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Abstract—The introduction of mobile elements has created a
new dimension to reduce and balance energy consumption in
wireless sensor networks, however, data collection latency may
become higher. Thus the scheduling of mobile elements, i.e., how
they traverse through the sensing field and when they collect data
from which sensor, is of ultimate importance and has attracted
increasing attention from the research community. Formulated as
the Traveling Salesman Problem with Neighborhoods (TSPN) and
due to its NP-hardness, so far only approximation and heuristic
algorithms have appeared in the literature, but the former only
have theoretical value now due to their large approximation
factors. In this paper, following a progressive optimization
approach, we propose a combine-skip-substitute (css) scheme,
which is shown to outperform the best known heuristic algorithm.
Besides the correctness and complexity analysis of the proposed
scheme, we also show its performance and potentials for further
extension through extensive simulation results.
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I. INTRODUCTION

Collecting data from the nodes deployed in the sensing field

is one of the main applications of wireless sensor networks [1].

Typically, data collection only relies on wireless communica-

tions between sensor nodes and the sink node, which may

suffer from the following problems. First, wireless communi-

cations, especially long-range ones, may consume the limited

onboard energy supply of sensor nodes excessively. Second,

even if shorter-range, multi-hop wireless communications are

adopted, due to the data aggregation towards the sink, nodes

around it still have to consume energy much faster than others,

leading to a lower overall network lifetime. Mitigation has

appeared in the literature, such as nonuniform topology [2],

transmission power [3], media access [4] and routing control

mechanisms [5], but the intrinsic high and unbalanced energy

consumption still remains as a main challenge.

Another approach to data collection in wireless sensor

networks utilizes the often-available, controlled mobility of

certain nodes, referred to as mobile elements in this paper.

For example, in an undersea observatory such as the UVic

NEPTUNE [6], underwater autonomous vehicles can cruise

through several experimentation sites, talking to experiment

devices through very-short-range, high-data-rate optical com-

munication technologies, and bring the data back to the junc-

tion boxes, which are forwarded to the shore station through

the cabled network. Even though experiment devices may have

relatively longer-range acoustic communication capabilities,

the achievable data rate in such a harsh environment is very

low. Underwater robots are also used to track the latest Mexi-

can Gulf oil leak and predict where it has headed [7]. Similar

scenarios have appeared in structural health monitoring, where

a radio-controlled helicopters collecting data from large-scale

civil infrastructures [8]. By utilizing mobile elements, not only

more energy can be conserved and balanced on sensor nodes,

but also the communications and networking becomes possible

in very sparse networks with “store-carry-forward.”

Although attractive, data collection with mobile elements in

wireless sensor networks still poses its own challenges. Due to

the relatively lower speed of mobile elements when compared

with electromagnetic or acoustic waves, data collection may

suffer a higher latency than multi-hop forwarding when the

latter is feasible at high energy cost [9]. The latency, mainly

determined by the mobility and scheduling of mobile elements,

i.e., how they traverse through the sensing field and when

they collect data from which sensor, is the main focus of the

research efforts on this topic and that of this paper. In this

paper, we tackle this problem from a new angle. We follow a

progressive optimization approach, trying to reduce the tour

length, thus the travel time, of mobile elements gradually

through combining the collection sites for nearby sensor nodes

(or cluster heads) and then skipping and substituting (i.e.,

css) certain sites. We prove the correctness of the progressive

optimization approach, and show the performance of this

approach through extensive simulation results.

The contributions of this paper are threefold. Through the

formulation of such problems as the Traveling Salesman Prob-

lem with Neighborhoods (TSPN) and due to its NP-hardness,

several approximation and heuristic algorithms have appeared

in the literature, but so far the best approximation algorithms

only have theoretical value due to their large approximation

factors, and we have shown that our progressive optimization-

based css scheme can outperform the best known heuristic

algorithm in the literature. Second, the correctness of the

scheme has been proved and its complexity analysis been

provided. Third, we have shown its effectiveness and efficiency

through extensive simulation results.

