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Abstract—Communication between biological based nano scale 
devices is a crucial component of future applications in 
nanotechnology. This paper explores the creation of a backbone 
communication network for nano scale sensors using neurons. We 
investigate how neuron cell characteristics affect the performance 
of neuronal based network and highlight several key 
characteristics compared to conventional wire based networks. 
Finally, we investigate four network topologies through 
simulation. 

I. INTRODUCTION  
In recent years Nanotechnology has received tremendous 

attention due to its potential application in various medical 
fields. The area of nano communication has recently been 
introduced to enable communication between nano scale 
devices [1]. This new capability can increase capabilities and 
functionalities of nano devices, in particular from perspective of 
their application base. As the popularity of this research area 
increases, a number of different solutions have been proposed. 
Currently, two approaches have been investigated, which 
includes electromagnetic wireless nano networks [8] and 
Molecular Communications [9] [10]. Electromagnetic based 
nano sensor devices resemble conventional sensor networks, 
and uses similar design concepts and communication 
capabilities. On the other hand, molecular communication is a 
new paradigm shift from conventional communication devices, 
where communication is performed on underlying biological 
environment. In such cases, the information is usually 
transformed into bio-molecules at the physical layer [6], before 
being propagated to the receiver. A number of different 
approaches have been investigated, and one potential approach 
is through the use of neurons.  

In this paper, we aim to show how neurons can, within their 
intrinsic properties, form a network, to be used, for molecular 

communications. Neurons are specific type of cells that form 
highly interconnected networks, where the signaling is 
performed through dedicated cellular synapses (Fig. 1). The 
scenario we concentrated in is a fixed wireline backbone 
network that supports communication between distributed nano 
scale sensor and a sink. Given the biological nature, the 
physical shape and characteristics of neurons, our aim is to 
associate with neurons the molecular communication function 
of being the interconnecting links. Due to the capabilities of 
neurons to forms complex connections (e.g., web), we believe 
that this could be used to form wireline infrastructure for 
communication. In particular, our aim is to develop the 
backbone infrastructure at the basis of simple information 
transfer. Thus, this paper will evaluate how different geometric 
topologies can be used as neuronal backbone networks, and 
how each of these shape’s influence can have diverse blocking 
probabilities. Therefore, the simulation work, here presented, is 
developed to show the associated performance for each 
topological shapes taken into examination.  

The paper is organized as follows: Section II will present 
the related work, while section III will present background 
information on neurons and their characteristics. Section IV 
will describe our backbone neuronal network, while section V 
will present the simulation work. Lastly, section VI will be the 
conclusion. 

II. RELATED WORK 
The related work section is sub-divided into two sections, 
which includes current state of the art in molecular 
communication, and neuronal networks.  

A. Molecular Communications 
As described earlier, one form of communication for nano 

devices is through molecular communication [9], [10]. 
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Molecular communication can be sub-divided into two 
propagation approaches, which are passive and active transport. 
Passive transport is usually associated to diffusion based 
propagation of molecules [11] [12]. However, in the case of 
passive transport, there is not an identified unidirectional path 
in the propagation of signals. For instance, one example is the 
natural occurring calcium signalling that propagates between 
the connexons of cells or by larger static magnetic fields [7]. 
Whereas an example of active transport includes the use of 
microtubules to connect between cells, where the molecular 
motors are used to transport information [13]. Another 
approach that has been proposed is through the use of nano 
scale cargoes which can be loaded onto kinesin-coated surface, 
that act as cargo transporters [9]. Through the use of labeling 
process of using single-stranded DNAs, the cargo can then 
selectively unload in specific locations. 

The approach that we propose in this paper is availing of the 
active transport approach although using a different physical 
layer component: a neuron. While current approaches can allow 
directionality in transporting molecules, we believe that the 
process of forming interconnecting networks, similarly to 
conventional networks, will be difficult by using the above 
described approaches. Conversely, we believe that through 
neurons we can achieve closer characteristics to conventional 
communication networks.  

