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Abstract—Source localization based on energy measurements
is an important problem in wireless sensor networks (WSNs). It
is well known that the associated objective function is not convex
and may have multiple local optima and saddle points. Most
of the existing algorithms can not achieve global optima. In this
paper, we formulate the source localization as a convex feasibility
problem (CFP) and propose a diffusion based projection method
as a solution. In the proposed method, no fusion center is
required; the sensor nodes need to communicate only with their
closest neighbors and all the sensors update their estimations
simultaneously and finally they are able to achieve consensus
on a possible minimizer asymptotically. The proposed method
has low complexity and achieves global optimality. Theoretical
analysis and simulation results show that the proposed method
has good estimation performance whether or not the CFP is
consistent or inconsistent.

I. Introduction

Source localization in wireless sensor networks is an im-

portant problem encountered in acoustic networks [1], [2].

Energy based approach for acoustic source localization is an

appropriate choice since the acoustic energy emitted by the

sources usually varies slowly. As such the acoustic energy

time series can be sampled at a much lower rate compared to

the raw acoustic time series [1], [2]. Therefore, limited data

needs to be transmitted among sensors via the often congested

wireless communication channels. This reduces the energy

consumption for data transmissions on individual sensor nodes

and saves communication bandwidth over shared wireless

channels.

Recently, many approaches with energy-based source local-

ization have been proposed. A maximum likelihood method

is proposed in [1] where a Multi-Resolution (MR) search

is needed to find the optimal solution. In [2], an efficient

expectation-maximization (EM) algorithm is proposed for

multi-source localization problems. It can estimate the source

locations individually and can efficiently avoid the local

optima through effective sequential dominant-source (SDS)

initialization and parameterized search methods. The main

drawbacks of the methods of [1] and [2] are that they require

the transmission of measurements from each node in the

network to a central point for processing and have high

computational complexity. In [3], Rabbat and Nowak proposed

a distributed implementation of the incremental gradient (IG)

algorithm to solve the nonlinear least-square problem. How-

ever the algorithm may fall into local optima. In [4], a two-

stage algebraic closed-form solution is presented. The first

stage computes the source location together with an auxiliary

variable using weighted least squares method. The second

stage explores the relationship between the source location

and the auxiliary variable to improve the location estimation.

The drawbacks of the methods in [3], [4], or any other least-

square based methods, is that they are sensitive to local optima

and saddle points and have a low estimation accuracy when

the signal to noise ratio (SNR) is low.

In the literature, there is limited work on fully distributed

approaches in which no fusion center is required, where sensor

nodes need to communicate only with their closest neighbors

and all the sensors update their estimations simultaneously.

In this paper, we formulate the distributed source localization

problem as a convex feasibility problem (CFP). The mathe-

matical formulation of CFP is as follows.

Suppose in a Hilbert space, C1, . . . ,CN are closed convex

subsets with intersection C: C = C1 ∩ . . . ∩ CN . Convex
feasibility problem (CFP): Find some point x in C. We call

the CFP consistent if C � ∅, and otherwise call it inconsistent.

The projection based method is well studied and can be used

for solving the CFP. Most existing projection methods are

centralized and implemented in a sequential or parallel manner.

In [5], Blatt and Hero propose to use the sequential projection

method for source localization without the theoretical proof.

In this paper, we also examine how to apply the parallel

projection method to source localization.

However, there are few works on diffusion based projection

method for CFP in the literature. In [9], the authors pro-

posed a constrained consensus method for convex optimization

problems, however it is restricted to the consistent cases and

can not be used for source localization which is usually

inconsistent. In this paper, we propose a general diffusion

based projection protocol which can be applied to both the

consistent and inconsistent CFP problems. We prove that

with an appropriately selected step-size sequence, the estimate

of all the sensors generated by the proposed algorithm will

converge to the same global optimal solution. If the problem

is consistent, the converged source location estimation will

also lie in the intersection of convex sets determined by each

sensor. For the inconsistent case, our diffusion method will

converge to a point close to the true source location.
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II. Problem Formulation

