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Abstract—All cells have to adapt to changing chemical en-
vironments. The signaling system reacts to external molecular
‘inputs’ arriving at the receptors by activating cellular responses
via transcription factors generating proper proteins as ‘outputs’.
The signal transduction network connecting inputs and outputs
acts as a molecular computer mimicking a neural network, a
‘chemical brain’ of the cell. The dynamics of concentrations of
various signal proteins in the cell are described by continuous
kinetic models proposed recently. In this paper we introduce a
special neural network model based on the ordinary differential
equations of the kinetic processes. We show that supervised
learning can be implemented using the delta rule for updating the
weights of the molecular neurons. We demonstrate the concept
by realizing some of the basic logical gates in the model.

I. INTRODUCTION

All living entities have to adapt to their environment. This
is particularly true for unicellular organisms. In this case, en-
vironmental signals are quite simple, eg. temperature changes
or changes in the chemical composition of the environment.
Their so-called signaling network which consists of thousands
of proteins reacts to such external stimuli. Its role is similar
to the neural network of higher organisms. The high degree
of interconnectedness and complexity of the protein network
makes it very similar to a neural network. The nodes of this
network are the proteins that travel in the cell’s inner volume
by diffusion.

Proteins in the signaling network can be regarded as in-
formation processing units: they produce molecules according
to their molecular input. These proteins have two states: an
activated and a deactivated. A protein in its activated state is
also called phosphorylated. Hence this two-state system can
be regarded as a binary bit based information storage system
and passage of the activated state from protein to protein
can be regarded as information propagation in the network.
Such properties of the cellular signaling network enable us
to use this system for computations and also as a nanoscale
communication network.

Recently, it has been shown [1] that cell based molecular
nano-communication networks can be modeled in terms of
information theory. The receptor of the cell membrane (ligand)
can be regarded as a sender and the cellular nucleus can be
regarded as a receiver of the intra-cell communication. The
response of the nucleus for the incoming cellular signals can be
the initiation of the transcription of a specific gene. The tran-
scription factors are the output nodes of the cell signaling net-

work. Linear network coding [2] is one of the ways to formu-
late the signaling pathway network. The phosphorylation/de-
phosphorylation process can be represented by a network
coding model [1]. Control of engineered molecular motors via
signaling pathways [3], [4] is also possible [1] making possible
to develop cellular systems which respond to external stimuli
with various mechanical or electrical actions.

The realization of a deterministic process based program-
ming of cellular communication systems requires further ad-
vances in molecular technology. Yet, logical gates operate
in vivo cellular systems: the design logic of cannabionoid
receptor signaling network has recently been uncovered [5].
In living cells the information flow is carried by a swarm of
activated protein molecules and information passage between
proteins is described by reaction-diffusion equations govern-
ing the concentrations of macroscopic number of molecules.
Such computational systems – based on the concentrations of
signaling protein molecules – has been envisioned by Bray [6]
in 1995.

In this paper we show that the mass action kinetics of cell
signaling networks can be designed and trained to carry out
logical calculations. Elements of training algorithms developed
in machine learning such as ‘delta rule’ and ‘feed forward
networks’ can be realized.

The article is organized the following way. In section II we
introduce a mass action kinetic model of the signaling network.
In section III we deduce a learning algorithm for tuning the
parameters of the network. Finally, in section IV we present
some of the basic logic gates to illustrate the concept.

II. THE MODEL

Hereby we introduce a simple model of the network de-
scribed in the Introduction. We assume that the distribution of
protein concentrations in the system is spatially homogeneous
and hence we can treat the problem with ordinary differential
equations in the framework of mass action kinetics like in [7].
Let us assume the overall concentration of a protein including
activated and deactivated parts is constant, ci for the ith
protein. The concentration of the ith protein’s activated part is
denoted by xi, the deactivated part’s concentration is ci − xi
accordingly. We assume, following Kartal and Ebenhöh [7],
that the change of protein concentrations is described by the
following equations:
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Fig. 1. (a) A 2–2–2 network. In this case, n = 6 and M = 2. See section IV for explanation. (b) Relaxation of the 2–2–2 network. In the picture, S1 = 0.8,
S2 = 0.4, and all proteins were totally inactive initially. We can observe that the network reaches equilibrium fast.

dxi
dt

= CiSi(ci − xi) +
∑
j

xjaji(ci − xi)− bixi. (1)

The first term stands for the extracellular signal Si activating
the deactivated part of the ith protein with a coefficient of
proportionality Ci. The second term describes the activation
caused by the other proteins in the network. By matrix
aji, we take into account that these processes have different
probabilities. We can regard this network as a graph, where aij
is the weighted adjacency matrix. The last term is due to the
spontaneous deactivation of the protein with a characteristic
time 1/bi.

