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Abstract—We propose a scheme to reach shorter multicast
delay, better energy utilizing efficiency and higher efficiency of
data transferring for Sensor Grid. Our scheme calculates the
space, energy and data weight vectors in one cluster. Then it
searches a new vector composed by the linear combination of
the three individual ones. We build game balance equation, use
the equal correlation coefficient between the new and old vectors
to find the point of game balance, seek linear parameters, and
generate a least weight path tree. Extended simulation results
indicate that our scheme attains less average multicast delay, the
number of links used and better system robusticity.

I. INTRODUCTION

A Sensor Grid integrates wireless sensor networks with
grid infrastructures to enable the collection of real-time sensor
data. It also enables the sharing of computational and storage
resources for sensor data processing management [1].

Many well-known multicast schemes have been presented
in reference listed: Double-Channel XY Multicast Wormhole
Routing (DCXY) uses an extension of the XY routing al-
gorithm to set up the routing scheme. Dual-Path Multicast
Routing (DPM) [2] is developed for the 2 −D mesh. CAN-
based multicast is developed for the multicast applications that
use the CAN (Content-Addressable Network) configuration.

In the previous work of multicast for network communi-
cation, the system only considered one space factor, but the
energy factor and the data factor. In fact, the energy factor
can maximize the sensor grid life [3], [4], and the data factor
can improve the efficiency of the data transmission [5]. As a
result, we must synthetically consider the space, energy and
data factors, while constructing the multicast tree, by using the
concept that the three factors game balance with each other.
So that we can design a multicast scheme in m − D Sensor
Grid that can achieve not only shorter multicast delay and less
resource consumption, but also the better energy efficency and
system robusticity. A set of novel algorithms are presented:
1) Cluster formation algorithm that divides the group members
into different clusters in terms of static delay distance;
2) Relative weight vectors generation algorithm that seeks
the spatial central node in every cluster, calculates the space
weight of every node, searches the weight of energy and data
quantity of every node;

3) The least weighted path tree algorithm that, after obtain-
ing the space, energy and data weight vector, builds game
balance equations, seeks game balance point, resolves linear
parameters, and makes out new weight vector according to the
algebra sum of the three known vectors, at last generates the
least weighted path tree;
4) Multicast routing algorithm that efficiently dispatches the
multicast packets in the group on the basis of the architecture
constructed by the above three algorithms.

II. THE MATHEMATICS MODEL TO DESCRIBE SYSTEM

A. The Mathematics Model of System

The multicast group with l members of the system is
denoted as: G = {U0, . . . , Ui, . . . , Ul−1}, where i ∈ [0, l − 1].
Each member can be identified by m coordinates:
Ui = (ui,0, . . . , ui,j , . . . , ui,m−1), when 0 ≤ j ≤ m− 1. For
example, member U0: 2 dimension coordinates (u0,0, u0,1) as
(0, 0) and member U1: 2 dimension coordinates (u1,0, u1,1)
as (0, 1), etc.

As illustrated in Fig. 2, there are two nodes
Ui = (ui,0, . . . , ui,j , . . . , ui,m−1), where i ∈ [0, l − 1] and
Ui′ = (ui′ ,0, . . . , ui′ ,j , . . . , ui′ ,m−1), where i

′ ∈ [0, l − 1]

and i
′ 6= i.

We defined Ui and Ui′ are neighbors, if and only if
ui,j = ui′ ,j for all j, except ui,j′ = ui′ ,j′ ± 1 along only one
dimension j

′
. Thus, in the m −D Sensor Grid, a node may

have m to 2m neighbors.
We also defined the Manhattan Distance of two nodes [6].

In a 2−D Sensor Grid, the static delay distance of two nodes
(X0, Y0) and (X1, Y1) is |X1 −X0| + |Y1 − Y0|. The sum
of static delay distances from all the other nodes (Xi, Yi) to
(X0, Y0) (i ∈ [1, n− 1]) is: f(X0, Y0) =

∑n−1
i=1 (|Xi −X0|+

|Yi − Y0|).
Then we configure the space, energy and data factors.