The problem of interest is to determine the location of an

active source in a sensor network. Assume the sensor field is

denoted is by S ∈ R2. Let the source be located at an unknown

coordinate pair θ = [x, y]T and transmit at power level P. We

assume that there are N sensor nodes performing sensing using

energy detection. At the i-th sensor with its known coordinate

ri = [xi, yi]
T , i = 1, 2, . . . ,N, the received power can be written

as

Pri = gi
P
dαis

+ wi, (1)

where dis = ‖θ− ri‖ is the Euclidean distance between the i-th
sensor and the source, gi is the gain factor of i-th sensor. α is

the power-loss factor (in this paper we assume α = 2) and wi

is the receiver noise at the i-th sensor. We assume an AWGN

channel with wi ∼ N(0, σ2
i ), i = 1, 2, . . . ,N. In this paper, we

assume that the acoustic source power lever P is known. The

only parameter we need to estimate is the source’s location

vector θ = [x, y]T .

The maximum likelihood estimator (MLE) is found by

solving the nonlinear least square problem when the noise is

Gaussian

θ∗ML = arg min

N∑
i=1

⎡⎢⎢⎢⎢⎢⎣Pri − gi
P
d2

is

⎤⎥⎥⎥⎥⎥⎦
2

= arg min

N∑
i=1

fi(θ). (2)

Clearly, fi(θ) attain its minimum 0 on the circle Ci = {θ ∈
R

2 : ‖θ−ri‖ =
√

giP/Pri }. However, because of the observation

noise, the source may not appear on the circlesDi as the disk:

Di = {θ ∈ R2 : ‖θ − ri‖ ≤
√

giP/Pri }.
Clearly, Di forms a convex set which is a disk. It is easy to

see that source localization problem can be solved by letting

the estimator be a point in the intersection of the sets Di, i =
1, 2, . . . ,N. That is,

θ̂ ∈ D =
N⋂

i=1

Di ⊂ R2. (3)

Until now, we have formulated the source localization

problems as a convex feasibility problem (CFP). However due

to the observation noise, the feasibility problems may turn out

to be inconsistent, i.e., the intersection D might be empty. An

illustration for consistent and inconsistent cases is presented

in Fig. 1.

Fig. 1. Consistent case and inconsistent case

Since the convex feasibility problem may turn out to be

inconsistent, finding a solution to this problem is equivalent

to finding a point θ∗ which minimizes the sum of the squares

of the distances to the convex set Dis.

θ∗ = arg min
θ∈R2

N∑
i=1

‖θ − PDi (θ)‖2. (4)

where for a close convex set S ⊆ R2 and vector x ∈ R2,PS(x)

is the orthogonal projection of x onto S . That is,

PS(x) = arg min
y∈R2

‖x − y‖, y ∈ S . (5)

For the source localization problem, the projection operator

has a closed-form expression for (5) given as:

PDi (x) =

{
x, ‖x − ri‖ ≤

√
giP/Pri ,

ri +
√

giP/Pri
x−ri
‖x−ri‖ , otherwise.

(6)

We assume that G is the set of least-square solutions of the

convex feasibility problem in (4).

Proposition 1: The set G is nonempty, closed, convex and

bounded.

It can be easily checked that if the problem is consistent,

i.e., D = ⋂N
i=1 Di � ∅, then

∑N
i=1 ‖θ̂ −PDi (θ̂)‖ = 0 where θ̂ ∈ G

and G =
⋂N

i=1 Di.

III. Sequential and Parallel ProjectionMethods

In this section, we first review the sequential projection

method for source localization proposed by Blatt and Hero [5].

Then we propose to use the parallel projection method in the

image processing area proposed in [8] which is a centralized

algorithm to solve the problem. An understanding of these

methods will be useful later in Section IV when we introduce

our proposed distributed protocol.
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Fig. 2. Parallel and sequential projection methods

A. Sequential Projection Method

The sequential projection method, also termed POCS (pro-

jection on convex sets), is a cyclic algorithm. From Fig. 2, we

can see that the data is processed across the sensor sequence.

