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Abstract—In this paper, we examine distributed space-time
decoding structure for regenerative wireless relay networks.
Given the demodulation error at the regenerative relays, we
provide a general framework of error aware distributed space-
time decoding at the destination, where the receiver is assumed
to know the demodulation error probability at relays. Consid-
ering the high computational complexity of optimal Maximum
Likelihood (ML) decoder, we also propose two low-complexity
decoding structures, Max-Log decoder and Max-Log-Sphere
decoder. Simulations show that error aware distributed space-
time decoding can improve system performance greatly without
high system overload, and Max-Log decoder and Max-Log-
Sphere decoder can efficiently reduce decoding complexity with
neglectable performance degradation.

I. INTRODUCTION

Relay-assisted communication is a promising strategy that
exploits spatial diversity available among a collection of
distributed single antenna terminals for both centralized and
decentralized wireless networks. In most relay networks, a
two-stage relaying strategy is used. In the first stage, a source
transmits and all relays listen; in the second stage, the relays
cooperate to forward the source symbols to the destination.
Generally speaking, the relay functions can be separated into
two types, regenerative and non-regenerative. If the relay pro-
cesses the received signal and forwards the processed symbols,
we call it regenerative relay, such as Decode-and-Forward
(DCF) [1] and Demodulation-and-Forward (DMF) [2]. Oth-
erwise, we call non-regenerative relay, such as Amplify-and-
Forward (AF) [1].

It is well-known that the channel between source and relay
is unreliable because of fading and noise. The relay receives
an attenuated version of the source signal. AF relaying scheme
amplifies noise. DCF scheme always using cyclic redundancy
check (CRC) will cause interruptions when the relay detects
errors from the received message. DMF scheme is a trade-off
between AF and DCF in relay processing. Relay can always
keep a transmit link from the source, and detects and possibly
decodes the source signal [4]. Moreover, the DCF scheme can
also be considered as a special case of DMF if we consider
the null signal as one choice of the modulation constellation.
Therefore, in this paper, we treat DMF as the object to be
studied for regenerative relay networks. However, DMF relay
has an important disadvantage, which is the error produced
in relay’s Maximum Likelihood demodulation degrades the

effective SNR at the destination significantly, which is called
error propagation [5]. For distributed space-time coding sys-
tem in regenerative relay networks, the degradation is more
drastic [6],[7]. In [4], we proposed a threshold based scheme
to minimize the error propagation, which is an active mecha-
nism equipped in relays but subject to the large computation
complexity.

In this paper, we intend to investigate the ML decoding
structure where the destination is able to be aware of the error
probability at the relays. The error probability at relay is a
monotonic decreasing function of received SNR at relay, so
the destination can estimate the error probability through train-
ing sequences which is transmitted by source and amplified
by relay. Meanwhile, each relay also transmits its training
sequence to estimate the relay-destination channel [6], [15].
Therefore, the error aware distributed space-time decoding is
rational. Through analyzing the error aware ML detecting, we
give a general framework of error aware distributed space-
time decoding at the destination. Because the ML decoder
is composed of multiple likelihood function generators, the
computational complexity is too large to be affordable. Due
to max-log approximation, we provide an Max-Log decoder
based on Csiszár-Tusnady algorithm [12]. Moreover, to reduce
the complexity further, we propose a Max-Log-Sphere decoder
which is also based on max-log approximation. Also, we
provide complexity comparisons of these decoders in terms
of elementary operation number. Finally, simulations verify
the low complexity performances.

II. SYSTEM MODEL

We consider a wireless network with N randomly placed
relay nodes, relay i = 1, . . . , N , one source node S, and a
destination node D. Each node is equipped with only a single
antenna and uses the Half-duplex mode. Denote the channel
from the source to the ith relay as fi and the channel from the
ith relay to the destination as hi. Assume that fi and hi are
independent complex Gaussian random variables with zero-
mean and variance δ2si and δ2id, respectively. Receiving noise
is assumed as complex Gaussian random variable with zero-
mean and unit-variance. We assume a block fading channel
model, where channel gain stays constant during a time
block and changes from block to block. We also assume
that the instantaneous channel is unknown to the transmitting
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node but perfectly known at receiving node. Assume that the
source wishes to send the signal s = [s1, s2, . . . , sT ]

T to the
destination, where si ∈ A, and A is a finite constellation
with average power 1/T and T is the length of each time
slot. Hence, E{sHs} = 1. Assume s is in the codebook
S = {s0, . . . , sL−1}, where L is the cardinality of the
codebook. For convenience, we consider all transmit power
is unit.

