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Abstract—In Mobile Opportunistic Networks, the cost and
effectiveness of any opportunistic forwarding is measured by the
expected delay of a message. Hence, its critical goal is to have low
delay for a message. This paper studies the average delay of a
message in a Mobile Opportunistic Network on Manhattan area.
We first model the mobility of a message as a biased random
walk in tilted grid and analyze the delay of a message based
on the hitting time of a bias random walk. We have derived an
exact expression of expected delay for a walk starting from any
point in tilted grid for both biased and unbiased random walks
and provide a closed form approximation of average delay of a
message for the case of unbiased random walk. The key result
is that the average delay of a message in Mobile Opportunistic
Networks is very sensitive to the biased level of a random walk at
each stage of the walk (depends on the distance from destination
at its current stage). Then, this key result explains why most of
the smart message forwarding algorithm in Mobile Opportunistic
Network works reasonably well.

I. INTRODUCTION

In Mobile Opportunistic Networks (MONs), a message is

carried by randomly moving mobile nodes and any oppor-

tunistic connectivity like encountering another mobile node

is considered for forwarding of a message until the message

reaches the sink. However, the connectivities are intermittent

due to the mobility of mobile nodes being independent and

random. This lack of connectivities causes potentially long

delays for a message in MONs.

The notion of MONs, [1], finds its origin from Delay

Tolerant Networks (DTNs), [2], where messages are relayed

physically from source to destination by mobile units [3]. Such

DTN characteristics appear commonly in a Wireless Sensor

Network (WSN), to reduce the multi-hop transmissions from

source to sink, since maximizing the life time of network by

saving the energy is the most critical issue. Besides the energy

efficiency, it gained increasing attention from wireless network

researchers when Grossglauser and Tse [4] showed that it

is possible to increase the capacity bound Θ
(
1/

√
m logm

)
obtained by Gupta and Kuma [5] to Θ(1) with only a single

relay node (RN) to sink, where m is the number of identically

randomly located wireless nodes. The Gupta and Kuma’s

capacity bound implies, as the number of node (sensors or

Ad-hoc units) increases to infinity, the capacity will approach

to zero. That is why Grossglauser and Tse’s result still give

us some hope to achieve a reasonable throughput in a network

with high node density.
Most DTNs have a very small number of RNs as compared

to the number of static sensors and they are actual part of the

WSN. Their mobilities depend on the network topology or are

controlled by the network itself [6]. In MONs, the network

often does not have any control over the mobility of mobile

units, so their mobilities are random and independent of any

underlaying network topology. Additionally the routings of

mobile RNs are more generic than DTNs. Therefore, there

is no cost of maintaining and controlling their mobilities. It

simply considers any opportunistic connection for message

forwarding. Despite the potential benefits of MONs, the long

message delay due to intermittent connectivity of RNs can be

a significant drawback for some applications. For example,

surveillance applications need to have some assurance for

the delay of message so that the data containing critical (or

dangerous) information can quickly reach the sink and get

processed. Another example is an industrial or farming related

applications which may not require immediate response, but

still needs to have some reasonable guarantees in their average

delays, so that it is not too late to respond to any potential

damages due to early frost or pest attacks.
In a MON, the message delay is significantly influenced by

the number of RNs in the network and underlying message

forwarding algorithm. We have listed a few routing algorithms

in the related works section II. In this paper, we analyze

the average delay of message in MONs on Manhattan area.

However, instead of analyzing the message delay for different

forwarding algorithms, we directly look at the combined

effect of the number of RNs and the goodness of forwarding

algorithms, to the delay of messages by introducing a single

parameter called bias level. The main contributions of this

paper are,

• Provide alternative method of estimating the hitting time

of a biased (or unbiased) random walk in a tilted square

grid, by mapping it to the biased random walk in 1-

dimensional Markov chain.

• The exact expression for the expected delay of single

copy forwarding in the MON on a tilted grid topology

is derived. This expression could be useful for message

routing optimization in MONs, such that the minimum
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average message delay is satisfied.