Numerical simulations show (see Fig. 1b) that the system
relaxes fast to an equilibrium point, which entitles us to study
the equilibrium solution of the differential equation only. This
means we have to solve the following algebraic equations:

0 = CiSi(ci − xi) +
∑
j

xjaji(ci − xi)− bixi. (2)

Let us define the net input of the ith protein by Ni :=∑
j xjaji+CiSi. It can be easily shown that (2) is equivalent

to the implicit equation

xi = ci
Ni

Ni + bi
= fi(Ni), (3)

where fi(x) = cix/(x+bi) is the so-called activation function
for the ith protein. Observe that fi(x) is a monotonically
increasing function, and it also has an upper bound ci. In most
artificial neural networks, the activation function is chosen to
be a sigmoid function. Equation (3) can be solved numerically
by iteration. Note that the right hand side of (3) is independent
of xi if we exclude self-interaction of proteins (i.e. aii ≡ 0).

III. THE TEACHING ALGORITHM

In this section we are going to examine the learning abilities
of the previously introduced model. We are going to deal
only with the so-called supervised learning. This means we
want our network to give a desired response to a given input.

In other words, we want our system to learn input–output
patterns. In order to measure the quality of learning, we
introduce the quadratic error function:

E :=
∑
i

(xi − oi)2, (4)

where oi is the desired output for the ith protein and the sum
is executed only for the output proteins, where we require
a given output oi. The rest of the protein concentrations are
not prescribed. Our goal is to minimize this error function by
tuning the parameters of the system.

One way of minimizing this function is the so-called delta
rule which is a steepest descent method. We introduce a small
λ step parameter and in every teaching step we move along
the gradient of the error function given by

pnew = pold − λ∂E
∂p

, (5)

where p is an arbitrary parameter (i.e. overall concentration,
time constant, or weighted adjacency matrix element). How-
ever, attention must be paid to the fact that only certain
parameter values have a physical relevance (eg. negative
concentrations are meaningless). We should check after every
step whether the parameter values are valid.

Let there be n proteins in the network. Let there be M
output proteins. Let us index the proteins so that the last M
ones are the outputs. Using (3) and the chain rule recursively,
it can be easily shown that we have explicit and easily
computable formulae for the change of the parameters. For
the change of the maximal concentrations, we have

cm 7→ cm + λc

M−1∑
i=0

(oM−i − xn−i) tm
[
(Id− J)−1

]
n−i,m

,

(6)
where λc is the step parameter for the overall concentrations,
Id is the n× n identity matrix, J is the Jacobian of (3):

Jij =
∂fi
∂xj

=
cibi

(Ni + bi)2
aji, (7)
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Fig. 2. Teaching of the identity function. In the figures, the matrix elements of the weighted adjacency matrix are plotted against the number of teaching
steps. Pay attention to the different scaling of the axes. We denote the matrix elements by their indices in brackets. Fig. (a) shows the initial transient phase of
learning, while Fig. (b) gives us a broader look over the learning process. The parameter values were: ci ≡ 1, the bi values were randomly selected from the
(0, 1) interval. Only the aij values were changing (λa = 0.1), the step parameters for the other parameters were zero. See section IV-A for a more detailed
description.

and
ti = 1− bi

Ni + bi
(8)

is an auxiliary vector. A similar updating rule holds for the
weighted adjacency matrix:

alm 7→ alm+λa

M−1∑
i=0

(oM−i − xn−i)xl
[
(Id− J)−1K

]
n−i,m

,

(9)
where λa is the step parameter for the adjacency matrix, and

Kim =
cibi

(Ni + bi)2
δim (10)

is an auxiliary matrix. We can deduce another updating rule
for the inverse characteristic times (bi).

bm 7→ bm + λb

M−1∑
i=0

(oM−i − xn−i) qm
[
(Id− J)−1

]
n−i,m

,

(11)
where λb is the step parameter for the inverse characteristic
times, and we introduced an auxilliary vector

qi = −
ciNi

(Ni + bi)2
. (12)

Observe that all variables in (6), (9), and (11) – excluding
the step values λa, λb, and λc – have to be updated in every
teaching step since they depend on the actual concentration
values xi.

