set as: θ1 is 30, the number of sink nodes
is 3.

Fig.2(a) shows that both algorithms can significantly reduce
the number of sources. Only 25%-40% of nodes are selected
as the sources. In Fig.2(b), we notice that the increment of
sensor nodes slightly influence the energy consumption when
the number of sensor nodes is larger than 250. The reason is
that with the increased amount of sensor nodes, the number
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Fig. 1. Energy consumption under different number of sink nodes

of sources approaches to saturate. Newly added sensor nodes
can be estimated by an existed correlation set. Therefore these
newly added sensor nodes only result in the redundancy with
little contribution to energy consumption in our algorithms.

C. The impact of correlation parameter θ1

In this scenario, 200 nodes are randomly deployed in a
50m×50m area and the number of sink nodes is fixed as 3.
We study the impact of θ1 on the number of sources and total
energy consumption by varying value of θ1 from 10 to 60.
The large value of θ1 indicates a high correlation between
two nodes.

Fig.3(a) demonstrates the number of sources over different
value of θ1. When θ1 is smaller than 40, the number of sources
decreases dramatically by increasing θ1. However, the trend
of this decline is limited. After θ1 is greater than a threshold,
the number of sources does not vary with the increase of θ1.
It is because the larger θ1 is, the more nodes within 2-hop
range (since we only consider the correlation relationship of
nodes within 2 hops) can be represented by one correlation set
and less new sources are needed to be generated. Therefore,
the number of the sources intends to saturate. The change of
energy consumption follows the similar changing discipline.
Therefore increasing correlation degree can only improve the
network performance in a certain extent.

Based on simulation results given above, we can conclude
that both two algorithms can significantly reduce the number
of the sources and improve the energy efficiency of entire net-
work. The energy performance of Correlation First Algorithm
is a little bit worse than Distance First Algorithm. The gap
between two algorithms maintains at 7%-8% on average.

VI. CONCLUSION

In this paper, we studied the energy efficient data col-
lection problem in the multi-sink wireless sensor network.
By exploiting the spatial correlation, only a small subset of
sensor nodes are selected to upload their data to the optimal
sinks. We defined this problem as the correlation set selection
problem and formulate it as a BILP. The BILP is proved to be
NP-Complete, and two greedy heuristic algorithms based on
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Fig. 2. The Impact of Sensor Node Density
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Fig. 3. The Impact of Correlation Parameter θ1

different selection criterion are proposed for approximation.
Finally, the simulation results show that both two algorithms
can significantly improve the energy efficiency of the data
collection process.
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