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Abstract 

Directional wireless networks (DWNs) using free space 

optical (FSO) and RF transmissions provide wireless 

backbone support for mobile communications in 

dynamic environments. The heterogeneous and dynamic 

nature of such networks challenges their robustness and 

requires self-organization mechanisms to assure end-to-

end broadband connectivity. We have developed a 

framework to provide prediction and control strategies 

for assured network operation. We draw an analogy 

between a set of interconnected communication nodes 

and a molecule in which the bonds between atoms are 

representative of the links in the equivalent network.  

The dynamics of the network, and its optimization, can 

be analyzed by the methods of molecular dynamics.  

Links are modeled as bonds described by potential 

energy functions, such as the Morse potential, and a 

global description of the stability of the network can be 

obtained by a normal mode analysis (NMA). Effective 

“forces” act on nodes, which include the effects of 

power control, link length, and channel characteristics.  

A molecular re-arrangement or fragmentation occurs 

because this reduces the potential energy. In the same 

way a network can undergo topological reconfiguration, 

and an adaptive control strategy can be used to release, 

retain or reconfigure communication links for network 

performance optimization. Simulation results show the 

effectiveness of our self-organized control mechanism, 

where the physical topology reorganizes to maximize 

the number of source to destination communicating 

pairs. NMA of a network suffering degradation shows a 

correlation between anomalous eigenvalue behavior of 

the Hessian matrix describing the network and the 

improvement of network performance that can be 

achieved by topology change.  

Keywords: FSO communications, heterogeneous 

wireless networks, self-organization, mobility control, 

network robustness, molecular dynamics. 

1. INTRODUCTION AND CONTEXT 

Next generation communication networks are 

becoming increasingly complex due to their 

heterogeneous nature and dynamic behavior. The need 

for ubiquitous broadband connectivity and the capacity 

and scalability limitations of homogeneous wireless 

networks [1] are fostering the adoption of hierarchical 

architectures with diverse communication technologies 

and node capabilities at different layers that provide 

end-to-end broadband connectivity in a wide range of 

scenarios [2, 3].  

We consider backbone-based wireless networks, 

which use a two-tiered architecture, where a set of flat 

ad-hoc wireless networks with limited communication 

capabilities (tier 1) are interconnected through a 

broadband wireless mesh backbone network (tier 2) of 

higher capability nodes that use directional wireless 

communications (FSO and/or directional RF) to 

aggregate and transport traffic from end users or hosts 

(Fig. 1). Examples of research projects in Tier 2 

architectures can be found in [2, 3, 17,18].  Our research 

has uniquely focused on prediction and control of such 

mobile wireless Tier 2 backbones in order to provide 

assured connectivity and coverage.   

The advantages of directional wireless 

communications can be well exploited at the backbone 

layer, where line of sight constraints are less restrictive 

and interference-free, point-to-point communication 

links can provide extremely high data rates [2, 3]. We 

refer to these networks as directional wireless backbone 

networks (DWBNs), whose platforms can be airborne, 

terrestrial and/or sea-based. Such networks provide 

adaptive infrastructure support for users or networks 

such as mobile ad hoc networks (MANETs).  In this 

sense, the DWBN becomes the substrate that provides 

the scalable end-to-end assured transmissions that 

omnidirectional MANETs (O-MANETs) were not 

designed to provide [1, 2]. We refer to these as 

Directional Mobile Ad Hoc Networks (D-MANETs).  

In this architecture, end users are not controllable; 

their actions are guided by their respective applications 

and they rely on the seamless availability and assured 

quality of service of the backbone. The backbone 

network, on the other hand, must be controlled to 

provide assured end-to-end communications.  

Our work considers the use of topology control to 

assure robust end-to-end broadband connectivity in 

heterogeneous and dynamic environments.  Topology 

control is defined as the autonomous network capability 

to dynamically reconfigure its physical topology. In the 

case of directional wireless backbone networks, the 

physical topology can be reconfigured through: 

1)  Topology Reconfiguration: dynamic redirection 

of directional wireless point-to-point links using 

algorithms for creating new topologies and pointing, 

acquisition and tracking of links [14, 15].  
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2)  Mobility Control: dynamic reposition 

backbone nodes for joint coverage

optimization [10, 11, 12].  