This algorithm is highly sensitive to the step parameter λ.
If we choose a too large step size we may never reach a
minimum. On the other hand small step size implies slow
convergence. Another problem is the fact that the Delta Rule
can be stuck in local minima. Another interesting fact is that
the parameter values depend not only on the given input–
output patterns but on the order of the patterns. Nonetheless,
this method works successfully in our numerical examples
shown next.

A biophysical interpretation of the temporal evolution of
the parameters during learning is also feasible. The overall
concentracion changes due to the transcription factors (TFs)
at the output of the network because the TFs make the nucleus
produce the proteins that enter the network and hence the
overall concentrations change. The change of the weighted
adjacency matrix elements and that of the characteristic times
can be due to conformal changes in the proteins or (in a rarer
case) due to evolutionary mutations.

IV. SIMULATIONS CONCERNING LOGIC GATES

According to the model and the teaching algorithm de-
scribed in the previous sections, numerical simulations were
carried out. Our goal was to illustrate the abilities of this
simple system by realizing some of the basic logic gates.
We chose three logical fuctions for this purpose: identity,
disjunction and exclusive disjunction (see Table I for the
truth tables). We built a simple ‘minimal’ network for the
simulations. It consists of layers with two proteins in each.
Before training, all proteins interact with the proteins on the
next layer. We are going to refer these networks by the number
of proteins in the layers, eg. 2–2–2 refers to a network with
three layers and there are two proteins in each layer (see
Fig. 1a).

We used oi = 0 and oi = 0.9ci for representing the
logical false and true values, respectively. Note that we cannot
prescribe ci for the truth value because xi < ci according
to (3). We built teaching patterns according to the truth table
of the given logic functions. Since the delta rule is sensitive
to the order of the patterns we used random input truth values
(i.e. Si = 0, 1).

A teaching step consists of two phases. First, the network’s
response to the actual pattern’s external inputs (Si) is com-
puted by (3). Second, the parameters are updated according
to (6), (9), and (11).
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Fig. 3. Teaching of the disjunction and the exclusive disjunction. The aij values are plotted against the number of teaching steps. We denote the matrix
elements by their indices in brackets. The parameter values were: ci ≡ 1, the bi values were randomly selected from the (0, 1) interval. Only the aij values
were changing (λa = 0.1), the step parameters for the other parameters were zero. Fig. (a) shows the disjunction function (see section. IV-B). Note the
absence of the transient phase. Fig. (b) shows the exclusive disjunction function (see section. IV-C). The error is high in this case and doesn’t decrease
significantly during the training.

A. Identity
First we trained the network for the two-variable identity

function. The simplest network for this function is a 2–2
network. The simulation showed that changing of the overall
concentrations or the characteristic times is insufficient for a
low error level. The network is trainable by modifying the
weighted adjacency matrix aij (see Fig. 2a). We can see in the
figure that the initial adjacency matrix is far from optimal but
the training is efficient. The optimal choice for the network
topology (and thus for the adjacency matrix) would be two
separate pathways connecting the input to the corresponding
output. This means that some of the aij elements have to be
zero. We can see a transient phase in the figure, in which the
the ‘unwanted’ connections disappear, and the error is big.
The matrix elements cannot decrease under zero because this
would have no physical meaning and we take this fact into
account during the simulations. After the first transient phase,
the fine-tuning of the non-zero matrix elements take place. The
error decreases nearly exponentially in this phase. We can see
in Fig. 2b that the matrix elements saturate after a sufficiently
large amount of teaching steps. The final error after 500,000
steps is in the order of 10−8.