The update rule of the sequential projection method is given

as follows

θ(k + 1) = θ(k) + λ(k)
[
PDτ(k)

(θ(k)) − θ(k)
]

(7)

where {λ(k)} is a sequence of relaxation parameters satisfying

for all k, ε1 ≤ λ(k) ≤ 2 − ε2 for some ε1, ε2 > 0, τ(k) = k mod

N.

Theorem 1: [7] If D = ⋂N
i=1 Di � ∅, any sequence θ(k), k ≥

0 converges to a point in D.

From Theorem 1, we can see that the POCS algorithm has

good convergence performance in the consistent case of CFP.
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However the convergence behavior of POCS in the inconsis-

tent case is generally unsatisfactory. We need to design a new

relaxation sequence λ(k)(k≥0), that is
∑+∞

k=0 λ(k) = +∞, λ(k+1) ≤
λ(k), limk→+∞ λ(k) = 0.

By using the relaxation sequence stated above, the POCS

will converge to a point in G, which has been verified by

simulation in [5].

As addressed above, the POCS method can be used for

source localization in both consistent and inconsistent cases

as long as an appropriate relaxation sequence is applied.

However, for sequential distributed algorithms, a specified data

transmitting path is demanded, i.e., a cyclic form. How to do

path planing in such networks is also a big issue. Also, the

convergence rate is low when the sensor density is large and

data transmission becomes unreliable when some of the nodes

fail. Hence the robustness of such networks is low.

B. Parallel Projection Method

The parallel projection method is a centralized algorithm,

where each sensor transmits its measurement to a fusion

center. The parallel projection method involves finding a point

θ∗ which minimizes the weighted sum of the squares of the

distances to the convex set Dis.

θ∗ = arg min
θ∈R2

N∑
i=1

wi‖θ − PDi (θ)‖2, (8)

where (wi)1≤i≤N are strictly positive weights such that∑N
i=1 wi = 1.

We assume G′ is the set of weighted least-square solutions

of the convex feasibility problem in (8). The algorithm for the

parallel projection method is given as follows

θ(k + 1) = θ(k) + λ(k)

⎛⎜⎜⎜⎜⎜⎝
N∑

i=1

wiPDi (θ(k)) − θ(k)

⎞⎟⎟⎟⎟⎟⎠ , (9)

where λ(k) is a relaxation sequence.

Theorem 2: [8] Suppose sequence λ(k) is in [ε, 2 − ε],
where 0 < ε < 1. Then any sequence θ(k)k≥0 generated by

(12) converges to a point in G′.
The advantage of the parallel projection method is that

it has a good convergence performance especially for the

inconsistent cases of CFP. Also we can design a weight

sequence (wi)1≤i≤N according to the reliability of each sensor’s

measurements, i.e, we can assign a higher weight to the

sensors with large received powers.

IV. Diffusion Based ProjectionMethod

To avoid the path planning problem in the sequential dis-

tributed method and improve the robustness of the networks, a

diffusion based approach is useful. In diffusion based methods,

no fusion center is required and the sensor nodes need to

communicate only with their closest neighbors. So it reduces

the probability of congestion around the sink nodes and

increases the robustness of the network against node failures or

unpredictable switches to sleeping mode where data transmit

path planning is not demanded.

Before we address the diffusion method, first we give a brief

introduction about the diffusion network. Let us represent the

diffusion network as an undirected graph defined by G :=

(N ,E) where N is node set N := 1, . . . ,N and E ⊆ N × N
is the edge set. If node k can directly send data to node l, we

define the undirected link by (k, l) ∈ E.

If the source localization problem fall in the consistent case,

in the literature, there already has a diffusion based method

can be used which is proposed by A. Nedić and A. Ozdaglarin

[9]. It works as follows: sensor i at time k + 1 generates its

estimate updates according to the following protocol

θi(k + 1) = PDi

⎛⎜⎜⎜⎜⎜⎜⎝
N∑

j=1

wi
j(k)θ j(k)

⎞⎟⎟⎟⎟⎟⎟⎠ . (10)

where wi
j(k), i = 1, . . . ,N, j = 1, . . . ,N denotes the weight;

θi(0), i = 1, . . . ,N is arbitrary.

