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Abstract—This paper develops an energy-aware hierarchical
cell configuration framework that encompasses both deployment
and operation in downlink cellular networks. Specifically, we
first formulate a general problem pertaining to total energy con-
sumption minimization while satisfying the requirement of area
spectral efficiency (ASE), and then decompose it into deployment
problem at peak time and operation problem at off-peak time.
For the deployment problem, we start from an observation about
various topologies including the real deployment of BSs that
there is a strong correlation between the area covered by an
additional micro BS and the increment of ASE. Under such
an assumption, we prove the submodularity of ASE function
with respect to micro BS deployment and propose a greedy
algorithm that is shown to be a constant-factor approximation
of optimal deployment. Although the greedy algorithm can be
also applied as an offline centralized solution for the operation
problem, we further propose online distributed algorithms with
low complexity and signaling overhead to have more practical
solutions. Extensive simulations based on the acquired real BS
topologies and traffic profiles show that the proposed algorithms
can significantly reduce the energy consumption.

I. INTRODUCTION

In order to meet the explosive traffic demand from

bandwidth-hungry multimedia and Internet-related services in

broadband cellular networks, communication engineers seek

to maximally exploit the spectral resources in all available

dimensions. Hierarchical cell structure (HCS) [1] where small

cells such as micro, pico and femto are used as a way of

incrementally increasing capacity and coverage beyond the

initial deployment of macro cells, has recently emerged as

a promising solution. Incrementally deploying micro base

stations (BSs) is simpler than building out complex cell towers

and macro BSs, and it can also reduce both capital (e.g.,

hardware) and operating (e.g., electricity, backhaul and site

lease) expenditures, which is especially attracted to wireless

network operators.

Meanwhile, with the depletion of non-renewable resources

and constraints on CO2 emissions, there is a growing con-

sensus on the need to develop more energy-efficient networks

(referred to as green networks). From the perspective of wire-

less network operators, reducing electrical energy consumption

is not only a matter of being green and responsible, but also

economically important. It is estimated that the operators are

spending more than 10 billion dollars as of now globally with

60-80% of the total energy consumption being contributed by

BS infrastructure [2]. Since BSs are being deployed by the

operator targeting peak traffic usage, they are under-utilized

most of the time. However, even when a site is experiencing

little or no activity, the BS consumes most of its peak

energy. Beyond turning off only radio transceivers, dynamic

approaches [3], [4] that allow the system to entirely switch off

some under-utilized BSs and transfer the corresponding load

to neighboring cells during low traffic period can substantially

reduce the amount of wasted energy.

Our objective and contributions: In order to unburden

wireless network operators from huge capital and operating

expenditures (CAPEX & OPEX) while meeting the quality of

service requirement, this paper focuses on providing theoreti-

cal implications and practical solutions for the following two

key questions. (i) HCS deployment problem: where and how

many micro BSs need to be deployed? (ii) HCS operation

problem: how to operate (i.e., switch on/off) macro and micro

BSs in an energy-efficient manner during off-peak times?

A. Related Work

Most of the research on HCS has focused on resource

allocation [1], e.g., spectrum allocation, power control; how-

ever, there has been relatively little work dealing with BS

deployment in HCS. The studies in [5], [6] showed the

benefit of HCS deployment in hexagonal networks only by

simulations. In the non-HCS setting (i.e., only one type of BS),

Stamatelos et al. [7] theoretically showed that an algorithm

minimizing the overlapped coverage can maximize spectral

efficiency in omni-antenna case. Srinivas et al. [8] proposed

an algorithm which jointly considers both BS deployment and

user assignment in mobile backbone networks for throughput

optimization. Our work differs from the previous works in

that: (i) we present an analytical framework for optimal BS

deployment in HCS and (ii) run extensive simulations based

on the real traffic traces and BS topologies.

Green networking has recently received significant attention.

