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Abstract—Wireless Sensor Networks (WSNs) have been
shown to be most suitable for monitoring large and possibly
inaccessible areas. To assign measured values to certain posi-
tions as well as for complex network algorithms, localization
represents a required basic capability. By splitting a costly
localization calculation into precalculation and postcalculation,
Distributed Least Squares (DLS) has been introduced as an
efficient approach of fine grained localization.

Since the development of DLS, basically two advancements
of DLS have been introduced. On the one hand, scalable DLS
(sDLS) enabled the use of DLS in large WSNs, making the cost
independent from network size. On the other hand, Resource
Aware Localization Algorithm (RAL) simplified calculation and
improved accuracy by use of a different linearization approach.

The aim of this work is to combine the before mentioned
advancements. Therefore, a new algorithm called scalable RAL
(sRAL) is introduced. This newly introduced algorithm has
been compared to its sDLS counterpart by use of a WSN
simulator with real world channel model. The results have
been further investigated by use of a more idealistic simulation,
using laboratory conditions.
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I. INTRODUCTION

The ongoing trend of miniaturization of microcontrollers,

radio modules and sensor technology has been enabled the

fusion of sensoric, communication and computation, build-

ing a new class of devices, called sensor nodes. Working

together in a Wireless Sensor Network (WSN), these devices

are most suitable to observe large and inaccessible areas.

In those WSNs each node acts autonomously, senses its

environment, computes simple tasks and exchanges data

with other nodes. For a meaningful interpretation of cap-

tured data, each nodes’ location is mandatory in many

applications. Furthermore, location-awareness serves as a

precondition for location based algorithms like geographic

routing [1][2] or clustering [3].

Due to limitations in terms of size, financial cost and

energy consumption, local positioning within the network is

preferred over utilizing Global Navigation Satellite Systems

(GNSSs) like GPS [4]. Commonly, local positioning algo-

rithms make use of a couple of location-aware nodes, called

beacon nodes, to localize the remaining nodes, referred to

as blind nodes. With the help of these known positions and

the distances to these anchor points, commonly estimated by

use of communication, blind nodes become able to estimate

their own position.

While coarse-grained localization like Adaptive Weighted

Centroid Localization (AWCL) [5] requires less computation

and communication, fine-grained approaches are typically

based on distance estimations and costly computations. A

combination of high precision and relativly low complex-

ity has been introduced with Distributed Least Squares

(DLS) [6]. It splits the costly localization calculation into

pre- and post-calculation. Independent from a specific blind

node, the complex precalculation is performed on a high

performance sink, while the remaining less complex postcal-

culation is performed on resource-constrained blind nodes.

A fundamental drawback of DLS is its limitation to small

networks. Caused by the use of only one global precalcula-

tion, its size depends on the network size, i.e. the number

of beacon nodes, which causes costly postcalculations com-

prising beacon nodes, inaccessible to the blind node. This

restriction has been addressed by scalable DLS (sDLS) [7]

and its successor sDLS with normal equation (sDLSne) [8],

providing costs of computation and communication, incurred

on blind nodes, which are independent from network size.

A further drawback of DLS is its dependence on a single

node, referred to as linearizer, which is used to linearize

the system of equations. The choice of linearizer has deep

impact on the resulting accuracy. By use of a different lin-

earization scheme, Resource Aware Localization Algorithm

(RAL) [9] addressed this limitation and further simplified

the postcalculation.

The present work aims to combine both advancements of

DLS within a new algorithm, called scalable RAL (sRAL).

The given algorithms, i.e. DLS, sDLSne, RAL and sRAL,

will be analysed and compared to each other in terms of

costs as well as in terms of accuracy.

The remainder of the paper is organized as follows.

Section II covers basic informations about DLS, sDLSne and

RAL. In Section III, the new combined approach referred to

as sRAL is presented. Section IV covers performed simu-
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lations as well as simulation results. Finally, the presented

work is summarized in Section V.