• Deriving the bound of expected delay of a message, with

respect to the bias level in Theorem 4.1. It reveals that

the upper bound of the expected delay of a message

is sensitive to bias level and it reduces from quadratic

delay to linear with small increases in the bias level. This

provides a concrete reason why all the simple single copy

forwarding schemes help reduce the delay of messages

significantly, compared to random walking (without any

smart forwarding). This result is similar to Beraldi [7]

who analyzed the average delay of biased random walks

in Uniform Wireless Networks.

• The bias level, under our definition, influences the prob-

ability that the selected RN is actually moving closer to

the sink than the current RN. We show in the Corollary

4.2 that if the bias level of a moving message can be

maintained greater than some threshold for the entire trip

to the sink, then the delay of the message will stay in

linear order of its rectilinear distance from its origin to

the sink.

II. RELATED WORKS

Since the delay of message forwarding is unreliable, sev-

eral works have attempted to reduce the delay of messages

from source to destination, by smart single copy forwarding

algorithms [8] and multiple copy forwarding algorithms [9].

In [9], they state that single copy forwarding is often a

good starting point for the multiple copy forwarding, as it

provides an upper bound for the average delay of messages.

Therefore, it is worthwhile to analyze the delay of a message

for single copy forwarding algorithm in MONs. Mobility-

based forwarding [10] uses mobility information to select the

intermediate mobile nodes which we refer to them as RNs.

The selection of RNs is based on the current moving direction

of the RN. The direction is estimated by finding the angle

between an auxiliary vector from the current location of RN

to destination and the velocity of the RN and then, the decision

is basically made based on this angle. If the angle is less than

π/2, RN is expected to move closer to the destination. This

method assumes that each node knows its own location and

the location of the destination.

Probability-based forwarding [11] forwards the message to

a RN based on its probability of delivering the message to

the destination. This probability is obtained by maintaining

a prediction scheme which increases the probability if one

frequently encounters the destined node or the probability

decays with time from the last encounter. The Context-Aware

Routing, introduced in [12], is similar to Probability-based

forwarding, except it computes delivery probability based on

the prediction of attributes in the context of a set of parameters

related to the message delivery, like mobility patterns. The

prediction is done by a Kalman filter.

All the above single copy forwarding schemes try to reduce

the delay of messages, by utilizing extra information to make

a better decision for selecting RNs that have a better delivery

probability. However, they all fail to show the expected im-

provement in the delay by selecting mobile nodes with a better

delivery probability for the message relay. Spyropoulos [8]

has divided the single copy message routing in MONs into

four distinctive categories, which are good representatives of

different routing approaches: direct transmission [4], random-

ized routing, utility-based routing with 1 hop diffusion, and

utility-based routing with transitivity. Each routing method

employs only the last encounter time of each RN, as the

only source of information to make a decision on whether

to forward the message to the next node or not. Each category

of routing schemes is analyzed and its expected delay is

provided with respect to the nodes’ transmission range. Even

though the results give expected delay between a mobile

source and a mobile destination, their results are still direct

function of expected hitting time of a random walk. However,

their results are limited to these four categories of routing

algorithms and can not be generalized any further. We model

this decision problem of selecting the mobile nodes with better

delivery probability as a biased random walk of a message with

different bias level α. This allows all single copy forwarding

algorithms to be represented by a single variable (bias level).

Beraldi published a work related to finding the hitting time

of biased random walks for opportunistic searching problems

in wireless networks [7]. He derived an expression for the

delay (hitting time) of a biased random walk in uniform

wireless networks based on the relative movement of biased

random walks. But, it was done under a continuous region so

the final expressions are very different from ours, since our

results are from the biased random walk in finite tilted square

graph. Even though, we both arrive at the same conclusion as

the hitting time is very sensitive to bias level, here we provide

a richer analysis about the effects of bias level.

III. PROBLEM FORMULATION

First, we define the topology of MON on Manhattan area

and the movement of the messages carried by RNs. Then

derive an exact expression, approximation, and bound of the

delay of messages in MON on Manhattan area.

A. Network Topology and Mobility Model

Suppose, RNs are moving at a constant speed and inde-

pendently in the streets of Manhattan and all messages are

generated at the intersection point of the streets (or messages

are forwarded to nearest intersection points through multiple

hop communication). The devices at intersection points store

the messages until the RN enters its communication range and

messages will be carried by RNs until they reach the sink node.