B. Neuronal Networks 
Kotsavasiloglu et al. [2] [3], studied the signaling 

performance of neuronal networks under varying condition. 
The aim of the study was to investigate the resilience of 
neuronal networks when synapses fail, where such failure can 
be due to aging or diseases. The authors performed simulations 
on the neuronal network of healthy neurons, and varied the 
synapse failure rate, refractory periods, excitation synapse ratio, 
as well as synapse delay. Here we show that neuronal networks 
are very resilient and are able to maintain high level of activity 
up to 70 – 80% destruction of synapses. Forming a pre-defined 
geometry and connectivity of neuronal networks has been 
investigated in a number of works. Breskin et al. [5], showed 
that connectivity of neural networks is based on Gaussian 
distribution rather than scale free network. Gabay et al. [4], 
developed a new approach of pre-defined geometry of neuronal 
network clusters using carbon nanotube clusters. In the 
proposed approach, neurons migrate on low affinity substrate to 
high affinity substrate on a lithographically defined carbon 
nanotube template. Once neurons have reached their 
destinations, they send neurites to form interconnected 
networks. This approach improves on previous methods, where 
neurons interconnecting the networks collapse during 
migration.   

While a number of works have investigated neuron 
networks from a networking perspective, our approach taken is 
different. In our proposed approach presented in this paper, we 
aim to show from natural occurring physiological perspective.   

 

 

III. NEURONS 
A neuron is the basic unit of a neural network (node) and 

has the ability to process information packages in the form of 
electrical and chemical signals. The classical structure of a 
neuron consists of 4 specific regions including the cell body, 
dendrites, the axon and the axon terminal [16]. The cell body 
or soma contains organelle for protein synthesis while 
branching from it are dendritic extensions which receive 
incoming chemical signals from abundant neurons 
simultaneously. The axon transmits incoming electrical 
impulses or action potentials to the nerve terminal where it 
forms synaptic contacts with other neurons [17]. Hence, the 
action potential depolarizes the pre-synaptic membrane 
opening voltage operated channels (VOCs) and potentiates the 
influx of extracellular calcium [12]. Increasing intracellular 
calcium concentrations initiates exocytosis of synaptic vesicles 
containing neurotransmitters. The axon terminal is the area 
where a synapse occurs between the pre-synaptic neuron and 
the post-synaptic neuron and it is within this synaptic cleft that 
information of the signal is relayed via excitatory or inhibitory 
neurotransmitters. In this perspective, the travelling 
information package can be considered the action potential 
generated by a cascade of chemicals events that take place on 
the surface of the cell membrane.  

 

 

Figure 1.  Examples of pattern of connections in a self organised network of 
neurons; please note cell bodies (or soma), axons (larger filaments) and 

dendrites (smaller filaments). (magnification x20). 

  

Figure 2.  Intracellular Ca2+ concentration in a neuron. Ca2+ release events 
must be separated by at least the refractory time Tr, the time required to 

replenish internal Ca2+ stores. 
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In other words, the action potential can be seen as a 
travelling gradient of ions concentration (Na+/K+, Ca2+) along 
the whole length of the cell structure. Tracking the movements 
of these ions may lead to a new way to interpreter the synaptic 
communication and dynamics within a neural network. 

There are a number of inherent differences between neuron 
link and a wireline communication link. First of foremost, 
conventional communication links have specific bandwidths 
that are able to support multiple traffic flows. This is not the 
case for neurons, which are only able to transport a single flow 
at any one time. Secondly, once a flow is terminated within a 
conventional communication link, the link becomes empty and 
is ready again to accept a few traffic flows. However in the case 
of neurons, there is a refractory period, as shown in Fig. 2 
which prevents the neuron-link to be used for a defined period 
of time. Similarities lies on the signal distribution. As signals 
are propagated from neuron to neuron, this could be compared 
to a burst-traffic behavior found in conventional 
communication links. At the same time, delays in intermediate 
nodes of a communication network (due to queuing delays) are 
very similar to synaptic delays found between the junctions of 
the neurons.   