We established three weight vectors to describe them in
each cluster, and the value of every item means the relative
weight of every node. For example, the space weight vector
of the j − th cluster is W

′

j = (w
′

j,0, . . . , w
′

j,i, . . . , w
′

j,n−1),
i ∈ [0, n − 1], n means that there are n nodes in the cluster,
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w
′

j,i means the space weight of the node i within the j − th
cluster; In the same way, the energy weight and data vector
W
′′

j , W
′′′

j ; and the general weight Wj . After that, we will
discuss how to get the value of the three weight vectors, and
how to combine the three vectors to a general one.

B. The Space, Energy and Data Weight Vector

The system has to study special algorithms for computer to
understand the space weight. Firstly, the system should find the
central node of the cluster, then to figure out the space weight
of each node to the central node according to the shortest path
principle. Generally speaking, the greater the space weight, the
nearer the node to the cluster core, and vice versa. The node
with maximum weight is the central node of the cluster namely
the space cluster core. For example, the space weight vector of
one cluster is shown in Table I. The weights marked * belong
to the cluster member. The node with maximum weight is
(2, 2), for which W

′

(2,2) = 10 and so the node is the cluster
space core.

If we establish the multicast tree for one cluster, only
considering the space weight, the tree should be as shown
in Fig. 1. And each factor would maximize its own interests.

TABLE I
THE SPACE WEIGHT VECTOR W

′
IN ONE CLUSTER, THE WEIGHTS

MARKED * BELONG TO THE CLUSTER MEMBER.

Y=6 0 1∗ 0 0 0
Y=5 0 3 2* 1 1∗
Y=4 0 4* 2 1 1

Y=3 1* 5 2 1 1

Y=2 2 10* 4 2 2*
Y=1 1* 3* 1* 0 0

X=1 X=2 X=3 X=4 X=5

Fig. 1. The multicast tree according to the space weight.

Compared with the space weight vector, the energy weight
vector is easier to be obtained, as shown in Table II.

We also can just define the data weight in the same way, as
shown in Table III.

III. THE RELATIONSHIP OF THREE FACTORS

The relationship of the space, energy and data weight vector
W
′
, W

′′
and W

′′′
are game balance. The space, energy and

data factors are three factors independent with each other,

TABLE II
THE ENERGY WEIGHT VECTOR W

′′
, IN THE CLUSTER, THE WEIGHTS

MARKED * BELONG TO THE CLUSTER MEMBER.

Y=6 0 4* 0 0 0
Y=5 0 3 2* 1 1∗
Y=4 0 10* 2 2 1

Y=3 7* 4 3 2 1

Y=2 2 1* 4 3 8*
Y=1 3* 5* 6* 0 0

X=1 X=2 X=3 X=4 X=5

TABLE III
THE DATA WEIGHT VECTOR W

′′′
IN ONE CLUSTER, THE WEIGHTS

MARKED * BELONG TO THE CLUSTER MEMBER.

Y=6 0 1∗ 0 0 0
Y=5 0 3 2* 1 0∗
Y=4 0 5* 2 1 1

Y=3 2* 5 2 1 1

Y=2 2 1* 4 2 2*
Y=1 3* 10* 3* 0 0

X=1 X=2 X=3 X=4 X=5

which have meaning and formation respectively; any of them
tends to maximize their result. Namely the three factors game
with each other. On the other hand, the three factors also
coexist in a system, common working, mutual interaction and
constraint. Namely they balance with each other. We must
synthetically consider the space, energy and data factors while
constructing the multicast tree. The basic idea goes through
the whole process of constructing the hierarchical multicast
tree.

After generating the space, energy and data weight vec-
tors W

′
, W

′′
, W

′′′
, we combine the three old ones to a

new general weight vector W . Now the system just knows
W = f(w

′
, w
′′
, w
′′′
), but it does not know the expression of

the f(). There are a lot of formats of f() can be used, but for
one simple and effective trial, we just used the linear form:
W = αW

′
+βW

′′
+γW

′′′
. After that we build game balance

equations, seek game balance point, resolve linear parameters
α, β, γ generate new weight vector W . At last, we generate
the least weighted path tree as hierarchical multicast tree in
one cluster.
(1). To define the weights of the nodes:

Wi,j = αiW
′

i,j + βiW
′′

i,j + γiW
′′′

i,j (1)