Fig. 1:  Hierarchical wireless network architecture

Topology control in broadcast ad hoc networks has 

been extensively studied in terms of power control and 

node placement, where the transmitted power and the 

location of movable nodes are adjusted to avoid 

excessive interference [4-8]. In DWB

links avoid the mutual interference problems of 

omnidirectional broadcast wireless networks and 

provide physical reconfiguration, with the added 

complexity of the pointing, acquisition, and tracking 

(PAT) of the links [9]. Moreover, physical constraints 

such as terrain blockage and channel loss

importance. Thus, topology and mobility control in 

DWBNs is a fundamental new problem

DWBNs can autonomously adapt their physical 

topology to maximize coverage to terminals or hosts 

while maintaining robust backbone connectivity. Our 

paradigm includes an interface between IP and the 

topology reconfiguration processes

reconfiguration algorithms and heuristics show low 

complexity and by presenting a new topology to the IP 

layer, significantly reduce the routing convergence time 

needed to discover new interfaces [12].

The most important concern in a hierarchical wi

networks is to assure network coverage and backbone 

connectivity in dynamic wireless environments. In our 

previous work, we have formulated a physics

convex optimization method for joint coverage and 

connectivity control [11, 12]. The uncon

dynamics are modeled as external forces changing the 

energy of the system and topology control mechanisms 

are developed as internal forces driving the system to 

minimum energy configurations. Results have shown 

how the use of control strategies that minimize the 

energy of the network system can ensure desirable 

network properties such as coverage, connectivity and 

power efficiency [11, 12]. However, in the presence of 

physical constraints such as the power available at the 

network nodes, non-convex potentials provide a more 

accurate characterization of the behavior of wireless 
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Fig. 2:  Control processes integrated with internet protocols

In recent work we have developed m

network models in which links are analogous to bonds, 

and the topology is the molecular structure. 

molecular potentials, allow the use of adaptive control 

strategies where forces on network nodes drive the 

release, retention or reconfiguration of links based on 

their role within the network architecture, and can 

incorporate the effect of transmitter power constraints.

In this paper we present architecture and models as 

well as results from our molecular inspired control 

methodology for dynamic hierarchical wireless 

networks, as well as molecular dynamics techniques for 

the prediction of network robustness that relate failures 

in communication networks to bond breaks or partitions 

in the analogous molecular structure. 

2. APPROACH

Our topology control mechanisms are designed to 

mimic physical systems’ reactions to external 

excitations that drive the network topology to minimum 

energy configurations for increased robustness and 

improved performance. We have developed and 

evaluated algorithms and protocols for mobility control 

by computing internal forces at each backbone node as 

negative energy gradients and showed how the network 

can autonomously achieve an 

configuration. 

2.1 Joint coverage-connectivity optimization by 

reaction to physical forces 

Network robustness in DWBNs is addressed in terms 

of the following two main objectives: network coverage 

and backbone connectivity. In backbone

networks, communication between 

takes place by a multi-hop transmission scheme over the 

wireless nodes until the traffic of the source reaches one 

of the backbone nodes; then it travels over the backbone 

network until it reaches a backbone node which is close 

enough to the intended destination; and finally it travels 

over a few terminal nodes until it reaches its destination. 

links by inherently including the effects of link breakage 
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Clearly, in this type of architecture, the end hosts need 

to be well covered by the backbone nodes and the 

backbone nodes must have good connectivity. Thus, the 

objective is to find the optimal backbone topology 

configuration to jointly maximize network coverage and 

backbone connectivity.  

In [11, 12] we introduced a convex optimization 

framework for topology control in DWB-based 

networks. The potential energy function for the network 

system is defined as the total communications energy 

stored in the wireless links forming the network 

topology, as follows: 


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where Ri is the location of backbone node i, rk the 

location of terminal node k, N the number of backbone 

nodes, M the number of terminal nodes, h(k) the index 

of the backbone node covering terminal node k, and bij 

the link assignment variables that determine the 

backbone topology T. The link cost function u(Ri ,R j )  

represents the potential energy of link (i,j) and it is 

defined as the communications energy per unit time 

needed to send information from node i to node j at the 

specified BER, 

  (2) 

   

where PR0 is the minimum required received power, DT  

the directivity of the transmitter and AR the effective 

receiver area.  