During the first stage, source transmits sl, l ∈ [0, L − 1]
to all relays, then each relay tries to demodulate the received
signal. At the ith relay, denote the received symbol vector out
of demodulator is ŝi, and ŝi ∈ S . The demodulation probability
is given by

P (ŝi|fi, sl) =

⎧⎨
⎩

Q
(√

1
2 |fi|2|sl − si|2

)
, ŝi �= sl

1−∑L−1
j=1 Q

(√
1
2 |fi|2|sl − si|2

)
, ŝi = sl

(1)
where Q(x) = 1√

2π

∫∞
x

e−
t2

2 dt. At the ith relay, the received
signal ŝi is mapped onto a T × 1 vector (not necessary),
Fi(ŝi), as processed at one antenna of co-located space-time
coding transmitter. We assume the map function Fi is invert-
ible. Therefore, there are L possible transmitted vectors to
destination for the ith relay, because ŝi could be any vector in
S . Herein, we assume all mapping functions Fi, i = 1, . . . , N
are different with each other but it is not necessary. Then, all
relays transmit the mapped vectors to the destination. At the
destination, the received signal is

Y = [F1(ŝ1), . . . ,FN (ŝN )]H + N (2)

where Y = [y1, . . . , yT ]
T is the received signal, H =

[h1, . . . , hN ]T is the relay to destination channel vector
and N is Gaussian white noise. Define a codebook C =
{[F1(ŝ1), . . . ,FN (ŝN )]}. Clearly, C includes LN elements. We
define the kth element of C is Ck = [c1k, . . . , cNk], where
cik ∈ {Fi(ŝi)}. Thus, if Ck is transmitted, we can express (2)
as

Y = CkH + N (3)

Denote the inverse function of F as F−1. Then, we have

P (Ck|F, sl) =
N∏
i=1

P
(F−1

i (cik)|fi, sl
)

(4)

where F = [f1, . . . , fN ]T . So, by (1) we can derive the exact
value of (4). For Ck, traditional ML decoder can be used. So,
there is

P (Y|H,Ck) =
1

πN
exp

(
− (Y − CkH)

H
(Y − CkH)

)
(5)

III. ERROR AWARE MAXIMUM LIKELIHOOD DECODER

In this section, we provide a general Maximum Likelihood
decoder for distributed space-time codes in regenerative relay
networks. First of all, destination should know the channel
information in this relay networks. The channel from relays
to the destination hi, i = 1, . . . , N can be estimated through
pilot symbols which are transmitted by each relay before data

Fig. 1. Error Aware ML decoder

transmission. Here, we assume all the estimators are ideally
accurate without any error. To let the destination know the
demodulation error happening at each relay, we propose the
following scheme. The source transmits pilot symbols to all
relays through channels f1, . . . , fN . Without demodulating,
each relay maps the noise version signal to a vector like the
scheme proposed in [9]. Then, relay transmits the vector to
the destination like the Amplify-and-Forward based distributed
space-time coding [10]. Therefore, the information about the
channel between source and destination carried by amplified
pilots, i.e., fihi, i = 1, . . . , N , can be estimated at the
destination. Knowing hi at the destination, then fi also can
be estimated. Because the signal vector set S and all mapping
functions {Fi} are known at the destination as a prior knowl-
edge, (4) can be derived at the destination. Even though this is
not a perfect estimator in practice, our assumptions allows us
to focus only on the performance of error aware DSTC. The
degradation of performance due to channel estimation do not
come under the scope of this paper.