Wi,j : The weights of the nodes;
αi, βi, γi: Linear relation modulus, αi, βi, γi ∈ r, αi, βi, γi ≥
0,as αi, βi, γi < 0 nonsense;
W
′

i : The space weight vector;
W
′′

i : The energy weight vector;
W
′′′

i : The data weight vector.
(2). The linear relation modulus of the weights of the nodes
satisfied:

αi + βi + γi = 1; 0 < αi, βi, γi < 1;αi, βi, γi ∈ r. (2)

Theorem 1. If, three linear no-relationship vectors W
′

i , W
′′

i ,
W
′′′

i their linear combination Wi,j = αiW
′

i,j + βiW
′′

i,j +
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γiW
′′′

i,j , αi, βi, γi are Linear relation modulus, αi, βi, γi ∈ r,
αi, βi, γi ≥ 0, then following express is satisfied:

αi + βi + γi = 1, 0 < αi, βi, γi < 1, αi, βi, γi ∈ r

(3). The space, energy and data factors are game balance
with each other, the game balance point is:

Wi ·W ′i
‖W ′i‖

=
Wi ·W ′′i
‖W ′′i ‖

=
Wi ·W ′′′i
‖W ′′′i ‖

(3)

Theorem 2. If three linear no-relationship vectors,
W ′i = (w′i,0, . . . , w

′
i,j , . . . , w

′
i,m−1),

W ′′i = (w′′i,0, . . . , w
′′
i,j , . . . , w

′′
i,m−1),

W ′′′i = (w′′′i,0, . . . , w
′′′
i,j , . . . , w

′′′
i,m−1) their linear

combination Wi = (wi,0, . . . , wi,j , . . . , wi,m−1), and
Wi = αiW

′

i + βiW
′′

i + γiW
′′′

i , αi, βi, γi are Linear
relation modulus, αi, βi, γi ∈ r, αi, βi, γi ≥ 0. The game
balance point of W ′i, W ′′iand W ′′′i is

Wi·W ′i
‖W ′i‖

=Wi·W ′′i
‖W ′′i ‖

=Wi·W ′′′i

‖W ′′′i ‖
.

Combining (4), (5), the paper builds the liner binary simple
equations: {

αi + βi + γi = 1
Wi·W ′i
‖W ′i‖

=
Wi·W ′′i
‖W ′′i ‖

=
Wi·W ′′′i

‖W ′′′i ‖
For Wi = αiW

′
i + βiW

′′
i + γiW

′′′
i

(αiW
′
i+βiW

′′
i +γiW

′′′
i )·W ′i

‖W ′i‖
= (αiW

′
i+βiW

′′
i +γiW

′′′
i )·W ′′i

‖W ′′i ‖
= (αiW

′
i+βiW

′′
i +γiW

′′′
i )·W ′′′i

‖W ′′′i ‖
then

(αiW
′
i + βiW

′′
i + γiW

′′′
i ) ·W ′i · ‖W ′′i ‖ · ‖W ′′′i ‖

= (αiW
′
i + βiW

′′
i + γiW

′′′
i ) ·W ′′i · ‖W ′i‖ · ‖W ′′′i ‖

= (αiW
′
i + βiW

′′
i + γiW

′′′
i ) ·W ′′′i · ‖W ′i‖ · ‖W ′′i ‖

For αi + βi + γi = 1,then
αi =

‖W ′′i ‖+‖W ′′′i ‖
2(‖W ′i‖+‖W ′′i ‖+‖W ′′′i ‖)

=

√∑m−1

j=0
w
′′
i,j

2
+

√∑m−1

j=0
w
′′′
i,j

2

2

(√∑m−1

j=0
w
′
i,j

2
+

√∑m−1

j=0
w
′′
i,j

2
+

√∑m−1

j=0
w
′′′
i,j

2
)

βi =
‖W ′i‖+‖W ′′′i ‖

2(‖W ′i‖+‖W ′′i ‖+‖W ′′′i ‖)

=

√∑m−1

j=0
w
′
i,j

2
+

√∑m−1

j=0
w
′′′
i,j

2

2

(√∑m−1

j=0
w
′
i,j

2
+

√∑m−1

j=0
w
′′
i,j

2
+

√∑m−1

j=0
w
′′′
i,j

2
)