   Note that the first term in the cost function U 

represents the total energy stored in the directional 

wireless links forming the backbone network and thus is 

a measure of backbone connectivity; while the second 

term represents the total energy stored in the wireless 

links covering the end users and is therefore a measure 

of network coverage. 

In [11, 12] we developed force-driven mobility 

control algorithms that autonomously relocate each 

backbone node in the direction of the net force, 

computed as the negative energy gradient at the 

backbone node’s location, achieving global optimality 

from local interactions. The net force acting on a given 

backbone node can be computed using local information 

only; no centralized global information is needed. The 

distributed nature of our force-driven mobility control 

approach is of key importance in our attempt to provide 

a scalable and self-organized control system for network 

performance optimization in dynamic scenarios [10,18]. 

2.2 Modeling directional wireless networks as 

molecular systems   

A wireless network is analogous to a giant molecule, 

where the nodes correspond to atoms and the links to 

bonds. In a harmonic energy model, the cost of a 

wireless link or its potential energy is a convex function 

of the link distance. One non-convex extension of this 

model that we use is the Morse potential, defined as 

,    (3) 

where De is the “dissociation energy,” at which point a 

link fails, and β is related to the force constant. 

In practical situations, the increase in transmitted 

power needed to maintain a given link BER is limited 

by the maximum power at the transmitter. Thus, the 

Morse Potential is a convenient model for the potential 

energy of a communications link with power limitation 

constraints as it explicitly includes the effects of bond 

breaking. In the convex energy model, the “force” 

increases quadratically (or exponentially in the presence 

of channel loss) as the link distance increases: the 

longer the distance, the stronger the “force” needed to 

maintain the connection. We refer to this control 

process as the “retention” of a connection. On the other 

hand, under the Morse energy model, the force increases 

up to a point and then starts decreasing and converges to 

zero as the link distance increases. We refer to this 

control process as the “release” of a connection.  

2.2.1 Adaptive control 

The use of non-convex potential energy models to 

characterize the behavior of wireless links in DWB-

based networks under power limitation constraints leads 

to more effective control strategies where 

communication links are retained, released or 

reconfigured based on their role in the network 

architecture. Along with molecular inspired prediction 

methods, which are presented in section 2.3, a novel 

adaptive control mechanism can be developed based on 

the following scheme: 

1. Network health prediction: link degradation, 

network partition or node failures should be predicted 

and assessed before occurrence. Section 2.3 describes 

our approach to predicting network degradation using 

normal mode analysis in molecular systems. 

2. Dynamic force-driven reaction: under a possible 

degradation/failure event, three main control processes 

can be executed: 

a)  Retain connection: essential links (e.g. links 

carrying priority data traffic) are modeled using the 

convex potential so that the network will always make 

the effort to retain such connections. 

b)  Release connection: non-essential links (e.g. links 

carrying non-priority traffic) are modeled using the 

Morse potential so that if the cost to maintain the 

connection is too high the link is relaxed or released. 

c)  Reconfigure topology: if there is a better topology 

or an essential link has been lost, the network topology 

goes into a reconfiguration phase in order to re-

gain/improve connectivity. We have developed low 

u(Ri ,R j) = kij e
α Ri −R j 

 
  

 
 Ri − R j

2 
 
  

 
 ,    kij = PR 0

j 4π

DT

i
AR

j

U(x) = De (1− e
−βx )2
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complexity algorithms for dynamic topology 

optimization [14, 15]. 

In our initial simulations, the performance of the 

proposed approach is measured in terms of the number 

of source to destination (SD) connections that have an 

end-to-end communications path. Results show the 

effectiveness of our adaptive control mechanism, where 

the physical topology reorganizes to maximize the 

number of source to destination communicating pairs 

(see section 3).  