If the transmitted signal is sl, the likelihood function is

P (Y|F,H, sl) =
LN∑
k=1

P (Y|H,Ck)P (Ck|F, sl) (6)

Therefore, the Error Aware ML decoder is

arg max
1≤l≤L

{P (Y|F,H, sl)} (7)

Utilize (4)-(6), then (7) is derived. By (5), P (Y|H,Ck) is
independent of sl, so that according to the estimated channel
H, P (Y|H,Ck) can be calculated first. Then, using the am-
plified pilot, P (Ck|F, sl) are also derived. Therefore, the ML
decoder can be built in Fig. 1, where we show the structure
of error aware ML decoder for regenerative distributed space-
time coding. Note that there are L adders and LN likelihood
function generators.

The complexity of the Error aware ML decoder equals to
that of LN co-located space-time decoders, it is too large to
be affordable if the signal block length, modulation order and
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the number of relay are considerable large. [2] considered a
piecewise-linear approximation to solve a similar problem,
but in this case it is also too complicated to design an
approximation function.

IV. LOW-COMPLEXITY ERROR AWARE DECODERS

In this section, we will introduce two low-complexity error
aware decoders through analyzing and simplifying the struc-
ture of ML decoder. Without subject to a specific decoding
function, we focus on fully exploiting the general structure of
ML decoder. First, we use Max-Log approximation to derive
a Max-Log error aware decoder which can work with Csiszár-
Tusnady algorithm. Second, to reduce the complexity further,
sphere decoding also is combined into the Max-Log decoder,
which is called Max-Log-Sphere decoder.

A. Error Aware Max-Log Decoder

Substitute (6) into (7), there is

arg max
1≤l≤L

⎧⎨
⎩

LN∑
k=1

P (Y|H,Ck)P (Ck|F, sl)

⎫⎬
⎭ (8)

Because log(x) is an increasing monotonic function, the ML
decoder can be rewritten as

arg max
1≤l≤L

⎧⎨
⎩log

⎛
⎝LN∑

k=1

exp

{
−1

2
‖Y − CkH‖2 + λk,l

}⎞⎠
⎫⎬
⎭
(9)

According to (5) and max-log approximation in [11], we derive

arg max
1≤l≤L

{
max

1≤k≤LN

{−‖Y − CkH‖2 + λk,l

}}
(10)

where λk,l = log(P (Ck|F, sl)).
We can see that decoding distributed space-time code be-

comes searching a two-dimension array, which is indexed by
(k, l). Intuitively, this decoder also needs LN ML detector
like ML decoder. The only difference is that calculating the
likelihood function of each symbol vector does not need cross-
computation. However, double maximization problem can take
advantage of Csiszár-Tusnady algorithm to reduce computing
[12]. Because the set

{‖Y − CkH‖2} is a set of distance
measure which is one-one mapped to a probability distribution
set and {λk,l} is the set of probability distribution, moreover,
{λk,l} ≤ 0, then (10) can be seemed to seek the vector
who has the minimum sum distance which equals to the
distance from sl to Ck plus the distance from Ck to Y. Thus,
Csiszár-Tusnady algorithm does converge to the maximum
element [12]. We summarize the iterative Max-Log decoder
as following (Fig. 2).

1) Initialization: Set error probability set P . Take any
element of Ck ∈ C and compute Dk = −‖Y − CkH‖2.

2) Step 1: Find the l that makes Dk+λk,l is maximum for
the chosen k, where λk,l ∈ P and is calculated by (4).

Fig. 2. Max-Log decoder

3) Step 2: Fix l and find a Dn ∈ C which makes Dn+λn,l

is maximum.
4) Decision: If n = k, goto End, otherwise, goto Step 1.
5) End: sl is the decoded vector.

B. Error Aware Max-Log Sphere Decoder

If the length of vector s and the constellation size are
sufficiently large, Max-Log decoder is also subject to the im-
plementation. The largest computation is required for search-
ing code set C with cardinality LN . Reducing the decoder
complexity depends on searching C.