IV. BACKBONE NEURONAL NETWORK 
As described earlier, our aim is to create an active molecular 
communication transport network using neurons. Mazzatenta 
et al. [15], showed that electrical signals delivered via single-
wall carbon nanotubes can directly activate neuronal signaling. 
This approach could provide a physical interface mechanism 
for nano scale sensors and neurons. In our work, we design the 
neuron networks for specific applications and these can be 
illustrated in Fig. 3, where we have a number of sensors that 
are connected via a network of neurons to transmit information 
to a receiving sink (targeted-neuron for communication 
actuation). Therefore, the key issue here is the ability to 
maximize the coverage and enable collection of information 
from majority of sensors to send information to the receiver 
sink. Therefore, in order to ensure, the geometric shape of the 
backbone is crucial. Fig. 4 illustrates the three types of 
topologies that we are considering for our investigation, which 
consists of a simple Bus (Fig. 4 (a)), Star topology (Fig. 4 (b)), 
Spiral shaped topology (Fig. 4(c)), and a Tree shaped topology 
(Fig. 4 (d)).  
 

 
Figure 3.  Sensor connected through Neuron Network 

 
Figure 4.  Topologies for Neuron Network Backbone (a) simple Bus 

topology, (b) Star topology, (c) Spiral shape, (d) Tree topology 

For the latter two topologies, our aim is to build on the bus 
topology structure to develop other types of topologies that can 
maximize the information coverage. On this, one crucial 
characteristic that will influence the performance of each 
topology is the timing processes within a neurons. This timing 
issue ranges from the timing for the action-potential to induce 
the electrical signalling to the refractory period of Ca2+ as well 
as associated delay of signaling in the synapses. Therefore, by 
taking these into account our work provides an opportunity to 
allow multiple devices to transmit on the same bus link, 
provided the delays of transmission are properly triggered. For 
example in Fig. 5, four neurons are connected to a single 
receiver R. This example shows how multiple neurons within 
the bus can fire without leading to signaling interference. If 
neuron A first fires, neuron D will be able fire no later that dDelay 
to minimize interference at D. This is provided that sum of 
dDelay, the signal propagation of D (tp,D) and the refractory time 
of D (Tr,D) is less than the sum of propagation time of A (tp,A), B 
(tp,B) and C (tp,C). 

An example illustration of Ca2+ disruption caused by two 
neurons firing close to each other is illustrated in Fig. 6. In this 
illustration, 16 neurons are connected in a bus topology 
configuration. Fig. 6 (a) illustrates when two neurons are fired, 
without any collision events, where the Ca2+ in each neuron are 
fired sequentially. This is when neuron 1 fires at t=0, and this is 
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followed by neuron 3 firing at t=15. There is no collision 
leading to no disruption in Ca2+ signalling since the firing of 
neuron 1 occurs way before dDelay, which allows the neurons, 
down the bus line, to recover from the refractory process; this 
allow for both transmissions to successfully propagate. On the 
other hand, Fig. 6 (b) illustrates when two neurons are closely 
firing to each other and thus leading to collisions which disrupts 
the firing of Ca2+. As we can see from the figure, the firing of 
Ca2+ in each neuron is terminated after neuron 6 due to the 
collision (please note that the Ca2+ is not the signal that 
propagates between the cells, but the signal used to invoke the 
neurotransmitters).  

 

 

Figure 5.  Propagation timing between neurons 

 

Figure 6.  (a) Ca2+ signalling in straight bus topology for firing from neuron 1 
and 3, (b) Ca2+ disruption caused by collision caused by close firing from 

neuron 1 and 7 

V. SIMULATION 
This section will present the simulation work conducted on 

the different topological shapes shown in Fig. 4.  

A. Single Bus topology results 
The first set of simulation is based on evaluating the 

performance of the bus topology as we vary the number of 
devices on the bus and the transmission rate. The parameters for 
the simulation environment are shown in Table I. The 
transmission events are performed for τ = 0.005 s, in agreement 
with the neuron physiology. 

TABLE I.  SIMULATION PARAMETERS 

Simulation Time 5 s 

Transmission window 4.5 s 

Device Transmission rate 0.1 – 2 ms 

Fig. 7 and 8 shows the performance of the bus topology 
with varying transmission rates and number of devices.  