II. RELATED WORK

A. DLS
The DLS algorithm as well as the following algorithms

base on system of equations, composed of distance equations

as given in equation (1). Here x and y indicate the unknown

position of a blind node. The known position of a beacon

node is denoted as xi and yi. The distance between both

nodes is given as ri. The number of beacon nodes utilizable

for localization is given as m.

(x−xi)2+(y−yi)2 = r2
i (i ∈ I; I = {1, 2, . . . , m}) (1)

To linearize this system of equations DLS makes use of a

linearization tool [10], using one beacon node as linearizer,

denoted with index L. After restructuring, the system of

equations consists of equations as given in equation (2),

where rL denotes the distance between blind node and

linearizer, ri is the distance between blind node and beacon

node and diL denotes the distance between linearizer and

beacon node.

biL = (x − xL)(xi − xL) + (y − yL)(yi − yL)

=
1
2

[
r2
L − r2

i + d2
iL

] (2)

After further restructions, the system of equations matches

the matrix form Ax = b, using A, x and B as given in

equation (3).

A =

⎛
⎜⎜⎜⎝

xk1 − xL yk1 − yL

xk2 − xL yk2 − yL

...
...

xkn
− xL ykn

− yL

⎞
⎟⎟⎟⎠ ,

x =
(

x − xL

y − yL

)
,b =

⎛
⎜⎜⎜⎝

bk1L

bk2L

...

bknL

⎞
⎟⎟⎟⎠

(3)

Here, beacon nodes, used for localization, are denoted

with indices K = {k1, k2, . . . , kn} with K = {I � L}.

While matrix A only consists of beacon position data, cal-

culations on this matrix build one part of the precalculation.
By use of normal equations, the localization task is

to solve equation (4a), splitted into precalculation (4b),

performed on the sink, and postcalculation (4c), performed

on blind nodes. Figure 1 gives an algorithmic representation

of DLS.

x =
(
AT A

)−1
AT 1

2
[
r2
L − r2 + d2

]
(4a)

Ap =
(
AT A

)−1
AT

dp = d2
(4b)

x = Ap
1
2

[
r2
L − r2 + dp

]
(4c)

Figure 1. Algorithmic comparison of DLS/RAL and sDLSne/sRAL

B. sDLS

sDLSne as the latest variant of sDLS keeps the idea of

splitting the calculation into precalculation and postcalcu-

lation, but uses multiple, individual precalculations with

smaller size. Each beacon node provides its own precal-

culation, using its own position as linearization tool. Blind

nodes are expected to choose the precalculation of the closest

beacon node, according to their distance estimation. Due to

this condition, the distance towards the linearizer is much

smaller than distances between linearizer and beacon nodes

outside the blind nodes’s communication range, given by the

precalculation (4b). Therefore, the sum of both distances can

be used as distance estimation towards those beacon nodes,

as shown in figure 2.

Figure 2. Approximation of a distance between blind node and inaccessible
beacon node

Considering G as the global set of all beacon nodes

within a WSN and Li ⊆ G as a local set of beacon nodes

within the communication range of beacon node i, sDLSne

uses individual precalculations for all beacon nodes, i.e. |G|
precalculations using equation (3) with K = {Li � L},

L = i, ∀i ∈ G. In contrast, DLS made use of only one

precalculation, including all beacon nodes, i.e. equation (3)

with conditions K = {G � L} and L = 1. Therefore, the

sDLSne algorithm starts with an additional discovery phase

to find other beacon nodes in one hop distance, as illustrated

in figure 1. While DLS needs an explicite communication

with all beacon nodes during the communication phase for

distance estimation, this is implicitely performed by sDLSne

as each blind node receives precalculations from beacon

nodes in its own communication range.

C. RAL

While the enhancements of sDLSne are mainly achieved

by changes of the algorithmic part, RAL changed the math
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behind DLS to achieve its advancement and left the algo-

rithm unchanged as given in figure 1. Instead of using a

linearization tool, RAL uses a substitution to linearize the

system of equations. Based on equation (1), RAL starts with

resolving the binomial formulas followed by the substitution

x2 + y2 = w, which results in equation (5).

bi = −2xix − 2yiy + w = r2
i − x2

i − y2
i (5)

The resulting matrix form Ax = b holds three unknown

parameter and one more column in matrix A as given in

equation (6).