Assumption 1: (Network connectivity) The network is con-

nected, i.e., there exists a direct or indirect path between any

two nodes in the networks.

Assumption 2: (Weighting rule) W(k) whose i-th row is the

vector wi(k) = [wi
1
(k), . . . ,wi

N(k)], is an N×N doubly stochastic

weighting matrix with the following properties:

1T W(k) = 1T ,W(k)1 = 1, (11)

Theorem 3: [9](Consensus) Let the intersection set D =⋂N
i=1 Di be nonempty and Assumptions 1 and 2 hold. Then

for some θ∗ ∈ D, limk→∞ ‖θi(k) − θ∗‖ = 0,∀i = 1, . . . ,N.

From Theorem 3, we can see that in the consistent case,

the protocol (10) has a good convergence performance. We

can see that the estimates of every sensor will converge to the

same optimal solution θ∗ which is in the intersection of convex

sets determined by each sensor. However, its convergence

behavior in the inconsistent case is generally unsatisfactory

and a general protocol for both consistent and inconsistent

cases is needed.

A. Protocol for the General Case

As stated above, we assume D � ∅. However, this assump-

tion does not hold in the presence of observation noise which

may lead to the intersection D being empty. To deal with the

inconsistent case, we can force the assumption that D � ∅. For

example, we can expand Di to increase the probability that the

intersection of the convex sets determined by each sensor is

not empty. However since we don’t know how much expansion

we should do, the estimation error will increase even though

the algorithm does converge.

Instead, we propose a new protocol which works for both

the consistent and inconsistent cases:

θi(k + 1) =

N∑
j=1

wi
j(k)θ j(k) + β(k)

⎡⎢⎢⎢⎢⎢⎢⎣PDi

⎛⎜⎜⎜⎜⎜⎜⎝
N∑

j=1

wi
j(k)θ j(k)

⎞⎟⎟⎟⎟⎟⎟⎠

−
N∑

j=1

wi
j(k)θ j(k)

⎤⎥⎥⎥⎥⎥⎥⎦ , (12)
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where β(k) is the relaxation sequence, wi
j(k) is the same as

addressed as in (10). We can see that if β(k)k≥0 = 1, then the

protocol (12) is the same as (10).

B. Convergence Behavior of Protocol (12) for the Consistent
Case

Before proving the convergence of the algorithm, we define

some variables described as follows:

vi(k) =

N∑
j=1

wi
j(k)θ j(k). (13)

Assumption 3:
∑∞

k=1 β(k)(1 − β(k)) = ∞.

Note that Assumptions 3 is justified. It can be easily checked

that if β(k) ∈ (0, 1), then Assumption 3 holds.

From protocol (12), the relation between θi(k + 1) and

θ1(s), . . . , θN(s) at time 0 ≤ s ≤ k is given by

θi(k + 1) =

N∑
j=1

[W(k, 0)]i
jθ

j(0) +

k∑
m=1

β(m − 1)

⎛⎜⎜⎜⎜⎜⎜⎝
N∑

j=1

[W(k,m)]i
j(PD j (v

j(m − 1)) − v j(m − 1))

⎞⎟⎟⎟⎟⎟⎟⎠
+ β(k)(PDi (v

i(k)) − vi(k)). (14)

where W(k,m) = W(m)W(m+ 1) . . .W(k− 1)W(k) is transition

matrices. W(k,m)i
j denotes the (i, j)-th entry of W(k,m).

Theorem 4: (Consensus) Let the intersection set D =⋂N
i=1 Di be nonempty and Assumptions 1-3 hold, then for

some θ∗ ∈ D, limk→∞ θi(k) = θ∗,∀i = 1, . . . ,N.

The proof is omitted because of the limitation of the space.

From Theorem 4, we can see that the estimates of every

sensor will converge to the same optimal solution θ∗ which is

in the intersection of convex sets determined by each sensor.

C. Convergence Behavior of Protocol (12) in Inconsistent
Case

��

Fig. 3. Inconsistent case

In section IV-B, we provide convergence analysis of the pro-

posed protocol (12) in the consistent case. In this subsection,

we will derive conditions for convergence in the inconsistent

case. First, we make the following assumption.