 
 

Figure 7.  Performance of bus topology for varying number of devices and 
transmissions per second (0.1 – 1)  

 
Figure 8.  Performance of bus topology for varying number of devices and 

transmissions per second (1 – 10) 

In the case of Fig. 7, the transmission rate is between 0 – 1/ 
s, while in Fig. 8, this rate change between 2 – 10/s; and this is 
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in line with what we expected when increasing the number of 
transmission, when the number of collisions increases. There is, 
however, very little difference between the highest number of 
devices and low number of devices, when the transmission rate 
is low. We believe this may be caused by the close proximity of 
devices which led to a larger number of collisions. Obviously in 
the case of Fig. 8, with very high transmission rates correspond 
a very high rate of collision. 

B. Comparisons between Bus, Star, and Spiral topology 
In this sub-section we present the result of comparison 

between the Bus, Spiral, Tree and Star topology. The 
parameters used in the simulation are presented in Table II. 
Configurations for the listed topologies are as follows:  the 
number of devices was fixed to 10 devices, while the number of 
transmissions events varied. The Bus topology contains 13 
neurons connected in a line, with the sensors connected in fixed 
locations of [1, 2, 3,4, 5, 6, 7, 8, 9, 10], while the Receiver is 
located at neuron 13. The Spiral topology is based on Fig. 4 (c), 
where three spirals are connected to a single bus line. Each 
spiral has 13 neurons connected where the location of sensors 
connected to the neurons for each spirals are located at Spiral-1: 
[1, 5, 8, 10], Spiral-2: [1, 3, 9], and Spiral-3: [2, 6, 9]. 
Furthermore, the tree topologies have six short branches 
connected to a shared media with nodes distributed across the 
branches as illustrated in Fig. 4(d). In the case of the Star 
topology, this consists of 3 buses connected to a receiver at the 
centre. Even in this case, each bus line has a length of 13 
neurons. 

TABLE II.  SIMULATION PARAMETERS 

Simulation Time 0 to 1000 * τ (10 sec) 

Transmission window 0 to 900 * τ (9 sec) 

Probability of device 
transmitting at time nτ 

1x10-3 - 1x10-2 

Device Transmission rate 0.1 – 1/second 

 
Similarly to previously reported simulation, the calcium 

model used in our work is based on Fire-Diffuse-Fire model 
[14]. In order to make the simulation more efficient, it is 
assumed that the transmissions (transmission event) only take 
place at time nτ, integer multiples of the calcium release time 
constant τ. For our simulation, we took τ = 0.01s. Interestingly, 
the blocking rate between the Bus and Spiral are very close, as 
shown in Fig. 9, since the Spiral topology is essentially a bus 
topology with a Donut shape. The tree topology shows a 
marginal improvement compared to Bus and Spiral due to the 
increased length of the communication network. This increases 
the average distance (in nodes) between transmission events 
and, therefore reduces the likelyhood of blocking the 
transmission during the initial stages of the simulation. 
Furthermore, the Star topology has a lower blocking 
probability. This is mainly due to the fact that the star topology 
does not have a single shared media like the bus, which 
minimizes collissions during the transmission.  

 

Figure 9.  Comparison between Bus, Star, and Spiral topology 

VI. CONCLUSION 
Molecular communication is one form of communication 

between nano- machines (devices, organisms), and therefore 
represents a new paradigm shift from conventional 
communication systems. In this paper, we have proposed the 
use of neurons to form interconnected networks for the active 
transport of defined action-potential events in a molecular 
communication model. The aim of our proposed approach is to 
create a communication network from biological components. 
We believe that this could be best achieved through neurons 
that are able to form web of interconnection similar to 
conventional wireline networks. Four topologies of neuron 
interconnection were modelled and their performances of 
blocking rate under varying number of devices and 
transmission were evaluated. This allowed us to determine if 
the patterns of transmitted events can be influenced by the 
topological shapes with an increased success rate in 
transmission.  

While this work is the first step towards enabling the 
creation of artificial neuronal networks, we believe that this 
could create a new form of active transport of events across 
molecular networks. Our future work will focus at creating 
more refined communication network design based on 
physiologically relevant neuronal networks to address, or 
resolve, specific signalling demand.  
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