A =

⎛
⎜⎜⎜⎝
−2xk1 −2yk1 1
−2xk2 −2yk2 1

...
...

...

−2xkn
−2ykn

1

⎞
⎟⎟⎟⎠ ,

x =

⎛
⎝x

y
w

⎞
⎠ ,b =

⎛
⎜⎜⎜⎝

bk1

bk2

...

bkn

⎞
⎟⎟⎟⎠

(6)

However, when solving this system of equations using

linear least squares, similar to DLS, w does not need to

be calculated in the postcalculation (7b) for localization

and the corresponding row of the precalculation, given in

equation (7a), does not have to be transmitted.

Ap =
(
AT A

)−1
AT

dp =
(
x2

i + y2
i

)
i∈K

(7a)

x = Ap

(
r2 − dp

)
(7b)

As it can be seen in equation (6), one advantage of RAL

is that the unknown position, given in x, is determined

directly. Second advance is the absence of an outstanding

beacon node, known as linearizer in DLS, which affects the

localization accuracy. In [11], the accuracy of various local-

ization algorithms have been analyzed. Particularly, it has

been shown that the linearization tool, used in DLS, leads

to higher localization errors, causing an error ellipse in line

with the linearizer’s direction. Therefore, RAL outperforms

DLS in terms of accuracy and reliability.

III. THE SRAL APPROACH

As RAL relies on the same basic idea as DLS, it also

shares the same problem of unreachable beacon nodes and

costs, growing with the number of beacon nodes. Having

the before mentioned enhancements of DLS in mind, i.e.

sDLS and RAL, the idea of sRAL almost suggests itself. In a

few words, sRAL aims to combine the linearization method,

used in RAL and the algorithmic approach of individual

precalculations, promoted by sDLS.

In spite of the given similarities of DLS and RAL, there is

one major difference, which needs to be taken into account,

when applying the idea of sDLS onto RAL. RAL takes it

advance from waiving of a linearization tool. This affects

the precalculation, given in equation (7a), which does not

include any distance information. In contrast, to avoid costly

matrix updates, sDLSne used the given distances between

linearizer and beacon nodes for distance approximation as

mentioned in figure 2. To fully apply this idea of sDLSne

onto RAL, the precalculation of sRAL, given in equa-

tion (8a), had to be extended by a distance vector ep, holding

the euclidean distances ei between the beacon nodes of

the precalculation and the beacon node that provides the

precalculation. Except from its size, the postcalculation of

sRAL (8b) is similar to RAL.

Ap =
(
AT A

)−1
AT

dp =
(
x2

i + y2
i

)
i∈K

ep = (ei)i∈K

(8a)

x = Ap

(
r2 − dp

)
(8b)

IV. SIMULATIONS

A. Field Based Simulation

As previously done with sDLS, all mentioned algorithms

has been simulated in a realistic WSN, using the MATLAB R©

based network simulator Rmase [12]. Radio communication

is modeled by use of log-normal fading with pathloss 2 and

shadowing variance 1.7, which corresponds to an outdoor

open area. Especially distance estimations on blind nodes

have been performed by use of the received signal strength

(RSS), given by the simulator’s radio communication model.

Simulated field size has been varied from 50m × 50m to

200m× 200m. The mean number of randomly chosen bea-

con nodes, as well as blind nodes was set to 0.005/m2. The

mean communication range of a node was about 30m. For

multi-hop communication, a simple spanning tree routing

is applied. All simulations have been repeated 100 times,

performing all localization approaches concurrently. In each

simulation, one of the randomly deployed nodes has been

chosen as sink.

First results are dealing with the amount of communi-

cation. Therefore, each transmitted float value has been

counted as 4 bytes, while an integer value, e.g. an ID, has

been counted as 2 bytes.