Assumption 4:
∑∞

k=1 β(k)(1 − β(k)) = ∞, β(k + 1) ≤
β(k), limk→+∞ β(k) = 0.

Let Assumptions 1, 2 and 4 hold, and suppose that the

protocol (12) can converge to a point θ∗ ∈ G, where G is the

set of least square solutions of (4). Then we define the new

convex sets by D′
i, i = 1, . . . ,N, dashed circles as shown in

Fig. 3. Further we define the sequence {ei(k)} as the projection

error as follows:

ei(k) = PDi [v
i(k)] − PD′

i [v
i(k)] (15)

Then the protocol (12) can be cast as

θi(k + 1) = vi(k) + β(k)
[(
PD′

i [v
i(k)] + ei(k)

)
− vi(k)

]
. (16)

Theorem 5: Suppose that
∑

k≥0

∑N
i=0 β(k)‖ei(k)‖ < +∞ and

Assumptions 1, 2 and 4 hold, then limk→∞ PD′
i (v

i(k)) =

vi(k),∀i.
Proof:

θi(k + 1) − θ∗ = (1 − β(k))(vi(k) − θ∗)
+ β(k)(PD′

i (v
i(k)) − θ∗) + β(k)ei(k) (17)

N∑
i=1

‖θi(k + 1) − θ∗‖ ≤ (1 − β(k))

N∑
i=1

‖vi(k) − θ∗‖

+ β(k)

N∑
i=1

‖PD′
i (v

i(k)) − θ∗‖ + β(k)

N∑
i=1

‖ei(k)‖

≤
N∑

i=1

‖θi(k) − θ∗‖ + β(k)

N∑
i=1

‖ei(k)‖ (18)

Since
∑

k≥0 β(k)
∑N

i=1 ‖ei(k)‖ < ∞, the series
∑N

i=1 ‖θi(k+1)−
θ∗‖ converges.

Next we define ηi(k) = (1−β(k))vi(k)+β(k)PD′
i (v

i(k)), then

we have

‖θi(k + 1)−θ∗‖2 =

‖ηi(k) − θ∗‖2 + 2β(k)〈ηi(k)|ei(k)〉 + β(k)2‖ei(k)‖2

≤‖ηi(k) − θ∗‖2 + 2
(
‖ηi(k) − θ∗‖ + β(k)‖ei(k)‖

)
‖ei(k)‖

≤‖θi(k) − θ∗‖2 − β(k)(1 − β(k))‖PD′
i (v

i(k)) − vi(k)‖2

+2
(
‖ηi(k) − θ∗‖ + β(k)‖ei(k)‖

)
β(k)‖ei(k)‖ (19)

Hence,

N∑
i=1

‖θi(k + 1)−θ∗‖2 ≤
N∑

i=1

‖θi(k) − θ∗‖2

−β(k)(1 − β(k))

N∑
i=1

‖PD′
i (v

i(k)) − vi(k)‖2

+B
N∑

i=1

β(k)‖ei(k)‖ (20)

where B = supk≥0

(
‖ηi(k) − θ∗‖ + β(k)‖ei(k)‖

)
< +∞.
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From (20), as
∑

k≥0 β(k)(1 − β(k)) = +∞, we can get

∑
k≥0

β(k)(1 − β(k))

N∑
i=1

‖PD′
i (v

i(k)) − vi(k)‖2

≤
N∑

i=1

‖θi(0) − θ∗‖2 + B
∑
k≥0

⎛⎜⎜⎜⎜⎜⎝β(k)

N∑
i=1

‖ei(k)‖
⎞⎟⎟⎟⎟⎟⎠ < +∞

⇒ lim
k→∞

N∑
i=1

‖PD′
i (v

i(k)) − vi(k)‖2 = 0

⇒ lim
k→∞

PD′
i (v

i(k)) = vi(k) (21)

Similar to (14),

θi(k + 1) =

N∑
j=1

[W(k, 0)]i
jθ

j(0) +

k∑
m=1

β(m − 1)