γi =
‖W ′i‖+‖W ′′i ‖

2(‖W ′i‖+‖W ′′i ‖+‖W ′′′i ‖)

=

√∑m−1

j=0
w
′
i,j

2
+

√∑m−1

j=0
w
′′
i,j

2

2

(√∑m−1

j=0
w
′
i,j

2
+

√∑m−1

j=0
w
′′
i,j

2
+

√∑m−1

j=0
w
′′′
i,j

2
)

So: 0 < αi, βi, γi < 1, αi, βi, γi ∈ r
According to the above data table, the algorithm figures out
αi = 0.385, βi = 0.249, γi = 0.369.
(4). To get the weight vector and choose the maximum
value node as the cluster core
According to the above all, the algorithm gets the weight
vector (as Table IV) and chooses the maximum value node as
the cluster core C∗ = (c∗0, . . . , c

∗
i , . . . , c

∗
m−1), in this cluster

it chooses (2, 1) as cluster core ci.

TABLE IV
THE WEIGHT VECTOR W , IN THE CLUSTER, THE WEIGHTS MARKED *

BELONG TO THE CLUSTER MEMBER

Y=6 0 1.74* 0 0 0
Y=5 0 3 2.00* 1 0.63*
Y=4 0 5.84* 2 2 1

Y=3 2.84* 4 3 2 1

Y=2 2 4.47* 4 3 3.48*
Y=1 2.23* 6.08* 2.97* 0 0

hline X=1 X=2 X=3 X=4 X=5

IV. ALGORITHMS FOR GAME BALANCE MULTICAST
ARCHITECTURE

A. Cluster Formation Algorithm

In our algorithms, the group members are initially split
into several clusters by some management nodes (called as
Rendezvous Points - RP). The cluster size is normally set as:

S = (k, 3k − 1) (4)

The expression (k, 3k − 1) represents a random constant
between k and 3k − 1. Like NICE, uses a fixed value k. k is
a constant using k = 3 [?]. The definition of cluster size is to
avoid the frequent cluster splitting and merging [7]. For the
cluster formation algorithm, the RP initially selects the left
lowest end host (say U) among all unassigned members,as
shown in Fig. 2.

B. Relative Weight Vectors Generation Algorithm

This sub-algorithm generates the space, energy and data
weight vectors W

′
, W

′′
and W

′′′
; in addition, the space,

energy and data cores ci,a, ci,b and ci,c. Hence it can be divided
into six steps:
(1). To find the space center nodes as the space core Ci,a
The following theorem provides the sufficient and necessary
conditions to select a spatial core in each cluster.

Theorem 3. Let U be the cluster member that occupies the
node (u0, . . . , uj , . . . , um−1) in a m − D Sensor Grid and
n > j, n < j and n = j be the number of cluster members
with the j− th coordinates larger than (right nodes of j− th
row ), less than (left nodes of j − th row), and equal to uj
(the nodes just on j − th row) respectively. Then U is the
spatial center node if and only if the following inequalities
hold simultaneously:

|n<j − n>j | ≤ n=j , j = 0, 1, . . . ,m− 1 (5)

Proof: We have proposed the proof of Theorem 3 in [?].
The physical meaning of the theory is obvious. Firstly, we

process on X axis. For example N=2 = 4, namely there are 4
nodes just on of second row:(2, 6), (2, 4), (2, 2), (2, 1); N<2 =
2, namely there are 2 nodes in the left of second row:(1, 3),
(1, 1); N>2 = 4, namely there are 4 nodes in the right of
second row(3, 5), (3, 1), (5, 5), (5, 2), so |n<2 − n>2| ≤ n=2.
So that N=2 is satisfied coordinates on X axis. On other hand,
N=3 = 2, including(3, 5), (3, 1); N<3 = 6, including (2, 6),
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(2, 4), (2, 2), (2, 2), (1, 3), (1, 1); N>3 = 2, including (5, 5),
(5, 1), so |n<3 − n>3| ≥ n=3. So that N = 3 is not satisfied
coordinates.