Besides the before mentioned data, i.e. Ap, dp and ep, an

additional vector bID which relates the IDs of used beacon

nodes to the precalculation is transmitted. In case of DLS

and sDLS also the linearizer’s ID IDL and position PL

need to be transmitted. Table I provides an overview of the

amount of data per precalculation based on n beacon nodes.

Although the amount per precalculation is similar in most

approaches, there are differences due to the number and

size of genererated precalculations. Furthermore, in case of

sDLS, linearizer information needs not to be transmitted

from sink to beacon node but only from beacon node to

blind node. Figure 3 shows the mean data transmitted per
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Table I
SIZE OF DATA PER PRECALCULATION, BASED ON n BEACON NODES

data type DLS RAL sDLSne sRAL

Ap float [2 × n − 1] [2 × n] [2 × n − 1] [2 × n]

dp float [n − 1 × 1] [n × 1] [n − 1 × 1] [n × 1]

ep float - - - [n × 1]

bID integer [n − 1 × 1] [n × 1] [n − 1 × 1] [n × 1]

IDL integer [1 × 1] - [1 × 1] -

PL float [2 × 1] - [2 × 1] -

sum of bytes 14 ∗ n − 4 14 ∗ n 14 ∗ n − 4 18 ∗ n

node. Therefore only routing nodes and beacon nodes have

been taken into account. It can be seen that, using DLS

and RAL, a one and the same high amount of data has to

be transmitted by each node. In contrast, sDLSne leads to

lower data transmission per node, similar to sRAL which

needs slightly more data.
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Figure 3. Mean amount of data transmission

Second results, given in figure 4, investigate the number

of floating point operations, which have been performed on

a blind node in order to estimate its position, including

postcalculation and distance approximation. Once again it

can be seen, that DLS and RAL show similar performance,

using a high number of operations. By use of sDLSne

and sRAL, the number of operations is much smaller. As

theoretic analyses show that a postcalculation of n beacon

nodes takes 7 ∗ n − 5 operations in case of DLS and only

6∗n−2 operations in case of RAL, RAL based approaches

take less operations than DLS based approaches.

The most interesting results regard the mean localization

error, measured as distance between estimated position and

real position. Therefore distances to unreachable beacon

nodes have been approximated as desribed in Section II-B

also in the case of DLS and RAL. It can be seen in figure 5

that in the case of a high number of inaccessible beacon

nodes RAL falls back to a mostly constant localization error.

Caused by the used distance approximation, this error is

close to a nearest-beacon approach. Due to the strong impact
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Figure 4. Mean number of operations on blind nodes

of the linearizer, DLS leads to a quite higher localization

error.

1

10

100

1000

0 10 20 30 40 50
network size [1000 m²]

m
ea

n 
lo

ca
liz

at
io

n 
er

ro
r [

m
]

DLS sDLS RAL sRAL

Figure 5. Mean localization error

A contrary result can be observed concerning sDLSne

and sRAL. Both approaches provide higher localization

accuracy than their antetypes. Although sRAL could have

been expected to provide higher accuracy than sDLSne, it

is outperformed by sDLSne. Supposably, this is caused by

the linearizer which is chosen close to the blind node’s

position. This aspect is further investigated in the following

subsection.

B. Idealistic Simulation

The following simulations have been inspired by simula-

tions, used in [11], which identified RAL as more accurrate

than DLS. As previously done in [11], a number of beacon

nodes have been arranged in a circle. In contrast to the

original simulations the blind node has not been set to the

center of the circle, but has been moved around in the given

field. The number of beacon nodes as well as the variance,

used to distort measured distances, has been varied.