To state the Max-Log Sphere decoder, we first find the real-
valued equivalent of (3), Define

Ỹ =
[R{Y}T , I{Y}T ]T

2T×1
H̃ =

[R{H}T , I{H}T ]T
2N×1

Ñ =
[R{N}T , I{N}T ]T

2T×1
C̃k =

[ R{Ck} I{Ck}
−I{Ck} R{Ck}

]
2T×2N

where R{. } and I{. } denote real part and imaginary part.
By (10), we yield

arg min
1≤l≤L

{
min

1≤k≤LN

{
‖Ỹ − C̃kH̃‖2 − λk,l

}}
(11)

For a specific sl, the decoding object is

arg min
1≤k≤LN

{
‖Ỹ − C̃kH̃‖2 − λk,l

}
=

arg min
1≤k≤LN

{∥∥∥Ỹ −
(

H̃
T ⊗ I

)
Vec{C̃k}

∥∥∥2 − λk,l

} (12)

where ⊗ is the Kronecker product operation. Obviously, we
can use Sphere decoding method [13]-[14] to searching Ck,
which minimizes (12). Note that ‖Ñ‖2 = ‖Ỹ − C̃H̃‖2 is a χ2

random variable with 2N degrees of freedom. We choose the
radius r to be a linear function of the variance of ‖Ñ‖2

r2 = 2αN (13)

where the coefficient α is chosen in such a way that with a
high probability Pfp we can find a lattice inside a sphere

∫ 2αN

0

xN−1

Γ(N)
e−xdx (14)
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where Γ(N) =
∫∞
0

tNe−tdt. Note that the radius is chosen
based on the noise not on channel efficiency. As stated in
[13], this point has a beneficial effect on the computational
complexity.

For expression convenience, we define H̃
T ⊗ I = B and

Vec{C̃k} = X with size 4NT × 1. Therefore, searching X
is equal to searching Ck. Applying the idea of the Fincke
Pohst algorithm, we search for the point X that belong to the
geometric body described by

ŕ2k,l ≥ (X − X̂)HUHU(X − X̂)−
N∑
i=1

log(P (cik|fi, sl)) (15)

where X̂ = B†Y = (BT B)−1AT Y and U is the low triangular
matrix obtained from QR factorization of B. The search radius
ŕk,l is chosen according to the statistical properties of noise
and the decoding error at relays. Denote 4NT = M , then, a
necessary condition for xM , the M th element of Xk, is

b2M,M (xM − x̂M )
2 − δk,l,M ≤ ŕ2k,l (16)

where δk,l,M is defined as

δk,l,M =
1

2N
logP (Cj,k|fj , sl), j =

1

2
mod(M, 2T ) (17)

. Herein we allocate the additional weight δk,l,m averagely
over N relays. Moreover, we define

ŕ2k,l,M−1 = ŕ2k,l − b2M,M (xM − x̂M )
2
+ δk,l,M (18)

and a new necessary condition can be written as

b2M−1,M−1

(
xM−1 − x̂M−1 +

bM−1,M

bM−1,M−1
(xM − x̂M )

)2

−
δk,l,M−1 ≤ ŕ2k,l,M−1

(19)

In a similar fashion, one proceeds for xM−2, and son on,
and until all components of vector X are found. Note that the
dominant difference between Max-Log-Sphere decoder and
Sphere decoder proposed in [13] is that radius varies according
to all possible codewords. In this Max-Log-Sphere decoder,
for each k, we just check Xk whether to meet its radius. If
there exists more than one Xk can meet the constraint (16) for
xm, keep these survival codeword and go to next codeword.
If some of there codewords can not meet the new constraint,
then drop them. That is to say for each lattice we must try all
possible radiuses. For a specific sl, Max-Log-Sphere decoder
can be summarized as follows.

Input B,Y, X̂, r, λk,l, d, Set k = 1.
1) Set m=M, ŕ2k,l,M = r2−‖Ỹ‖2+‖BX̂‖, x̂M |M+1 = x̂M .
2) (Set bounds for xm) Set zk =

ŕk,l,m

bm,m
,

UB(xm) = �zk+x̂m|m+1	, xm = 
−zk+x̂m|m+1�−d.
3) (Check xm) Set xm = Xk(m),

if b2m,m(xm − x̂m|m+1)
2 > ŕ2k,l,m + δk,l,m and xm ≤

UB(xm), go to 5), else to 4).
4) (Increase k) k = k + 1, If k = LN + 1, terminate

algorithm, else go to 1).