The rest of this paper is organized as follows. The ex-

isting work related to exploring mobility for data collection

in wireless sensor networks is reviewed in Section II. In

Section III, we define the scope of our problem and highlight

our approach. In Section IV, we present the css scheme,

which progressively reduces the tour length through combin-

ing, skipping and substituting. Its performance is evaluated in
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Section V. Further discussion is offered in Section VI. Finally,

we conclude this paper in Section VII.

II. RELATED WORK

Recently, many research efforts have appeared in the liter-

ature to explore the mobility in wireless sensor networks for

data collection, we only survey the most related ones here [9]–

[14]. The mobility-assisted data collection was classified into

three categories in [15]: with random mobility [10], predictable

mobility [11], and controlled mobility [14], respectively. Our

work falls into the last category.

[10] is a pioneer work on this topic, where a three-tier net-

work architecture was proposed. The mobile entities, referred

to as Data Mobile Ubiquitous LAN Extensions (MULEs), lie

in the middle tier on top of the stationary sensor nodes, move

around in the network to collect data from sensor nodes, and

ultimately upload the data to the sink. The term Data MULEs

was widely used in the literature since then. In [11], the data

collection process with predictable mobility was modeled as

a queuing system, and the success of data collection was

analyzed based on it. In [14], a mobile data observer, called

SenCar, was used as a mobile base-station in the network. It

also showed that the design of the traveling tour is critical for

SenCar to accomplish data collection jobs successfully.

Observing the importance of the traveling tour, a lot of

efforts were put into its optimal design, e.g., [9], [12], [13].

The tour selection problem can be modeled as a Traveling

Salesman Problem with Neighborhoods (TSPN), an NP-hard

problem, if we do not consider the data rate constraints

between the mobile element (ME) and sensor nodes, where

all the neighborhoods are possibly intersected communication

disks. It has been proven that approximating Euclidean TSPN

within a factor of (2−ε) is also NP-hard [16]. The performance

of the existing approximation algorithms for TSPN has only

been characterized theoretically in terms of approximation

factors, which are often quite large. Specifically, for the case

of possibly intersected equal-sized disks, the best result so

far was given in [17], where an approximation factor of

11.15 is achieved. In our scenarios, knowing such a loose

bound is obviously of little practical value. Both [12] and

[13] took this TSPN approach to obtain the tour. In [12],

the authors started with an optimal TSP tour, based on which

they reduced the problem’s search space, and adopted three

evolutionary algorithms to obtain the traveling tour. The case

where multiple MEs exist in the network was considered in

[13]. On the other hand, the problem of tour selection for mo-

bile elements was formulated as the Label-Covering Problem

in [9], which was also proved to be NP-hard. An heuristic

algorithm using dynamic programming was presented there to

solve the problem, which was shown through simulation to

be able to achieve better results than [14], [18], [19] and is

considered as the best known heuristic algorithm.

Utilizing the fact that the communication disks of sensor

nodes may intersect with each other, we propose the css

scheme in this paper, which greatly shortens the tour by

combining several data collection jobs together when possible

and further skipping and substituting some collection sites.

III. PRELIMINARIES

In this section, we first list the notations used in this paper,

and then give the scope of our problem definition and highlight

our approach. The scheme is detailed in the next section.

• L: the side length of the square sensing field;

• S = {s1, s2, ..., sn}: the set of n sensor nodes with

corresponding location {li} where i = 1, 2, ..., n;
• B: the base station of the network, with location l0;
• v: the constant speed of the ME;

• d: the communication range between the ME and sensor

nodes;

• T : the set of all possible tours that start and end at l0;
• Ttsp: the optimal tour with length |Ttsp| of the TSP

problem, which connects li and i = 0, 1, 2, ...n;
• Tcom: the traveling tour with length |Tcom| obtained after

the combination algorithm, which connects location l0
and collection sites l′i and i = 1, 2, ..., n′;

• Tcss: the traveling tour with length |Tcss| obtained after

the entire css scheme, which connects locations l0 and

collection sites l′′i and i = 1, 2, ..., n′′;

• T ∗: the optimal traveling tour with length |T ∗|;
• xy: the sub-tour that connects collection sites x and y

directly;

• δ: the control parameter used in the substitute algorithm.