We assume a sink node (destination of all messages) is located

at the center of the Manhattan such that the chance for RNs

to encounter the sink can be maximized and the messages in

any RNs can be forwarded to another RN if they are both

at the same intersection point. The forwarding decisions are

made from a single copy message forwarding algorithm. For

example, when a RN with messages encounters another RN,

the algorithm forwards the message to other RN if it has higher
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Fig. 1. The grid network with the sink (BS) at the center is showing the
vertices that are equal hops away with the same shape and color.

tendency to move closer to the sink location. This tendency

can be predicted for the near future and is usually maintained

by each RN. Here, we are not concerned with neither the

prediction method nor the maintenance, but simply assume that

there is an oracle which makes it available at the time of the

forwarding process, which is similar to an oracle assumption

in section 4 of [7]. In a single copy message forwarding,

the messages do not get duplicated when they are forwarded

to other RNs. Therefore, the expected delay of the message

depends less on the number of RNs in the network but more

on forwarding algorithm.

Regardless of what algorithm is used, any smart forwarding

algorithm would forward the message to the RN that is likely

to get closer to sink and remain close to sink to increase the

chance of hitting the sink, or other RNs that will encounter

the sink in the near future. So, from the message point of

view, it’s mobility pattern follows a biased random walk

in the Manhattan area and its bias level depends on the

performance of smart forwarding algorithms, number of RNs

in the network. The direct modelling of every smart forwarding

algorithms often hides it asymptotic effects on the average

delay of messages. Therefore, we study the average delay of

a message on the MON in Manhattan area by analyzing the

hitting time of a biased random walk at its bias level α.

Let, a tilted square grid graph G = (V,E) represents the

Manhattan streets, where V = {v1, v2, · · · , vn−1, o} is set of

nodes representing the intersection points in Manhattan and o
is the sink node as shown as Fig. 1. The square grid graph

(or square lattice graph) is often used to approximate the

Manhattan area to study the effects of mobility on the perfor-

mance of routing protocols for Mobile Ad-hoc Networks [13].

Let, Ni denotes a set of neighbors of node vi. The edge

transition probabilities for the biased random walk at vi ∈ V
is determined by the degree of vi, ρ(vi) and the number of

neighbors of vi which helps the random walk move closer to

the sink node o, which is denoted as |Wi|.
In the random walk, the probability that the walk at vi

Fig. 2. Markov chain G1 model representing the motion of a message relative
to the sink location. The state 0 denotes the sink location where messages
will be absorbed and state D + 1 is boundary of G where the message will
be pushed back to state D in its next transition

moves closer to the sink after moving one step, which is

denoted as P (d(vj , o) < d(vi, o)|vj ∈ Ni), is
|Wi|
ρ(vi)

. In a

biased random walk, if α helps to increase this probability

by taking a fraction of probability from each edge that moves

away from the sink and adds them back to the edges that are

moving closer to the sink, then it can be formally defined as,

Pα(d(vj , o) < d(vi, o)|vj ∈ Ni) =
|Wi|+ α (ρ(vi)− |Wi|)

ρ(vi)
.

(1)

Then, the edge transition probability of edge (vi, vj) is simply,

pi,j =

{
Pα(d(vj ,o) < d(vi,o)|vj ∈ Ni)

|Wi| , if vj ∈ Wi

1−Pα(d(vj ,o) < d(vi,o)|vj ∈ Ni)
|Ni|−|Wi| , if vj /∈ Wi.

(2)

When α = 0, the Pα(d(vj , o) < d(vi, o)|vj ∈ Ni) =
|Wi|
ρ(vi)

.

This is equivalent to the case of unbiased random walks where

a walk can move to any of its adjacent vertices with equal

probability. When 0 < α < 1, the message is likely to move

closer to the sink at each stage of the random walk. It is

obvious that if α = 1, the message will always move towards

the target. If the message has started from node vi which

d(vi, o) = d hops away from o, it will reach the target after

exactly d such transitions. For our problem, we assume that

0 ≤ α ≤ 1 since any rational message forwarding algorithm

would do at least better than an unbiased random walk.