In the same way, we can do it again on Y axis. Then we
can find the (2, 2) is the space central node, namely the space
core of the cluster.
(2). To calculate the value of the space weight vector W

′

i,j

For only considering the space factor, the system establishes a
multicast tree to transfer data packets, which choose the space
core as the root and organize the architecture according to the
space weight vector. The tree should maximize the sharing of
links utilization within the clusters, so that the rest of the links
may be used for other traffic. Our approach is to connect all
the members, according to (1) the branch on the tree between
two adjacent members is the shortest path in the cluster, (2)
the total number of links on the tree should also be minimized.
Before discussing the algorithm, it is necessary to define the
following terminologies (using a 2−D cluster as the model):
(I) Shortest path area nodes (SPAN): For any two
nodes (x0, y0) and (x1, y1), let Xmin = min{x0, x1},
Xmax = max{x0, x1}, Ymin = min{y0, y1} and Ymax =
max{y0, y1}. They uniquely define a rectangle area [x0, y0]×
[x1, y1]. Each node (x, y) in [x0, y0] × [x1, y1], which is on
one of the shortest paths between (x0, y0) and (x1, y1), so it
is called the shortest path area nodes (SPAN) between (x0, y0)
and (x1, y1).
(II) SPAN nodes of a cluster member: When the tree is built
in the cluster with the size of n, all nodes Cj(xj , yj) in the
SPAN area [x0, y0]× [xi, yi] from the core (i.e. the root of the
tree)c∗(x∗, y∗) to a cluster member ci(xi, yi)(i ∈ [0, n−1])can
be regarded as the SPAN nodes of ci. Take Fig. 2 as an
example. Assume that the core is in the node (2, 2). All nodes
in [2, 2]× [5, 5] are the SPAN nodes of this cluster member.
(III) The space weight of the node: A node may be the SPAN
node of several k cluster members. If a node is the SPAN node
of k cluster members, this node is assigned the weight of k.
Table I gives the space weights of all nodes, and takes the node
(2, 4) as an example, as shown in Fig. 2. The node (2, 4) is 4
node’s Shortest Path Area Nodes (SPAN):(2, 6), (3, 5), (5, 5),
(2, 4), because it is in the Shortest Path Area of these nodes.
Therefore its weight 4 means that 4 cluster members may pass
through node (2, 4) to the cluster core (2, 2) by the shortest
paths. Apparently, the weight of (2, 2) is 10.

In general, if the space weight of the node is k, it means that
there are k nodes which must pass this node to the space core
to send packets, which represent the degree near the center.
The greater the space weight is, the nearer the node to the
cluster core is, and vice versa.
(3). To find the value of energy weight W

′′
and the energy

core ci,b
(4). To find the value of the data weight W

′′′
and the data

core ci,c

Algorithm 1: Relative Weighted Vectors Generation
Input: Cluster Member:
C = {C0 = (C0,0, C0,1, . . . , C0,m−1), . . . ,

Ci = (Ci,0, Ci,1, . . . , Ci,m−1), . . . ,
Cn′−1 = (Cn′−1,0, Cn′−1,1, . . . , Cn′−1,m−1)},
where i ∈ [0, n

′ − 1];
Output: The space weight vector:
W ′ = {W ′0 = (w′0,0, w

′
0,1, . . . , w

′
0,m−1), . . . ,

W ′i = (w′i,0, w
′
i,1, . . . , w

′
i,m−1), . . . ,

W ′n′−1 = (wn′−1,0, w
′
n′−1,1, . . . , w

′
n′−1,m−1)},

where i ∈ [0, n
′ − 1];

The energy weight vector:
W ′′ = {W ′′0, . . . ,W ′′i, . . . ,W ′′n′−1},
where i ∈ [0, n

′ − 1];
The data weight vector:
W ′′′ = {W ′′′0, . . . ,W ′′′i, . . . ,W ′′′n′−1},
where i ∈ [0, n

′ − 1];
and the space core C∗a = {c∗0,a, . . . , c∗m−1,a},
the energy core C∗b = {c∗0,b, . . . , c∗m−1,b},
the data core C∗c = {c∗0,c, . . . , c∗m−1,c}.