⎛⎜⎜⎜⎜⎜⎜⎝
N∑

j=1

[W(k,m)]i
j(PD′

j (v
j(m − 1)) + e j(m − 1) − v j(m − 1))

⎞⎟⎟⎟⎟⎟⎟⎠
+ β(k)

(
PDi (v

i(k)) + ei(k) − vi(k)
)
. (22)

Theorem 6: Let Assumptions 1, 2 and 4 hold, then

• limk→∞ θi(k) = θ j(k), i, j ∈ [1 : N].
• if limk→k′ PDi v

i(k) = vi(k),∀i, then limk→∞ θi(k) = θ∗+Er,

where Er is proportional to β(k′),∀i
Interpretation on the Condition

∑
k≥0

∑N
i=0 β(k)‖ei(k)‖ <

+∞.
From Theorem 5 and Theorem 6, we provide a theoretical

basis that if
∑

k≥0

∑N
i=0 β(k)‖ei(k)‖ < +∞ is satisfied, then the

estimate of the sensors will converge to some point θ∗ ∈ G. In
other words, θ∗ ∈ G is some point which makes the assumption∑

k≥0

∑N
i=0 β(k)‖ei(k)‖ < +∞ hold.

Now, we give some explanations on the projection error

ei(k). When the weight estimate (each sensor and its neighbors)

vi(k) falls in both the convex sets Di and D′
i, PDi [v

i(k)] =

PD′
i [v

i(k)] which implies ‖ei(k)‖ = 0. Otherwise, ‖ei(k)‖ is the

absolute difference between two radius, i.e., ‖ei(k)‖ = ‖rDi −
rD′

i
‖, where rDi , and rD′

i
denote the radius of the convex sets

Di and D′
i respectively. Intuitively, this difference is related

to the measurement noise. However, it is difficult to justify the

value of
∑N

i=0 β(k)‖ei(k)‖. In our simulations, we have observed

that ‖ei(k)‖ is either equal to 0 or a small value.

From the analysis of the property of
∑N

i=0 β(k)‖ei(k)‖, we can

see that the condition
∑

k≥0

∑N
i=0 β(k)‖ei(k)‖ < +∞ is a little

strong. However, the potential instability for this convergence

condition can be avoided by using a sufficiently small relax-

ation sequence β(k). For example, if the variance of receiver

noise is small, we can just set the relaxation sequence as

β(k) = 1/k. Otherwise, we may set it as β(k) = a×(1/k), where

a is a small constant value which is related to the variance

of receiver noise. Alternately, we can adopt the strategy for

choosing β(k) as done in [5]. At the first phase, the relaxation

sequences are set to 1. Then if convergence to a limit cycle is

detected, i.e., each sensor converges to a different value, the

method enters phase 2. At phase 2, the relaxation parameters

are decreased at a rate of 1/k. Please note that after the

method enters phase 2, the probability of ei(k) = 0 is also

increased. This will lead to the condition stated above hold

for convergence.

Remark 1: From the analysis for both consistent and in-

consistent cases, we can see that the proposed diffusion

based algorithm can be applied to the source localization

problem without prior knowledge whether or not the problem

is consistent by using a deceasing relaxation sequence β(k) as

defined in Assumption 4.

D. Estimation Accuracy Analysis

Noiseless case: It can be easily seen that if the sensor

observation is noiseless, then the algorithm can converge to

the true source location as long as there are at least three

non-collinear sensors in the sensing field.

Noisy case: For the noisy cases, our estimator

minθ∈S
∑N

i=1 ‖θ − PDi (θ)‖ is optimal in the least square

(LS) sense. Obviously, if the intersection of convex sets

determined by each sensor is nonempty, i.e., D � ∅, then

minθ∈S
∑N

i=1 ‖θ − PDi (θ)‖ = 0. Also according to the fact that

“The intersection of closed sets is closed”, we can see that

because the convex sets (disks) determined by sensors are

closed sets, the intersection of these sets is closed. Thus when

the number of sensors increases to infinity, the variance of the

estimation will decrease to zero, i.e., E(θ∗ − θ̄∗)2 = 0, where

θ̄∗ denotes the mean value of θ∗. If the intersection of convex

sets determined by each sensor is empty, i.e., D = ∅, besides

the number of sensors, there are two other factors affecting

the estimation accuracy. One is the geometrical configuration

of the senor field and the other is the sensor observation

noise.