The idealistic character is given by the assumption, that

beacon nodes and blind nodes are always within each others

communication range. Therefore, sDLS only differs from

DLS in the fact that the linearizer node is chosen close

to the blind node. Concerning RAL and sRAL, there are

no differences. All simulations has been repeated 2000
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times, applying each algorithm on the same sets of distorted

distances.
Firstly, figure 6 shows a network of 20 beacon nodes. At

each point, a blind node estimated its position, using one of

the algorithms, and calculated its localization error, indicated

by the colorbar. For distance distortion a variance of 10%

has been used. It is shown in figure 6(a), that DLS is strongly

influenced by the linearizer. Blind nodes will be localized

best, if they are located in a certain region between linearizer

and center. In contrast, as shown in figure 6(b), RAL/sRAL

is not influenced by a certain beacon node, achieving best

localization in the center. Using sDLS, a blind node always

choses the closest beacon node. Therefore, sDLS also shows

a circular error distribution. In contrast to RAL/sRAL, best

localization is achieved within a ring around the center, as

illustrated in figure 6(c). Close to the border, sDLS is even

better than RAL/sRAL.

(a) DLS (b) RAL/sRAL

(c) sDLS (d) legend

Figure 6. Distribution of mean localization error

To illustrate the regions where sDLS outperforms

RAL/sRAL and vice versa, the localization error of sDLS

has been substracted by the localization error of RAL/sRAL,

i.e. positive values indicate that RAL/sRAL outperforms

sDLS and vice versa. Figure 7 illustrates this difference,

using several parameter sets. A white borderline outlines

where both algorithms provide the same localization error.

Within this borderline, sRAL performs allways better than

sDLS. On the one hand, it can be seen that the region

within sDLS performs better is as larger as less beacon nodes

are used, and does not depend on the variance, applied to

measured distances. On the other hand, the difference itself

depends on the variance. While both algorithms perform

similar if a low variance is assumed, the difference between

both algorithms is larger if a high variance is assumed.

Figure 7. Difference of mean localization error of sDLS and RAL/sRAL

These results are underlined by figure 8 and 9, also

showing the difference of the mean localization error of the

two algorithms. For these simulations, a blind node has been

moved from one side of the circle, i.e. the position of the

linearizer in case of DLS, to the opposite side.

Figure 8, illustrating the impact of the number of beacon

nodes, shows that only in case of a small number of

beacon nodes sDLS significantly outperforms RAL/sRAL

within a large area. In contrast, having a high number of

beacon nodes, sRAL becomes more beneficial, significantly

outperforming sDLS in a wide range. Although there is still

a region within sDLS outperforms sRAL, the gain in this

outer region is much less than the gain of sRAL near the

center.

Figure 8. Difference of mean localization error (sDLS - RAL/sRAL)
versus number of beacon nodes. Blind node traverses the circle of beacon
nodes along the x-axis (y = 0).

Figure 9, which illustrates the impact of the variance

applied on measured distances, shows that there is no
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influence on the apportionment of the found regions. The

difference between the algorithms increases as the variance

increases. In the given case of 20 beacon nodes, RAL/sRAL

copes better with high variance than sDLS.

Figure 9. Difference of mean localization error (sDLS - RAL/sRAL)
versus distance variation. Blind node traverses the circle of beacon nodes
along the x-axis (y = 0).

On the one hand, the results of the idealistic simulation

support the field based results, presented before, proving that

under certain conditions, the linearization tool can also have

possitive influence on the localization. In the field based

simulation a blind node used a mean number of 13 beacon

nodes. On the other hand, the results show that sRAL is more

reliable in case of high distance variantions. In addition,

sRAL profits much more from a higher number of beacon

nodes than sDLS.

V. CONCLUSION

In this work, a new localization approach, called sRAL,

has been introduced with the aim to combine efficiency

and accuracy of RAL with the scalability of sDLSne. Field

based simulations have shown that this new approach greatly

outperforms the initial RAL. Compared to sDLSne it is more

efficient in terms of computation but slightly outperformed

in terms of accuracy. Idealistic simulations underlined, that

under certain conditions the linearization tool, used in

sDLSne, has positive influence on the accuracy. Nevertheless,

it has been shown that sRAL is more stable against high

variations in distance estimation, and profits from a high

number of beacon nodes. As both algorithms provide low

localization error, it depends on the network design goal

which algorithm is preferred. sRAL needs to be preferred if

computation is an important criterion. Especially in case of

high number of beacon nodes as well as in case of highly

distorted distance estimations, sRAL is the best choice, as

it provides a reliable efficient localization.
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