1 (1).To find the spatial center nodes as the spatial core
ci,a in every cluster ci;

2 begin
3 Initiate

{a{cj}min, . . . , a{cj}t, . . . , a{cj}max} ={0, . . . , 0, . . . , 0};
// a{cj}t records the number of cluster members

whose j-th coordinates equal to (Cj)t, where
whose j-th coordinates equal to (Cj)t, where
(Cj)min ≤ (Cj)t ≤ (Cj)max and 0 ≤ j ≤ m− 1.

4 for k = 0 to n
′ − 1 do

5 if the j-th coordinate of Ck == (Cj)td then
6 a(cj)t = a(cj)t + 1;
7 end
8 end
9 for i = 0 to n

′ − 1 do
10 for j = 0 to m− 1 do
11 if(∣∣∣∑Ci,j

l=(Ci)min
at −

∑(Cj)max

i=Ci,j
at

∣∣∣ ≤ a(Ci,j)

)
then

12 C∗j = C∗i,j ;
13 j = j + 1;
14 else
15 j = m− 1; i = i+ 1;
16 end
17 end
18 end
19 C∗a = {c∗0,a, . . . , c∗m−1,a};
20 end
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Fig. 2. Selecting the spatial center nodes in the members of one cluster of
a 2−D Sensor Grid. And the shortest path area nodes (SPAN) in a 2−D
Sensor Grid, for example: The node (2; 4) is 4 node’s Shortest Path Area
Nodes(SPAN):(2; 6),(3; 5),(5; 5),(2; 4).

1 (2).To calculate the space weight vector W
′′

j ;
2 begin
3 T={};
4 For any node Ci = (ci,0, ci,1, . . . , ci,m−1) with

(Cj)min ≤ (Cj)t ≤ (Cj)max, initialize its weight
W ′′c,j = 0;

5 for j = 0 to n
′ − 1 do

6 for i = 0 to n
′ − 1 do

7 if Ci is a SPAN node of
Cj = (Cj,0, Cj,1, . . . , Cj,m−1) then

8 W
′

c,j =W
′

c,j + 1;
9 end

10 end
11 end
12 W ′ = {W ′0 = (w′0,0, w

′
0,1, . . . , w

′
0,m−1), . . . ,

W ′i = (w′i,0, w
′
i,1, . . . , w

′
i,m−1), . . . ,

W ′n′−1 = (wn′−1,0, w
′
n′−1,1, . . . , w

′
n′−1,m−1)},

where i ∈ [0, n
′ − 1];

13 end
14 (3).To find the energy weight W

′

i,j and the energy core
ci,bin the cluster Cj ;

15 (4).To find the data quantity weight W
′′′

i,j and the data
core ci,c in the cluster Cj ;

C. Least Weighted Path Tree Generation Algorithm

After the Relative Weighted Vectors Generation Algorithm
generates the space, energy and data weight vectors W

′
, W

′′
,

W
′′′

, and the space, energy, data cores ci,a, ci,b, ci,c, the Least
Weighted Path Tree Generation Algorithm wants to combine
the three old weight vectors W ′, W ′′ and W ′′′ to a new weight
vector W = f(W

′
,W

′′
,W

′′′
). As we mentioned in section

III, we used the linear form: W = αW
′
+βW

′′
+γW

′′′
. After

that the sub-algorithm builds binary simple equations, resolves
linear parameters, α, β, γ generates new weight vector W .
At last generates the least weighted path tree as hierarchical
multicast tree.

D. Multicast Routing Algorithm

Multicast Routing Algorithm efficiently dispatches the mul-
ticast packets in the group on the basis of the architecture
constructed by the above three algorithms.