2.2.2 A hybrid energy model: 

In this work, we introduce a new continuous energy 

function that considers power limitations as well as 

distance threshold constraints, as an extension to the 

Morse energy model. The basic idea with respect to 

considering a distance threshold between a backbone 

node and a terminal node (or another backbone node) is 

that the network nodes should repel each other when the 

distance between them decreases to a certain point.  

We define the force f
ik

 that terminal node (or 

another backbone node) k exerts on backbone node i, as 

fik = q(Rk − Ri).         (4) 

The direction of the force f
ik

is given by the link 

distance vector (Rk − Ri)  and its amplitude by the 

function of repulsion/retention/release )(⋅q , which can 

be defined as 

( ) ( )( )2 2 2(x) x exp( || x|| ) exp( || x|| ) exp( || x|| )q a b c r ξ υ= − − − + − − −

     (5) 

where x = (Xk − X i) 
is the one dimensional link 

distance vector and a, b, c, r, ξ and v are positive 

constants such that a < b and ξ < v. For the case with a 

= 0.005, b = 8, c = 0.8, r = 0.002, ξ = 0.001 and v = 

0.03, the function is shown in Fig. 3.  

 
Fig. 3: One dimensional repulsion/retention/release function 

q(x) with respect to the link distance vector x 

Note that when the link distance is smaller than 2, the 

repulsion force is the one acting on the nodes, while the 

release force acts after the distance increases to around 

18. Note that the parameter a represents the retention of 

the connection, the item ( )( )cxb /exp
2

−   represents the 

repulsion at small distances, and the item 

( )2 2
exp( || x|| ) exp( || x|| )r ξ υ− − −  represents the release of 

a connection for long distances.  

2.2.3 Analysis and results  

We have developed a software tool in Matlab that 

allows the modeling and simulation of dynamic 

heterogeneous wireless networks with different design 

parameters. Terminal nodes move according to the 

RPGM [16] model and our force-driven control method 

is used to make backbone nodes adjust their locations 

until convergence to the optimal backbone 

configuration.  

In table 1, we compare the performance of the 

network control methodology when we include the 

Morse potential for the characterization of the 

backbone-to-terminal links. For these results, we used 

10 different one hour dynamic scenarios changing the 

placement of the terminal nodes and the mobility 

patterns. We measured the average number of source to 

destination (SD) connections for each of the simulations 

using the convex energy model for backbone-to-

terminal links versus the Morse potential model. For the 

backbone-to-backbone links the convex energy model 

was always used. As expected, using the Morse 

potential, the network is able to increase the average 

number of SD connections. Forces on terminal nodes 

causing excessive network cost are relaxed to avoid 

excessive loss of SD connections. Note how the impact 

of the use of the Morse potential is more significant the 

more restrictive the constraints. The lower the 

maximum transmitted power, the more significant the 

improvements in SD connections.  

The Morse potential allows the network to release 

high cost links that adversely affect QoS. Also, we 

expect the more complex the network dynamics in terms 

of number and sparsity of the terminal nodes and the 

greater the channel loss, the more significant the 

improvements in SD connections will be.  

Table 1: Average percentage improvement in SD connections 

using the Morse Potential for backbone-to-terminal links, with 

maximum transmitted power PTmax = 3, 5 and 7W. 

 PTmax= 3W PTmax = 5W PTmax= 7W 

CONVEX 

POTENTIAL 
3077 4843 6166 

MORSE 

POTENTIAL 
3606 5368 6441 

Average 

Percentage 

Improvement 

17.2% 10.8% 4.5% 
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2.3 Normal mode softening in molecular systems for 

network health prediction 

We are extending our analysis of a network as a giant 

molecule, to not only optimize the network 

configuration, but to also predict the likelihood of link 

failures. A molecular structure has an equilibrium 

arrangement that minimizes its potential energy. The 

overall potential energy of the structure is 

(6)                               
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In our equivalent network model, the (xi,yi,zi) are the 