Our goal is to find the shortest tour to collect data from all n
sensor nodes (or cluster heads) in the shortest time. We mainly

consider one single-radio ME moving between collection sites

directly without obstacles. The simplified problem is still NP-

hard [9] and we offer some discussion on how to extend the

scheme to other scenarios in Section VI. Our approach is to

achieve the goal progressively by starting from a TSP problem

formulation and considering the advantage of wireless com-

munications through the css scheme. Focusing on the offline

scenario, we assume the ME has the location information of

sensor nodes or cluster heads, computes the traveling tours

at the stage of network planning, and follows the tour to

collects data. Even in the cases where location information

is not available or changes dynamically over the time, our

results still can be a performance bound for data collection

latency. Furthermore, the css scheme can be extended to apply

to the online scenario, where data collection requests arrives

progressively, based on the requests currently available.

IV. TRAVELING TOUR W/O DATA RATE CONSTRAINTS

In this section, we consider the case with a fixed communi-

cation range between the ME and sensor nodes without data

rate constraints to introduce the css scheme, and then evaluate

and compare its performance through simulation, besides the

analysis on its correctness and complexity.

A. Problem Formulation

We assume the unit disk communication model, and the

time required for data transfer between the ME and sensor
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nodes is negligible when compared with the traveling time of

the ME [20]. With this assumption, all the data collection jobs

can be accomplished as long as the traveling tour intersects

with the communication disks of all sensor nodes. We call

a traveling tour feasible if all data collection jobs can be

accomplished when the ME travels along it. The tour selection

problem in this case can be formulated as:

min
T∈T
|T | s.t. ∀si ∈ S, ∃e ∈ T, |si, e| ≤ d, (1)

where |T | is the tour length and |si, e| is the shortest Euclidean
distance from si to any path segment e in T , i.e., all sensor

nodes are path-covered by T within d. Conversely, denote C(e)
as the set of the sensor nodes that are path-covered by e.

B. Combine-Skip-Substitute Scheme

Utilizing the nonzero wireless communication range be-

tween the ME and sensor nodes and the fact that the com-

munication disks of nearby sensor nodes may intersect with

each other, the css scheme employs three steps to progressively

shorten the ME’s traveling tour: it starts with an optimal TSP

tour based on the set of sensor nodes in the sensing field, then

it combines the data collection sites by a modified Welzl’s

algorithm when possible, and finally it uses the skip-and-

substitute algorithm to further shorten the tour.

1) Find the Optimal TSP Tour: We adopt an existing TSP

solver, Concorde, to obtain the optimal TSP tour, i.e., Ttsp

[21]. The Concorde TSP Solver uses an exact algorithm

for TSP, which follows the cutting-plane method, iteratively

solving the LP relaxations of the TSP problem. It has been

used to obtain the optimal solutions for 107 of the 110 TSPLIB

instances, among which the largest one has 15, 112 cities. The

efficiency of Concorde has been testified by many experiments,

e.g., Concorde can solve a TSP problem with 120 cities in 3.3
seconds with a 400 MHz CPU [22].

In our problem setting, the order of serving data collection

jobs is determined by Ttsp, which reduces the search space

greatly [12]. By definition, Ttsp is always feasible. We then

conduct the combine, skip, and substitute operations based on

this order, with communication range d.

2) Combine Collection Sites by Modified Welzl’s Algorithm:

Several data collection jobs can be combined if the correspond-

ing sensor nodes are close to each other geographically, and

the ME can carry out these jobs at a single collection site.

Enlightened by this intuition, the css scheme first reduces the

number of collection sites that the ME has to visit along the

Ttsp obtained above, by adopting a modified version of Welzl’s

algorithm [23], to combine the collection jobs of nearby sensor

nodes on Ttsp into a new collection site when possible.

The Welzl’s algorithm computes the smallest enclosing disk

of a finite set of points on the plane in a linear expected time,

and returns the radius and center of the disk. We adopt the

Welzl’s algorithm in a different way, which we refer to as

the modified Welzl’s algorithm, to combine sensor locations

within a radius of d whenever possible. The modified Welzl’s

algorithm is shown in Algorithm 1, which returns the smallest

enclosing disk of a given subset of sensor nodes if its radius

is no more than d, or false otherwise.