In [2]–[4], [9], the authors investigated dynamic BS operation

to save energy consumptions. In addition, the concept of BS

sharing, where different operators pool their BSs together to

further conserve energy, was introduced in [2], [10]. However,

most of the previous works [2], [3], [9], [10] attempted to see

how much energy saving can be achieved rather than develop-

ing algorithms that can be implemented in practice. Although

several preliminary BS switching algorithms can be found in

[4], [9], they cannot capture the signal degradation due to
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being served by further BSs when a previously associated BS

is switched off. To reflect this effect, in this paper, (i) we

consider a more sophisticated channel model based on SINR,

and (ii) propose practical and distributed algorithms for the

dynamic BS operation.

The reminder of this paper is organized as follows. In

Section II, we formally describe our system model and general

problem. In Section III, we deal with the deployment problem

finding a minimal deployment of micro BSs for the required

area spectral efficiency (ASE). Under the observation of mono-

tone relationship between coverage and ASE increment, we

prove the submodularity of the ASE function with respect to

micro BS deployment and propose a greedy algorithm, which

has a nice feature of constant-factor approximation. In Section

IV, we focus on minimizing energy consumption through

dynamic BS operation. Although the above greedy deployment

algorithm can be also applied as a centralized offline solution,

we further propose distributed online algorithms based on

Lagrangian relaxation technique. In Section V, we evaluate the

performance of the proposed algorithms and finally conclude

the paper in Section VI.

II. SYSTEM DESCRIPTION AND PROBLEM DEFINITION

A. System Description

1) Network Model: We consider a HCS broadband wireless

network where the sets of macro and micro BSs, denoted byBM and Bm, respectively, lie in the two-dimensional area A �R2 . Throughout the paper, subscript M is used for macro BSs,

and m is for micro BSs. Let us denote by b 2 B = BM [Bm
the index of BSs. Even though our main focus is on downlink

communication, i.e., from BSs to user equipments (UEs), some

aspects of our work can be applied to the uplink as well.

2) Link Model: The received signal strength from BS b to

UE at location x can be expressed as Eb(x) = pb �gb(x), wherepb denotes the transmission power of BS b, gb(x) denotes

the channel gain from BS b to location x, including path

loss attenuation, shadowing and other factors if any. Note,

however, that fast fading is not considered here because the

time scale for measuring gb(x) is assumed to be much larger.

Accordingly, the signal to interference plus noise ratio (SINR)

at location x can be written as:�(x;B) = Eb(x;B)(x)Pb2B; b6=b(x;B)Eb(x) + �2 ; (1)

where �2 is noise power and b(x;B) denotes the index of the

BS at location x that provides the highest signal strength, i.e.,b(x;B) = argmaxb2B Eb(x). Following Shannon’s formula,

spectral efficiency at location x is given by:C(x;B) = log2 (1 + �(x;B)) ; [bit/sec/Hz] (2)

3) Area Spectral Efficiency: We adopt the area spectral

efficiency (ASE) firstly introduced in [11] as our performance

metric, which is is defined as the summation of the spectral

efficiency over the reference area A:S(A;B) := Px2X C(x;B) � Pr(x)jAj ; [bit/sec/Hz/m2] (3)

where Pr(x) is the probability of the UE being at a specific

location x; X is the set of locations included in the area A
satisfying Pr(x) > 0 for all x 2 X � A. We assume the

homogeneous user distribution1 such that the discrete set X is

a rectangular lattice with a small grid size and the probability

of each location is the same.

4) Coverage: Let us denote by Ai<j the set of locations

that have better SINR from BS i than j. We further denote byAi=j the set of boundaries having the same SINR from both

BSs i and j. Then, the set of locations covered by BS k (or

simply, coverage) can be written as:Ak(B) := fxjx 2 A s.t. b(x;B) = kg = \b2B; b6=kAk>b: (4)

B. General Problem Statement

Consider an area of interest A served by a wireless net-

work operator whose access network consists of only macro

BSs BM . We assume that the daily traffic profile repeats

periodically [2]–[4], and that the required ASE Stth over

time t corresponding to the traffic profile is already known.