Average operation number
ML decoder LN [8TN + 2L− 1]− L

Max-Log decoder LN [8TN − 1] + L
Max-Log-Sphere decoder Eqa.(22)

TABLE I
ELEMENTARY OPERATION NUMBER OF THREE DECODERS

5) (Decrease m) If m = 1 go to 6). Else m = m −
1, x̂m,m−1 = x̂m +

∑M
j=m+1(bk.j/bm,m)(xj − x̂j),

ŕ2k,l,m = ŕ2k,l,m+1 − r2m+1,m+1(xm+1 − x̂m+1|m+2)
2 +

δk,l,m+1, and go to 2)
6) Solution found for k. Save k, Xk and exact distance dk,l.

and set k = k + 1, if k = LN + 1, terminate algorithm,
else go to 1).

After terminating the decoder algorithm for sl, select the Ck

which achieves the minimum distance to Ỹ. Then through L
Max-Log-Sphere decoder with l = 1, . . . , L, choose the sl
which minimizes the distance to Y.

Note that Max-Log-Sphere decoder needs estimating the
noise variance of the receiver. However, Max-Log decoder us-
ing Eulerian distance and error probability is more realizable.
Hence, there is a tradeoff between computational complexity
and implementation to choose which one is suitable.

V. COMPUTATIONAL COMPLEXITY

In this section, we analyze and compare the computational
complexity of above three decoders. We use the average
numbers of real elementary operation, Cp, (including addition,
subtraction, multiplication and division) as a measure for
computational complexity. We draw a table to show the com-
putational complexity. Max-Log decoder mentioned herein is
the iterative Max-log decoder. The complexity of ML decoder
and Max-Log decoder are easy to be done, we directly list
them in Table I. Max-Log-Sphere decoder for a sl has LN

radiuses but each radius is only assigned for searching one
possible Ck. An arbitrary lattice point Xk belongs to a m
dimensional sphere of radius rk,l around the transmitted point
Xt is given by the following incomplete Gamma function
[13][14]

Pk,l = γ

(
2αN + λk,l

2 (1 + Pr‖Xm
t − Xm

k ‖2) ,
2N − 2T +m

2

)
(20)

where Xm = [xM−m, xM−m+1, . . . , xM ]T and Pr is the relay
transmit power, which is assumed as unit in above context.
The number of elementary operation that the Max-Log-Sphere
decoder performs per each visited point in dimension m are

Cp(k, l,m) = 2m+ 12 (21)

Therefore, Cp of Max-Log-Sphere decoder is yielded as

Cp =

L∑
l=1

LN∑
k=1

M∑
m=1

Cp(k, l,m)Pk,l (22)

Obviously, Max-Log decoder has a lower complexity than ML
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decoder. It is difficulty to compare Max-Log Sphere decoder
with others, but in next section we will show simulation results
to illustrate the differences.

VI. SIMULATION RESULTS

In this section, we provide the simulation results to show
the proposed error aware decoders. We denote the total power
noise ratio as the system signal noise ration (SNR) indicator.
And half of total power is assigned for source transmit
power and another half is equally divided by all relays. In
this simulation, we adopt distributed linear dispersion code
proposed in [10] as the coding scheme for its simplicity, where
Fi(s) = Ais and Ai is a random unitary matrix. For Max-
Log-Sphere decoder, herein we set Pfp = 0.99. All other
parameters are the same with system model. We also should
claim the non-error aware decoder is

argmin
s

‖Y − C(s)H‖2 (23)

where C(s) = [A1s,A2s, . . . ,AN s].
Fig. 4 demonstrates bit error rate (BER) performances of

different decoders where two relays are employed and the
signal modulation is BPSK. That is to say T = N = 2.
We can see that at high SNR regime error aware decoders
achieve almost 5 dB gain than non-error aware decoder and
outperform AF based DSTC scheme about 3 dB. Thus it is
worthy to bring slight system overhead for delivering channel
estimation to improve the system performance. Over all SNR
range, Max-Log decoder and Max-Log-Sphere decoder have
nearly the same performance with ML decoder. Therefore, the
degradation of max-log approximation is negligible. By care-
fully observing, we found the slope of BER curve decreases.
Because the hard-decision error at relay limits the systems
performance even though SNR is enough high.