The initial transient phase is longer in larger networks since
the network has to ‘select’ a path configuration out of equally
satisfactory alternatives. The behaviour is similar to the 2–2
case in the post transient phase.

B. Disjunction
The next simple logical function to present is the logical

disjunction (OR). Since this is a single-valued function, we
added one more layer to the 2–2 network to get a 2–2–1 net-
work. According to the simulations, there is no transient phase
like in the previous case, and the error is nearly exponentially
decreasing during the whole teaching process. The lack of the
transient phase may indicate that the network’s topology is
suitable for this pattern. Furthermore, in contrast to the identity

pattern, learning by changing the overall concentrations is
comparable effective to the one by changing the weighted
adjacency matrix. We may say that the learning process via
the overall concentrations is possible if the topology of the
network, i.e. the weighted adjacency matrix, is suitable for
the pattern. In other words, the overall concentrations can only
fine-tune this system. The final error after 500,000 steps is in
the order of 10−4 for the change of cis and for the change of
aijs.

C. Exclusive disjunction

Despite the success in learning the identity and the dis-
junction, our simple network cannot learn every pattern. If
we build a training pattern set form the exclusive disjunction
(XOR), we find that the 2–2–1 network is incapable of realizing
the (true,true) 7→ false assignment because the corresponding
output value is larger than any of the other outputs. The error
after 500,000 steps is in the order of 0.1, and doesn’t change
significantly during the training (see Fig. 4b).

A learnable pattern is monotonic in the following sense:
1. if the input is zero in all components, the output is zero as
well. 2. If some component of the input increases, the output
cannot decrease. This is a consequence of the monotonicity of
the activation funcion f , and – more importantly – the non-
negativity of the elements of the weighted adjacency matrix.
Because of these two properties, an increase of an input causes
increase in the activation of the neighbouring proteins, which
causes increase in the activation of their neighbours, etc. So
this increase ‘propagates’ through the network – including the
output proteins as well. It can be easily shown that the identity
and the conjunction are monotonic but exclusive disjunction
is not.

V. SUMMARY, CONCLUSIONS AND ACKNOWLEDGEMENTS

We presented a quantitative model for the cell’s signaling
network. Considering the fast relaxation, we gave a method
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Fig. 4. Quadratic error during the training. In the figures, the quadratic error is plotted against the number of teaching steps. Pay attention to the different
scaling of the axes. Fig. (a) shows the plot corresponding to the 2–2 identity network, while in Fig. (b) we can see the plot for the 2–2–1 XOR. It can be
seen that the error exponentially decreases in the ‘identity case’. On the other hand, teaching is insufficent in the ‘XOR case’. See sections IV-A and IV-C for
a more detailed description.

S1 S2 identity OR XOR
F F F,F F F
F T F,T T T
T F T,F T T
T T T,T T F

TABLE I
TRUTH TABLES FOR THE LOGIC GATES USED IN THE PAPER. ‘F’ DENOTES

LOGICAL FALSE AND ‘T’ DENOTES LOGICAL TRUE. MONOTONICITY FAILS
IN THE BOLD CASE.

for determining the equilibrious concentration values of the
proteins. We presented a teaching method as well for the
changes in the parameter values in the network according
to the delta rule. We realized some basic logic functions
on a simple network to show the properties of this model.
We observed that the change of the interaction between the
proteins is the main effect in the learning process of the
network, the overall concentration of the proteins and the
characteristic time for deactivation can only fine-tune the
network. We gave a necessary condition for the learnable
patterns. The cause of this condition seems to be that this
model treats the activating protein–protein connections only
(due to the non-negativity of the weighted adjacency matrix).

Our simple networks also had neither loops nor inhibitory
protein–protein interactions. If we allow loops in the network,
there will be nonzero solutions of (3). [7] This means that a
loop can act like an inner source and hence the first condition
of monotonicity can be relaxed. Inhibitory interactions can
modify the monotonous activation functions and a great variety
of functions including the sigmoid becomes possible. [8]
Further investigations are required to clarify the exact role
of the inhibitory effects in the trainability of the signaling
network.

This paper is a part of a Project supported by the European
Union and co-financed by the European Social Fund (grant
agreement no. TÁMOP 4.2.1./B-09/1/KMR-2010-0003).
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