B. Mapping from 2-D Random walks to 1-D Random walks

Given that the sink node o is at the center of the tilted grid

G, one can view the movement of the biased random walk in

G relative to a location o. The relative motion of the biased

random walk after one transition is either moving one hop

closer to the sink node or moving one hop away from the

sink node. Based on this observation, we can map the biased

random walk in G to a biased random walk in a birth-and-

death like Markov chain, G1, where each state represents a

rectilinear distance from the sink to other nodes vi ∈ V \o,

d(o, vi), as shown as Fig. 2.

The state transition probabilities, Pi,j , are derived from

Eqn.1. Let, a set Vk represents a group of nodes that are exactly

k-hops away from the sink node o and let max{k} = D+ 1.

In the tilted square grid, the number of nodes exactly k-hop

away from the sink node is |Vk| = 4k. There are exactly four

vertices in Vk, which has three outgoing edges moving 1-hop

away from the sink and one edge moving 1-hop closer(in) to

the sink, which are denoted as Ok,3 ⊂ Vk and Ik,1 ⊂ Vk
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Fig. 3. The simulation shows that the expected delay of a random walk
starting at the boundary of tilted grid increase quickly as the radius of
tilted grid increase from 3 to 40. The graph also show that expected hitting
time of random walk in Markov chain G1 closely matches with result from
tilted square grid G. It also show exact expression of average delay and its
approximation follows closely with simulation results.

respectively. The rest of them has two outgoing edges moving

1-hop away from the sink and two moving closer to the

sink, which are denoted as Ok,2 ⊂ Vk and Ik,2 ⊂ Vk

respectively. For example, if a message is at v the edge set

{(v, x), (v, y), (v, z)} increases distance by one hop and only

edge (v, w) reduces distance by one hop from center, as shown

as Fig. 1. Assume all RNs are at its stationary distribution, then

the stationary probability of a biased random walk being in the

set Ok,3 is 4
4k and the stationary probability of a biased random

walk being in the set Ok,2 is 4k−4
4k . Since, each outgoing edge

is chosen by the RN with an equal probability of 1/4 in the

case of unbiased random walk, the state transition probabilities

are,

Pk,k−1 =
1 + α

2
+

α− 1

4k
,

Pk,k+1 =
1− α

2
+

1− α

4k
,

P0,1 = 0,

PD+1,D = 1. (3)

The P0,1 = 0 since state 0 is an absorption state which

means message has reach the sink. State D+1 represents the

message being in the boundary of tilted grid G.

IV. AVERAGE MESSAGE DELAY ANALYSIS

Since the transmission delay is not significant as compared

to the delay from RNs carrying the message, our delay analysis

focuses on the time spent by the message in RNs before it

finally reaches the sink. We refer to this delay as average

message delay. This delay is proportional to hitting time of

the biased random walk in G1 since the speed of RNs are

assume to be constant.

A. Average Message Delay for Unbiased Random Walk

First, we derive the worst average message delay for the

message originated d hops away from the sink which is the

hitting time of unbiased random walk when α = 0. The state

transition probability of unbiased random walk in Markov

chain G1 are,

pk,k+1 =
3

4

1

k
+

1

2

k − 1

k
=

2k + 1

4k
pk,k−1 = 1− pk,k+1,

for 0 < k < D.

Instead of solving the Markov chain directly for an expected

hitting time of the random walk starting at state d, we have

follow the method using special structure of this Markov chain

from Ross’s book [14] which makes good use of the Markov

chains property to enter state (k − 1) for the first time, the

random walk must have entered the state k ≤ D. Let Ni

denotes the number of additional transitions that it takes the

chain when it first enter the state i until it transits to state

i − 1. Then, the expectation of Ni, E[Ni] = μi, represented

as a recursive function,

μi = 1 + E [Ni+1 +Ni] pi,i+1

= 4i
2i−1 + 2i+1

2i−1μi+1. (4)

A generalized formula in a non-recursive form for μi is

obtained when Eqn. 4 was solved reverse inductively from

state (D + 1) as:

μi =
2(D + 1)2 − 2i2 + 2i− 1

2i− 1
. (5)

Then, average time taken for an unbiased random walk

starting from state d to reach state 0 for a first time, also known

as hitting time, is E [Nd,0] =
d∑

i=1

μi and an exact expression

and closed form approximation formula for E[Nd,0 is derived

after extensive simplification using small mathematical tricks

like −2i2 = −4i2/2 = −((2i− 1)(2i+ 1) + 1)/2.