Algorithm 1 Modified Welzl’s Algorithm

Input: a subset of sensor nodes S ′, and the communication

range d between the ME and sensor nodes;

Output: if the subset can be covered by a disk with radius at

most d, return the disk’s center and radius, or false otherwise.

radius←∞; center ← ∅;

(radius, center) = Welzl(S ′); //Welzl’s algorithm on S ′

if radius > d then

return false;

else

return radius and center.
end if

With the modified Welzl’s algorithm, we can carry out

the combination operation as in Algorithm 2. Essentially, we

check whether the nearby sensor nodes on Ttsp can be covered

by a disk of radius at most d. If so, instead of visiting all

covered sensor nodes, the ME can simply visit the center of

the enclosing disk as the collection site, and collect data from

all covered sensor nodes through wireless communications.

Algorithm 2 Combination by modified Welzl’s Algorithm

Input: the set of sensor nodes S , and the communication range

d between the ME and sensor nodes;

Output: a traveling tour Tcom ∈ T that intersects with the

communication disks of all sensor nodes.

obtain the optimal TSP tour by Concorde for S: i.e., Ttsp =
〈l0, l1, ..., ln, l0〉;
while there exist intersected disks do

for all li (i = 1, 2, ..., n− 1) do

find the maximum j (i ≤ j ≤ n) by the modi-

fied Welzl’s algorithm, such that all the locations in

{li, li+1, ..., lj} are not involved in previous combina-

tion operations, and can be covered by a disk with

radius no more than d;
Ni ← j − i + 1;

end for

select li with maximum Ni;

combine {li, li+1, ..., li+Ni−1} into c in Ttsp, where c
is the center of the smallest enclosing disk that covers

{li, li+1, ..., li+Ni−1};
end while

Tcom ← Ttsp;

return Tcom.

Theorem 1. Without data rate constraints, Tcom is feasible.

Proof: For the sensor nodes whose collection jobs have

not been combined, they are still on Tcom. For the sensor

nodes whose collection jobs have been combined together,

there exists a new collection site on Tcom, from which is at

most d to these sensor nodes. Therefore, Tcom still intersects

with the communication disks of all sensor nodes as Ttsp.

Theorem 2. |Ttsp| ≥ |Tcom|.
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The equality holds if and only if none of the locations on

Ttsp can be combined, e.g., in an extremely sparse network.

Proof is omitted due to space constraints.

Definition. If collection site l′ in Tcom is obtained by combin-

ing {li, li+1, ..., li+k−1} in Ttsp, we say that l
′ represents these

locations in Tcom, denoted as R(l′) = {li, li+1, ..., li+k−1}.
R(l′) = l′ if l′ is not obtained by combination.

3) Skip and Substitute Through Binary Search: The basic

idea of skip-and-substitute is that, for each collection sites l′i
in Tcom, we first try to skip l′i by going directly from l′i−1

to l′i+1, if all locations in R(l′i) are path-covered by l′i−1
l′i+1

.

Otherwise, we select another collection site l′′i on l′il
′
i+1

, which

is done by binary search, and all locations inR(l′i) are covered
by l′i−1

l′′i . A control parameter δ is used to determine when

to terminate the binary search.

Algorithm 3 Skip-and-Substitute through Binary Search

Input: Tcom = 〈l0, l
′
1, l

′
2, ..., l

′
n′ , l0〉, the communication range

d between the ME and sensor nodes, and the control parameter

δ for binary search;

Output: a further shortened traveling tour Tcss.
repeat

for all l′i (i = 1, 2, ..., n′) do

if all collection sites that are in both R(l′i) and

C(l′i−1
l′i) are also in C(l

′
i−1

l′i+1
) and all collection sites

that are in R(l′i+1) are also in C(l′i−1
l′i+1

) then

skip l′i from Tcom;

for all ∀p ∈ R(l′i) do

R(l′i+1)← p;
end for

else

start← l′i; end← l′i+1;

while |start, end| > δ do

q ← midpoint(start, end);
if all collection sites that are in both R(l′i) and

C(l′i−1
l′i) ∪ C(l

′
iq) are also in C(l′i−1

q) and all

collection sites that are in both R(l′i+1) and

C(l′i−1
l′i) ∪ C(l

′
iq) are also in C(l′i−1

q) then

start← q;
else

end← q;
end if

end while

substitute l′i by q in Tcom;

end if

end for

until Tcom cannot be further shortened

Tcss ← Tcom;

return Tcss.