In Fig. 5, we also simulate a 4 relay network to show the
BER performance of that decoders. Herein, T = N = 4 and
modulation is QPSK. Similarly, error aware decoders can bring
about 7 dB power gain than non-error aware decoder at 22
dB SNR. We can see that it is different from Fig. 4 that error
aware decoders only achieve about 1.5 dB gain than AF based
DSTC. The reason is that high-order modulation incurs more
error after decoding at relays and enlarges error-propagation
so that deceases the possible gain of error aware decoder.
And in this case, the differences of three error aware decoders
are more slight. It is interesting that the slop of BER curve
does not decrease here. That is because more relays bring
more error conditions and consume more power. Therefore,
the slop decreasing threshold is larger than 2 relay with BPSK
system. From both two figures, we can assert that error aware
decoders can improve the system performance efficiently with
little system cost.

For DSTC relay networks, [10] had proven that the maxi-
mum achievable diversity order is min{N,T}. [16] addressed
that demodulate-and-forward scheme in a relay network where
direct link is available can only achieve half of maximum
diversity. In our simulations, non-error aware DSTC has a
even less diversity, i.e., the diversity of non-error aware DSTC
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Fig. 3. BER performance of Error Aware decoders with 2 relays, BPSK
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Fig. 4. BER performance of Error Aware decoders with 4 relays, QPSK

in Fig. 4, is 1 and in Fig. 5, is only 1.2. That is because
there is no direct link in our model and direct link which
does not produce demodulation error. Adding a direct link can
increase the system diversity by one but adding on one relay
could not gain advantages, but even get worse. Essentially
speaking, demodulation error limits the diversity growing. On
the other hand, EDSTC has a larger diversity than non-error
aware DSTC. That is to say EDSTC gains advantages from the
available error probabilities. Since there are also demodulation
errors at relays, EDSTC can not achieve the full diversity.

Now, we will show the computational complexity of three
error aware decoders by elementary operation number. Note
that the operation number of Max-Log-Sphere decoder varies
with unitary matrices Ai and the channel realization because
of (12). We average the elementary operation number over
1000 channel realizations.

In Fig. 6, we show the average operation number of these
three decoders when 2 relays are employed. Obviously, Cps of
ML decoder and Max-Log decoder are independent of SNR.
Max-Log decoder has a lower complexity than ML decoder.
Max-Log-Sphere decoder needs less than half of operation
numbers of ML decoder or Max-Log decoder. Of course, for
2 relay network, the operation number of ML decoder is trivial
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Fig. 5. Average operation number of three decoders with 2 relay, BPSK

compared with current hardware computing rate. However, for
4 relays with QPSK modulation scheme, it is too large to
be affordable. Fig. 7 gives the elementary operation number
in this case. We can see that ML decoder has 2.7445e+012
operations! The operation number of Max-Log decoder is
nearly 10% of that of ML decoder. It is notable that Max-
Log-Sphere decoder needs only 0.1% operation number of
ML decoder. Therefore, Max-Log-Sphere decoder achieves
the same BER performance with optimal ML decoder but
costs drastically low computation. Although Max-Log-Sphere
has an attractive performance, the noise variance should be
estimated first to calculate searching radius [13]. Max-Log
decoder just utilizes Eulerian distance and error probabilities,
therefore, it is a good trade-off for decoding structure between
implementation and computational complexity. We can choose
one of them due to different receivers.

VII. CONCLUSION

In this paper, we provide a general framework of error
aware distributed space-time decoder for regenerative relay
networks. Through two-stage pilot symbols, the destination
can estimate not only the relay-destination channel but also the
error probability happening at relays. Using these estimated
error, Maximum Likelihood decoder is provided. To reduce
computational complexity, Max-Log decoder and Max-Log-
Sphere decoder are also proposed by max-log approximation.
Simulations show that error aware decoders can improve the
performance drastically. Max-Log-Sphere decoder can achieve
the same performance with ML decoder and needs far lower
computational complexity. Without noise estimating, Max-Log
decoder can make a good trade-off between implementation
and computational complexity.
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