E [Nd,0] =

(
2(D + 1)2 − 1

2

) d∑
i=1

1

2i− 1
− d2

2
(6)

≈
(
2(D + 1)2 − 1

2

)
(ln (2d− 1) + γ + ε2d−1)− d2

2
(7)

= O
(
D2 log d

)
, (8)

where γ is Euler-Mascheroni constant and

lim
(2d−1)→∞

ε2d−1 → 0.

In Eqn. 6, the summation term is approximated by

d∑
i=1

1

2i− 1
≈ 1

2

2d−1∑
i=1

1

i

and logarithmic result is due to Leonhard Euler’s rate of

divergence of Harmonic series.
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Fig. 4. The simulation shows that the expected delay of a biased random walk
starting at the boundary of tilted grid reduces quickly as the bias level increase
from 0 to 0.01 and the delay become almost linear when bias level is 0.03.
We also show that when bias level is 0.3 the expected delay is significantly
reduced and is completely linear. This result supports our Theorem4.1 and
Corrollary 4.2

From Fig. 3, we show that the mapping of a unbiased

random walk in tilted grid G to 1-D Markov chain G1 well

preserves all the characteristics of unbiased random walk in G.

From simulation, we also show that the exact formulation and

approximation match closely to the simulation results for the

case of unbiased message forwarding. It is worth highlighting

that our result is not just the worst case of message delay where

a message starting from state d = D + 1 but it also allow us

to calculate any average delays for messages originated from

any vertex v ∈ V .

Remark: The number of vertices in the grid of Fig. 1 is

n = |V | = O(D2). So, O (n log n) = O
(
D2 logD

)
. The

O (n log n) is a well known result of a worst hitting time for a

random walk in 2-dimensional grid graph (in Table 1 of [15]).

As a consequence, the Eq. 8 is also equal to a bound for the

hitting time for a random walk in 2-dimensional grid graph.

This means our problem modelling and our analysis could be

used to approximate the hitting time in grid topology.

B. Average Message Delay for biased Random Walk

In this section, we obtain the average message delay of

biased random walk by following a similar procedure used in

an unbiased random walk case. First, we find the recursive

formula for μk,

μk = 1 + Pk,k−1 (μk+1 + μk)

=
1

Pk,k−1
+

Pk,k+1

Pk,k−1
μk+1. (9)

μD+1 = 1 since state D + 1 is last state and PD+1,D = 1.

We obtain preceding non-recursive equation from Eq. 9 as:

μj =
1

Pj,j−1

⎛
⎝1 +

D−1∑
i=j

i∏
l=j

Pl,l+1

Pl+1,l

⎞
⎠+

D∏
l=j

Pl,l+1

Pl,l−1
. (10)

We have numerically computed the Eα [ND+1,0] at

different D by taking summation of μi, for i = 1 : D,

and then compared it to simulation as shown as Fig. 4.

However, in order to see the impact of the bias level

α, we further simplify the Eα [ND+1,0] after substituting

Eqn. 10 to obtain following Theorem. We have abused the

notation of bias level α by additional variable x as subscript

to indicate, the bias level is not necessarily constant but it

can actually vary with current location of biased random walk.

Theorem 4.1: A biased random walk with bias level 0 ≤
α ≤ 1 in G, the hitting time, Eαx [Nd,0], for walk starting at

d hop away from the sink has the following bounds:

Eαx [Nd,0] =

⎧⎪⎪⎨
⎪⎪⎩

O
(
D2 log d

)
, for αx = 0

O (D log d) , for 0 < αx < 1
2x+1

O (max{d,D − d}) , for αx = 1
2x+1

O (d) , for 1
2x+1 < αx ≤ 1,

where x ∈ X and X = {d, . . . , 0} is a series of distances of

a biased random walk relative to the sink during its trip from

the origin of walk d to sink o. αx is denoted as the bias level

of the random walk at x ∈ X .

Proof: Since the proof of Theorem 4.1 is technical and

lengthy, deferred to a technical report [16].

Next, we provide a detailed discussion about the Theo-

rem 4.1.