Following the same argument as Theorem 1, we have

Theorem 3. Without data rate constraints, Tcss is feasible.

Since we replace two adjacent paths by one direct path, by

triangle inequality, we have the following two lemmas. Due

to space constraints, their proofs are omitted here.

Lemma 1. Each skip operation reduces |Tcom|, or leaves

|Tcom| unchanged.

Lemma 2. Each substitution operation reduces |Tcom|.

Directly following these two lemmas, we have

Theorem 4. |Tcom| ≥ |Tcss|.

Figure 1 illustrates the general idea of the css scheme. For

example, a TSP tour 〈B, 1, 2, 3, 4, 5, 6, 7, B〉 is first estab-

lished. With the combination algorithms, 3 and 4 are combined

into A, and 5, 6 and 7 are combined into C. Following the

shortened tour 〈B, 1, 2, A, C, B〉, we can skip 1 since it is

path-covered by B2, and we can substitute A by A′, since

2A′ path-covers 3 and 4 as well. Similarly, C is substituted

by C ′ to path-cover 5, 6 and 7. The progressive optimization

will substitute 2 by D to further shorten the tour.

Although we use the uniform communication ranges for

all sensor nodes to describe the css scheme, the scheme

also applies to the case where the communication ranges are

different, since we can easily consider the different but fixed

communication ranges when determining whether a sensor

node is path-covered by any segments of the tour.

C. Performance Analysis

1) Upper-bound of the Tour Length: In [17], it has been

shown that for a TSPN problem of n points with disjoint unit

disks of radius d, we have |Ttsp| ≤ |T
∗|+2nd. This bound is

obtained in the case where no combination is made. Following

the same idea, we can extend it to the case with possible

combination operations, which yields an even tighter bound

due to a smaller number of collection sites after combination.

Theorem 5. |Tcss| ≤ |Tcom| ≤ |T
∗|+ 2n′d.

2) Lower-bound of the Tour Length: Suppose the optimal

TSP tour is known in a unit square with n points. Given a

random point on the tour, we can divide the tour into two

parts: the forward sub-path and the backward sub-path, both

of which contains approximately n/2 points, and we know a

lower bound of the TSP is
√

n/2 [24]. If we treat the n′′ < n
collection sites after the css scheme as a TSP problem,

|Tcss| ≥ L
√

n′′/2. (2)

3) Time Complexity of the Scheme: Denote Ctsp as the time

complexity to obtain the optimal TSP tour. The time com-

plexity of the combination algorithm is Ctsp + O(n3 log n).
For the skip-and-substitute algorithm, the time complexity

is O(n2 log 1

δ
). Thus the time complexity of the entire css

scheme is Ctsp+O(n3 log n)+O(n2 log 1

δ
). We will show the

time for skip-and-substitute is relatively small when compared

with that for combination in the sequel.

V. PERFORMANCE EVALUATION

We evaluate the performance of the css scheme and compare

it with the Label-Covering algorithm [9] in this section. Based

on the parameters from the real systems in [25], and observing

the fact that the mobility-assisted data collection is especially
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Fig. 2. Tour length with different numbers of sensor nodes.

important in sparse and not always connected networks, we

consider a sparse square sensing field with size 500×500 m2,

where nodes are uniformly deployed at random, and the

constant ME speed is 1 m/s. We generate 50 random sets

of network topology for each of the cases with 50, 60, 70, 80,
90, and 100 sensor nodes, respectively.

Our simulation, running on a 2.40 GHz CPU, again verifies

the efficiency of Concorde. Concorde can obtain the optimal

TSP tour for more than 90% of the 50× 6 topology sets in 1
second, and all of them are finished in 3 seconds.