spatial coordinates if the ith node. If the structure is in 

equilibrium the first derivatives are zero, so the 

behavior of the network under perturbation depends 

primarily on the second derivatives. By analogy with 

the corresponding molecular model we write: ii
xx

i

k
x

V
=

∂

∂
2

2
 

, which is the x-directed “force” on node i (and 

analogously the y and z-directed forces). In the 

molecular model these force constants are mass-

weighted so that if atom i has mass mi and atom j has 

mass mj, the mass weighted k’s are of the form 

ji

ij
xxij

xx
mm

k
k =
~ . The matrix of mass weighted force 

constants is called the Hessian matrix, which for an N-

node network is a 3N x 3N matrix. In our molecular 

analogue of a network the node “masses” can be 

assigned to describe the degree of mobility of a node. 

An immobile node has very large (infinite) mass, while 

a highly mobile node has very small mass. The 

eigenvalues of the Hessian matrix give the normal mode 

frequencies of the network.  A “normal mode” is an 

overall movement of the network, where all nodes move 

at the same frequency about their equilibrium positions.  

In the molecular model, mode softening is the process 

by which a normal mode frequency approaches zero, 

which is an indicator of an impending conformational 

change. A good example is provided by the “unzipping” 

of DNA, where the two backbones of the molecule 

separate when replication is about to occur [13]. In the 

network context, if the normal mode frequencies are 

tracked as the nodes of the network move, then a normal 

mode tending towards zero should suggest a potential 

network disruption and the need for topology re-

configuration. This will allow a prediction of the onset 

of link failure and allow a topology reconfiguration to 

be adopted before this happens.   

We have extended our network modeling tool in 

Matlab to include the computation of the network 

Hessian matrix at any point in the dynamic simulation.  

In our simulation, we track the eigenvalues of the 

Hessian matrix as the network system evolves. Fig. 4 

shows an example of a simulation where the network 

undergoes a topology reconfiguration when reaching an 

anomalous non optimal configuration. As shown in Fig. 

4, the largest eigenvalue of the Hessian matrix is able to 

track the network anomaly. Note the peak in the value 

of the largest eigenvalue of the Hessian Matrix at the 

point where the network undergoes reconfiguration. 

Initial results such as those presented here are 

encouraging and show the potential of molecular normal 

mode analysis techniques for prediction and network 

health monitoring, and the ability to trigger more 

effective network reactions prior to degradation. Our 

preliminary results are intriguing in the molecular 

analogy context. Our mode eigenvalues approach large 

values (increasing slope) when network failure is 

imminent, in contrast to molecular systems where 

normal mode frequencies “soften” (approach zero) 

when reconfiguration approaches. The difference arises 

because of the way we characterize communication 

links. In a molecule a strong bond holds two atoms 

together strongly, and it is the weaker bonds that break. 

In our network model, a requirement of increasing 

transmitter power to maintain link connectivity presages 

link failure because operational constraints limit 

available powers.  

 
(a) Network before reconfiguration. Eigenvalue peak 

correlates with anomalous configuration. 

 

(b) Network after reconfiguration. Eigenvalue goes down 

as network goes back to a minimum energy configuration. 

Fig. 4: Illustration of the correlation between the evolution of 

network dynamics and the Hessian Eigenvalues. 
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3. CONCLUSIONS 

We have developed a new paradigm for prediction 

and control in heterogeneous and dynamic wireless 

networks. Communication networks are modeled as 

physical systems where network robustness is 

characterized in terms of the system’s potential energy, 

and mobility control mechanisms as internal forces that 

the network system uses to react to external excitations 

by driving the network topology to energy minimizing 

configurations, based on local forces exerted on network 

nodes.   

We have introduced non convex molecular potentials 

such as the Morse potential, used to describe the 

potential energy of bonds within molecules, for the 

characterization of communication links in the presence 

of power limitation constraints at the network nodes. 

The inclusion of the Morse potential leads to an 

adaptive topology control methodology where 

communication links are retained, released or 

reconfigured based on their communications role within 

the network architecture. Our results show how 

molecular-based control strategies are able to increase 

the average number of available source to destination 

connections over existing methods. Also, initial 

correlations have been observed between dramatic 

changes in the eigenvalues of the network Hessian 

matrix and network topology anomalies.  
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