Suppose that the maximum required ASE St�th at the peak

time t� = argmaxt Stth during a day t 2 [t0; t0+D) almost

approaches to the one that can be provided by turning on all

the macro BSs BM , i.e., S(A;BM ) ' St�th. Thus, the operator

wants to upgrade its access network by micro BSs which

are considered as the cost-effective way of incrementally

increasing capacity inside the initial macro cell deployment.

General problem: We want to minimize the total BS energy

consumption during a day while providing � � 1 times

higher ASE than before the upgrade. We can mathematically

formulate this problem as the following optimization problem:

(P) minfBtg Z t0+Dt0 �PM � ��BtM ��+ Pm � ��Btm��� dt
s.t. S(A;Bt) � � � Stth; 8t 2 [t0; t0+D); (5)

where Bt denotes the set of BSs that are turned on at timet; PM and Pm are operational power consumptions of macro

and micro BSs, respectively.

Problem separation: The above general problem (P) can be

separated into two subproblems: (P1) micro BSs deployment

problem considering the peak time t� and (P2) BSs operation

problem during the off-peak period t 6= t�.

It is desirable for the operator to minimize the cost for

expanding its infrastructures while guaranteeing the required

ASE. Therefore, the first problem is to find a minimal de-

ployment of micro BSs which can support the peak time ASE.

Note that this deployment issue is an offline problem that

can be handled in a network coordinator. Once the micro BS

deployment targeted at the peak time is done, the next problem

1Please refer to our technical paper [12] for the further results of the
heterogeneous user distribution.
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(a) Contour plot of ASE increment (Korea-A)
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(b) Scatter plot between coverage and ASE
increment (Korea-A)
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(c) Quantile plot between coverage and ASE
increment (all topologies)

Fig. 1: Several interesting observations from various topologies including the real layout of macro BSs.

is how to efficiently operate these micro BSs along with the

existing macro BSs for energy conservation during the off-

peak period. The solutions for the operation problem should

be online distributed algorithms in order to be implemented in

practical systems.

III. HCS DEPLOYMENT STRATEGY

First, we aim at finding a minimal deployment of micro BSs

(i.e., minimizing the total power consumption) while satisfying

the raised ASE requirement at the peak time, t = t�:

(P1) minBm jBmj (6)

s.t. S(A;BM [ Bm) � � � St�th = � � S(A;BM ): (7)

Note that the deployment problem (P1) can be also interpreted

as a CAPEX minimization. (P1) is basically a combinatorial

problem, and that makes it difficult to find an optimal solution,

especially, if the number of candidate locations is large.

A. Key Observations

We shall start by presenting several observations from

various real topologies which help us to gain insight and

develop an efficient algorithm. We acquired real macro BS

topologies in the part of Korea [13] and Manchester, UK

[2], [14] as well as typical hexagonal and random topologies.

Listed here is brief information about the number of macro

BSs and the size of observation area in the topologies that we

used: (i) Korea-A: 7 BSs in 5x5 km2, (ii) Korea-B: 15 BSs in

4.5x4.5 km2, (iii) UK: 6 BSs in 2.5x2.5 km2, (iv) hexagonal:

7 BSs in 4x4 km2, and (v) random: 6 BSs in 5x5 km2.

We focus on the deployment of one new micro BS in the

area that is covered by the existing set of macro BSs. The

contour plot in Fig. 1(a) shows how much ASE a micro BS can

improve according to the location of deployment. Although

this is a snapshot from the topology of Korea-A, similar trends

could be observed in the other topologies as well.

Observation 1: As long as a new micro BS is placed not to

close to the one of existing macro BSs, ASE can be expected

to increase before the upgrade. Especially, the ASE increment

becomes large as the distances from macro BSs increase.

The wireless network operators are supposed to deploy a micro

BS at the location where ASE can be improved. Therefore,

throughout the paper, we only consider the set of candidate

locations for the micro BS deployment as follows:8k 2 K; S(B [ fkg) > S(B); (8)

Now we examine how much area the micro BS can cover

according to the location of deployment and investigate the

correlation with ASE increment. In Fig. 1(b), ASE increment

has a distinct tendency to increase with coverage. Interestingly,

it becomes sharper as the coverage increases and this trend can

be verified over the other topologies as well in the quantile

plots in Fig. 1(c). This is desirable because we are interested in

the locations that give high performance improvement. In such

locations with small variance, we can almost surely assert that

coverage and ASE increment have a near-monotonic relation-

ship. Results from monotone test2 (90.4�97.0% depending on

the topologies) also support the following observation.