C. Discussion on Bound for the Average Message Delay with
respect to the Bias Level

We have introduced a method of numerically computing

the hitting time of biased random walks starting anywhere at

the intersection of a tilted square grid and using this exact

expression we derived the upper bound of average message

delay. Since we assume that each step of the transition is

of unit length, the message delay following a biased random

walk in MON on Manhattan area is directly proportional to

the result obtained in Theorem 4.1. It also concludes that

the average delay of a message is very sensitive to the bias

level. This result is supported by our simulation as shown as

Fig. 4. A similar conclusion was also obtained in [7] for a

biased random walk in Uniform Wireless Network. However,

Theorem 4.1 reveals another very important fact that the

average message delay is sensitive to bias level of a random

walk at its current location.

To elaborate this fact, if the smart forwarding in MONs can

maintain the bias level of random walking at x larger than

1/(2x + 1), the average delay would be O(d). Theorem 4.1

shows when messages originated far from the sink, only small

increase in its bias level is enough to maintain the average

delay to be O(d) since αx is inversely proportional to x.

This mean even if the performance of message forwarding

algorithm is poor (e.g. due to inaccurate prediction of RNs

future positions), it can still bring messages closer to sink

location in linear time. When the messages get closer to sink

the information about the sink location also get richer and

more accurate. This result explains why most of the smart
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(not very smart) forwarding algorithm, listed in the section

II, produces good performance in the message delay. Further

more, the Theorem 4.1 also proof following corollary.

Corollary 4.2: If the bias level of a message can be

maintained higher than 1/3 for its entire trip to sink due to

whatever reasons, The worst average message delay would

be O(d).

For example, this corollary indicates, it is not necessary

to forward the message to any other intermediate RNs with

higher tendency to move closer to sink if the current RN is

carrying the message with bias level higher than 1/3, since

this will not change the order of average message delay. It

is a useful information to be considered while designing the

routing algorithm which optimizes delay of a message as well

as energy and interference in MONs. However, measuring this

bias level is still an open problem in practice.

When the movement of the message is unbiased, αx = 0,

the expected message delay can be as large as O(D2), even if

the message originated very close to the sink as long as d > 1.

When d = 1, Eαx [Nd=1,0] = 0. This means the message

can directly be forwarded to the sink in constant time. So,

intuitively, when the messages are just one hop away from

the sink the device at these intersection points would keep

the messages until it encounters a RN that is moving towards

the sink. Therefore, the message delay would be only one

transition delay. In this paper, we set the worst case mobility

of a message as an unbiased random walk (α = 0). However,

we can still numerically compute the average message delay

for the case when α < 0 using Eqn. 10 and state transition

probabilities in Eqn. 3.

V. CONCLUSION AND FUTURE WORKS

We have studied the average message delay of single copy

forwarding in MONs on a Manhattan area, by modelling the

movement of message forwarding as a biased random walk

on the tilted square grid graph. Since, it is difficult to directly

analyze the delay in the tilted square grid we have grouped the

vertices with equal rectilinear distance to the sink as one set

and view the movement of message starting at hop distance

d relative to location of the sink at the center of grid. This

relative movement of a message allow us to map the biased

random walk in tilted square grid to a biased random walk in

1-D Markov chain, while preserving the biased random walk

characteristics in 2-D. Then, by using Markov properties, we

derive an exact expression for hitting time of biased random

walk which represents an average delay of message till it

reaches the sink. We also provide closed form approximation

of the hitting time expression for the case of unbiased random

walks (used to indicate the worst case delay of a messages in

MON). For biased random walks, we have derived an upper

bound for the average delay of a message to explain the effect

of bias level.

Finally, this upper bounded results show that the average

delay of a message is very sensitive to the bias level. Moreover,

it is sensitive to the bias level at each corresponding location

of the trip to the sink. We also find out that if a walk can

maintain its bias level greater than a constant threshold of 1/3
then the average delay of a message can be kept linear to a

rectilinear distance from the origin of a message to the sink

node. All these theoretical conclusion were supported by the

simulations.

As for our future works, we will model various existing

single copy routings as a biased random walk and analyze

their corresponding bias level to compare their performance

and explain their limitations. Also, we will look at the methods

of measuring the bias level in practice.
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