Remark 2: Throughout this paper, we have assumed that

channel between sensors is perfect without transmission noise

and a node can transmit perfectly and reliably without packet

loss to its neighbors. However, in many situations this is not

realistic and will be considered as our future work.

V. Simulations

This section presents simulation experiments for a sensor

network with 15 sensor nodes randomly placed in a 10 m × 10

m field. At each sensor, a measurement of the source energy is

generated according to (1). The gain factors gi, i = 1, . . . ,N, for

all sensors are equal to 1. The source is located at θ = [0, 0]T

and emits a signal with P set to 50 dB and the background

noise level is set at 0 ≤ σi ≤ 2, i = 1, . . . ,N for all sensors in

the sensor field. The actual receiver SNR at different sensors

depends on the sensor to source distance. For example, if the

variance of noise is 1, then for a sensor that is 5 m away from

the source, its receiver SNR is 10 × log10(50/52) = 3 dB.

A. Convergence Performance of the Proposed Methods

Due to the measurement noise, in our simulation, the CFP is

of inconsistent case. The relaxation sequences for parallel and

sequential projection methods are set as λ(k)k≥0 = 1(parallel)

and λ(k)k≥0 = 1/(k + 1) (sequential) respectively. Figures 4
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shows the simulation results for these two methods, where

the number of active sensors is 10. We can see that both

the parallel and sequential projection methods have good

convergence performance.
For the diffusion based projection method, the number of

active sensors is also set to 10 and communication range of

each sensor is set as 5m to guarantee network connectivity

(Assumption 1). The variance of background noise is 1. The

relaxation sequence is set as λ(k)k≥0 = 1/(k + 1). The weight

matrix used is Metropolis weights presented in [6]. Fig. 5

(left) shows one example of network connectivity. In Fig.

5 (right), each disk denotes one convex set determined by

a sensor, i.e., (Di)(i=1,...,N). Clearly, D = ⋂N
i=1 Di is empty.

Fig. 6 presents the convergence result by using protocol in

[9] and the proposed protocol, where each curve denotes the

convergence result of one sensor and distance (y-coordinate)

denotes Euclidean distance between the estimated and true

source location, i.e., ‖θ̂i − θ‖,∀i. From the figure, we can see

that our proposed diffusion based projection method has good

convergence performance even though the CFP is inconsistent.

However, in most of the cases, the protocol (10) in [9] will

diverge or oscillate at some point.

B. Estimation Performance of the Proposed Methods
As a benchmark, the performance of the proposed projection

methods against weighted least square (WLS) method in [4]

and MLE in [1], is also conducted. The MLE is found by

performing a grid search over the field area. In our implemen-

tation, the grid search resolution is set to 0.1 m × 0.1 m. The

performance of the estimators is evaluated through 1000 trials.
As shown in Fig. 7, our proposed projection based methods

have a comparable estimation accuracy with MLE when the

noise level is low or the number of active sensors is large. Also,

we can see the performance of projection based methods are

better than WLS, which is mainly because least square based

methods are sensitive to the noise and need a high density of

sensors.
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Fig. 4. Convergence results by Parallel and Sequential projection methods.

Fig. 5. Sensor network connection (left) and convex sets (disks) determined
by sensors (right).
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(b) Proposed protocol (12)

Fig. 6. Convergence results by diffusion protocols
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Fig. 7. Accuracy comparison

VI. Conclusions

In this paper, we proposed a diffusion based projection

method for energy based source localization problems. The

solution has global convergence properties and acceptable

estimation accuracy. The convergence of the proposed pro-

tocol was provided. Theoretic analysis and simulation results

showed that our proposed method can be applied to the dis-

tributed source localization problem without prior knowledge

of whether or not the problem is consistent. Future works

include studying the diffusion method for source localization

with channel noises and packet loss.
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