Observation 2: The larger area can be covered by a new

micro BS, the higher ASE increment is likely to be expected.

Motivated by this observation, we assume that the following

monotone relationship holds throughput the paper.jAk(B [ fkg)j � jAk0 (B0 [ fk0g)j) S(B [ fkg)� S(B) � S(B0 [ fk0g)� S(B0);
where k (or k0) is the index of the micro BS.

(9)

These two observations are intuitively understandable. Con-

sider the area covered by the micro BS far from existing macro

BSs. Since the signals from the macro BSs are weak, the micro

BS will provide the highest SINR to a large extent area. In

addition to this large coverage, the area originally had low

spectral efficiency, resulting in the high increment of ASE.

2We randomly pick two points having positive ASE increments in Fig.
1(b) and check whether the slope between these points are positive or not.
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B. Constant-Factor Approximation Greedy Algorithm

Prior to introducing a natural greedy algorithm for (P1), we

define a real-valued set function F : Bm ! R as follows:F (Bm) := S(BM [ Bm)� S(BM ); (10)

which returns the ASE increment by additionally deploying

the set of micro BSs Bm.

Greedy deployment algorithm

1: Initialize Bgreedym = ;
2: do while S(A;BM [ Bgreedym ) < � � St�th
3: k� = argmaxk2K F (Bgreedym [ fkg)� F (Bgreedym );
4: Bm  Bm [ fkg
5: end do

The greedy algorithm starts with the empty set Bgreedym = ;,
and iteratively adds the micro BS location having the highest

increment among the set of candidate locations K until ASE

reaches a target value, i.e., satisfying the constraint (7).

Theorem 3.1: The ASE increment achieved by an optimal

placement with the same number of micro BSs as the greedy

algorithm cannot be more than a factor of e=(e� 1) from the

ASE increment achieved by the greedy algorithm.maxjBmj=jBgreedym jF (Bm) � ee� 1F (Bgreedym ); (11)

where the constant e is base of the natural logarithm.

Proof: In order to prove the theorem, we first need to show

that the ASE increment function satisfies the following three

properties: (i) F (;) = 0, (ii) increasing, and (iii) submodular.F (;) = 0 is trivial and F is an increasing function by the

assumption (8). To prove the submodularity, it is enough to

check that for all Bm � Bm0 � K and for an arbitrary chosenk 2 K n Bm0 , the following condition holds.F (Bm [ fkg)� F (Bm) � F (Bm0 [ fkg)� F (Bm0) (12)

Since Bm is the subset of Bm0 and F is increasing, we have

the following two inequalities:F (Bm) � F (Bm0) and (13)��Ak(BM [ Bm [ fkg)�� = ���T b2BM[Bm Ak>b���� ���T b2BM[Bm0 Ak>b��� = ��Ak(BM [ Bm0 [ fkg)�� (14)

By the assumption (9) and the definition of F , the coverage

inequality (14) can be converted into the ASE inequality:F (Bm [ fkg) = S(BM [ Bm [ fkg)� S(BM [ Bm)� S(BM [ Bm0 [ fkg)� S(BM [ Bm0)= F (Bm0 [ fkg): (15)

Combining (13) and (15) completes the submodularity in (12).