V. PERFORMANCE EVALUATION

A. The Model of Simulation

We evaluated 3 Vectors Game Balance Multicast Algorithms
with the simulation developed by C++ [8] and run by a group
of 40 IBM double cores PCs. We chose four multicast routing
approaches for 2 −D Sensor Grid used for the performance
testing and comparison: SPACE, ENERGY, DATA and GB-
MASG which synthetically considers space, energy and data
factors. Moreover we chose DCXYP as our SPACE approach,
which is the most popular multicast technology, among exist
approaches. Here we use ENERGY and DATA approach
according to energy and data weight vector to generate least
weight path tree.
In the simulation environment, the network topology used in
the simulation is a 2−D Sensor Grid. The bandwidth of each
link is 10Mbps. During the simulation, 1000 and 1000,000
multicast packets are randomly generated as time seed and the
average size of the packets is 2400 bytes so that the average
time to transmit a packet on the defined link is about 1ms.
The following three metrics are employed to evaluate these
multicast schemes:
Average multicast delay: is computed by

AD = (

n−1∑
i=0

d(s, ui))/n (6)

where d(s, ui) is the packet delay from the source s to the
member ui and n is the group size.
Number of links used: The total number of links used.
Packets Arrival Rate: The rate of arrival data packets.

B. The Result of Simulation

The average delay metric under the heavy load of network is
shown in Fig. 3. The link usage for different algorithms under
the light and heavy load of network is shown in Fig. 3. The
packets arrival-rate under the heavy load of network is shown
in Fig. 3. From these simulation results, it can be obtained the
following observations:
1. Under a heavy load circumstance, the delay is mainly de-
cided by the source of the data quantity, and certainly relates to
the space and energy of the nodes too(Fig. 3 (a). In the Sensor
Grid circumstance, a majority of data quantity will concentrate
in minor nodes. Now that SPACE just generate the multicast
tree according to space factor, so that the delay increases
a little rapidly in the mass data quantity. Obviously energy
poorer than SPACE. Our approach GBMASG synthetically
considers space, energy and data factors, so that it gets the
best result. DATA achieves the quite well delay performance
almost as GBMASG here.
2. Under a heavy load circumstance, the number of links is
mainly decided by both the source of the data quantity and the

570



(a)

(b)
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Fig. 3. Simulation results for SPACE, ENERGY, DATA and our GBMASG:
(a) The Delay under the Different No. of the Group Members; (b) Links Used
under the Different No. of Group Members; (c) Packets Arrival Rate under
the Different No. of Group Members.

space of the node (Fig. 3 (b). So that for SPACE the number
of links increases rapidly in the mass data quantity, and the
DATA is much better, at last our approach GBMASG get the
least the number of links. ENERGY is not very good also.
3. Fig. 3 (c) show the packets arrival-rate used by these ap-
proaches. In general, the packet arrival-rate will be decreased
with the time and is mainly decided by ENERGY. In heavy
load circumstance decreased much more quickly. ENERGY
better than SPACE and DATA, at last our approach GBMASG
get the best the packets arrival-rate, as good as ENERGY.
It reveals that under the same condition, GBMASG obtains
the best balance over the performance parameters i.e., the less
resource a system consumes, the higher the throughput and the
shorter the delay under the weight traffic load and the higher
system robusticity. The GBMASG is especially suitable for a

great deal data quantity and long duration of Sensor Grid.

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In the Sensor Grid, when the system constructs the hierar-
chical tree, it should synthetically consider the factors of the
space, energy and data, whose relationship is game balance.
We tried to draw an elaborate balance between them, and uses
the basic idea to construct the hierarchical multicast tree in this
paper.

B. Future Work

(1). To extend to N-vectors correlation.
After discussing two and three vectors correlation, the
algorithm can be extended to N-vectors correlation.
The relationship of the weight can be defined as
Wi,j = α

(1)
i W

(1)
i,j + . . .+ α

(k)
i W

(k)
i,j + . . .+ α

(n)
i W

(n)
i,j .

And the equation can be extended toα
(1)
i + . . .+ α

(k)
i + . . .+ α

(n)
i = 1

Wi·W (1)
i∥∥W (1)

i

∥∥ . . . = Wi·W (k)
i∥∥W (k)

i

∥∥ . . . = Wi·W (n)
i∥∥W (n)

i

∥∥
It can be solved by mathematical induction.

(2). To extend from linear non-relationship condition to
linear relationship condition
Moreover, as the real world meaning of different factors
are independent, these factors are linear non-related, so their
cardinal number is accountable infinite. If some factors are
linear related, we can use GramCSchmidt process Orthonor-
malization and fussy logic to turn these to be linear non-
related. Then their cardinal number is unaccountable infinite.
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