A. Tour Length

The css scheme outperforms the Label-Covering algorithm

in terms of the resultant tour length noticeably, as shown

in Fig. 2 (where the communication distance is 20 m) and

Fig. 3 (where the number of sensor nodes is 50), where TSP

represents the length of the optimal TSP tour, COM is the tour

length after the combination operation, CSS and LC represent

the tour length obtained after the entire css scheme and the

Label-Covering algorithm, respectively, and TSP-LB is the

lower bound calculated by (2).

The tour length achieved by our css scheme is 83–89% of

that obtained by the Label-Covering algorithm, and is about

1.4 times of the lower bound, which cannot be achieved by

any practical approximation algorithms [16].

Another observation from Fig. 3 is that, compared with the

Label-Covering algorithm, the advantage of the css scheme is

more obvious when the communication distance is relatively

short (20–50 m). Notice that an important advantage of

exploring ME to collect data from sensor nodes is to deal

with sparse or disconnected networks, which means the css

scheme is specially suitable for these scenarios.
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B. The Effect of δ

The control parameter δ in the skip-and-substitute operation

directly affects the resultant tour and the computation time. To

show its effect, we use a network of 50, 70, and 100 sensor

nodes, respectively, with transmission distance of 50 m, and

run the simulation with different δ values.
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Fig. 5. Effect of δ on the computation time to obtain the traveling tour.
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From Fig. 4 and Fig. 5, not surprisingly we can see the

tour length reduces as δ decreases, while the computation

time increases. However, compared with the reduction in tour

length, the increase in computation time is much slower.

Further, when δ continues to decrease from 1 m, the tour

length reduction comes to a relatively stable stage, so further

decrease of δ is not necessary. Changes in both tour length and

computation time are sharper when increasing δ continuously

from 10 to 100 m, since few segments of the tour are longer

than 10 m, and skip-and-substitute can hardly help.

Another observation is that the time spent on the combina-

tion operation is much larger than that on skip-and-substitute,

where the former is about 5 times higher when n = 50 and

increases to more than 7 times higher when n = 100, agreeing
with our complexity analysis in Section IV-C3.

VI. FURTHER DISCUSSION

Many problems on the path selection problem need further

exploration, and the css scheme can be extended accordingly.

Due to the data rate constraints in wireless communication, a

tour intersecting with all the communication disks of sensor

nodes may not always be feasible in practice. We have ex-

tended the css scheme by considering the data rate constraints

but cannot present here due to space limit. The css scheme

described above is based on the case of a constant ME speed

v. It is worth mentioning that it can also apply to the case of

a variable speed v(t): the ME just selects the traveling tour as

usual, and moves along it with the maximum speed vmax. MEs

can also adjust travel speed to deal with data rate constraints.

When there are multiple MEs in the network, normally they

are expected to have similar workload and collection latency,

thus covering similar sizes of sensing areas and numbers of

sensor nodes. If the sensing field is divided into subfields, we

can apply the css scheme to each subfield individually at a

smaller scale. The collection job can be requested by cluster

heads instead of sensor nodes themselves, and cluster heads

are rotated among sensor nodes locally to balance energy

consumption and MEs are informed along the way. Certainly

the ME and the sensing field may have other constraints

such as travel trajectory and obstacles. We did not consider

them explicitly in this paper, but the progressive optimization

approach should apply in these situations as well.

VII. CONCLUSIONS

In this paper, by following the progressive optimization

approach, we have proposed a combine-skip-substitute (css)

scheme to reduce the tour length, and thus the data collection

latency, in wireless sensor networks with mobile elements. We

have shown the correctness and complexity of the proposed

schemes. Through an extensive simulation study, we have

found that the proposed scheme can outperform the best

known heuristic algorithm published so far, and the results

are within a small range of the lower bound, which cannot

be achieved by any practical approximation algorithms. Our

future work, in addition to the issues discussed in Section VI,

will focus more on extending the css scheme further to the

online scenarios, where the data collection requests arrive at

the ME progressively as well.
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