Nemhauser et al. [15] studied a maximization problem for

a nondecreasing submodular set function with F (;) = 0,maxZ F (Z) s.t. jZj � K; (16)

and they obtained that

(value of greedy approximation)

(value of optimal solution)
� 1��K � 1K �K : (17)

Since our F (�) is an increasing submodular function withF (;) = 0, the greedy algorithm is guaranteed to find a

constant-factor approximation solution Bgreedym , such thatF (Bgreedym )maxjBmj=jBgreedym jF (Bm) � 1�� jBgreedym j � 1jBgreedym j �jBgreedym j � 1� 1e : �
Corollary 3.1: So far we have assumed that micro BSs have

the same operational power Pm. However, the above constant-

factor approximation result can be extended to general cases

[16], where BSs have different operational powers. We only

need to change the greedy algorithm as follows, i.e., finding

the location with highest ASE increment per unit power:k� = argmaxk2K F (Bgreedym [ fkg)� F (Bgreedym )Pk : (18)

IV. HCS OPERATION STRATEGY

Since BSs are deployed to support the peak time traffic, they

will be under-utilized most of off-peak times, i.e., t 6= t�. If an

appropriate dynamic BS operation algorithm is not employed,

then a considerable amount of energy will be wasted. Thus, our

objective at the off-peak period is to find a dynamic operation

of BSs that minimizes the total operational power consumption

while satisfying the raised ASE requirement:

(P2) minBt PM � ��BtM ��+ Pm � ��Btm��
s.t. S(A;Bt) � � � Stth: (19)

The operation problem (P2) is a combinatorial optimization

problem as well. Thus, in the following consecutive subsec-

tion, we propose a suboptimal offline centralized algorithm

and two online distributed BS switching algorithms.

Since there is a similarity between deployment and opera-

tion problems in nature, we may use the generalized deploy-

ment algorithm in (18) as a centralized algorithm for the op-

eration problem. This centralized algorithm not only requires

many feedbacks from all BSs to the network coordinator but

also should be started from the empty set (i.e., turning off all

BSs), which makes it difficult to be implemented in practice.

In order to overcome such difficulties, we consider the design

of simple and distributed online algorithms.

A. Distributed BS Switching Algorithm

Using the Lagrangian relaxation with a multiplier �, the BS

operation problem (P2) can be separated by the summation of

the switching problem at each BS as follows.L(Bt; �) = Xb2Bt Pb + � �� � Stth � S(A;Bt)�=Xb2B hPbat(b) + �jAjn�jAjjBtj Stth�Xx2XbC(x;Bt)o| {z }Lb(at(b);�) i;
292



where at(b) denotes the indicator of BS status, i.e., at(b) = 1
when the BS b is on at time t, and 0 otherwise; Xb denotes

the set of locations in the serving area of BS b. The network

coordinator updates the Lagrangian multiplier using gradient

descent method with a small step size � > 0, i.e.,� �+ � �� � Stth � S(A;Bt)� ; (20)

where S(A;Bt) can be calculated by collecting a local ASE

in each BS as follows:S(A;Bt) = 1jAj Xb2Bt jAbj � S(Ab;Bt): (21)

For any given �, BS b needs to be turned off for energy

saving if beneficial, i.e., Lb(0; �) � Lb(1; �). This yields the

following condition:�jAbj � fS(Ab;Bt)� S(Ab;Bt � fbg)gjAj � Pb: (22)

This can be interpreted as follows: (i) The less decrement in

spectral efficiency the BS has and/or (ii) the larger operational

power, the more likely the BS is switched off. Hence, we

propose BS switching algorithms as follows.

SINR-based (S-OFF1): At each time t, each BS receives the

Lagrangian multiplier � from the the network coordinator.

If the performance decrement in spectral efficiency per unit

operational power is less than a certain threshold, then the BS

will be switched off.jAbj � fS(Ab;Bt)� S(Ab;Bt � fbg)gPb � jAj� : (23)

The BS switching-on procedure can be accomplished by the

reverse way of the switching-off procedure. Without any

additional calculation in off-state, the BS b is switched on

when the target ASE reaches the same value that the BS was

originally switched off.

SNR-based (S-OFF2): In (S-OFF1), each BS requires SINR

estimations before and after turning-off from UEs in its

coverage. To reduce the signal processing overhead of UEs,

we further propose much simple (S-OFF2) based on SNR

estimations.jAbj � fS�2(Ab;Bt)� S�2(Ab;Bt � fbg)gPb � jAj� : (24)

where S�2(A;B) = 1jAj Px2X log2(1 +Eb(x;B)(x)=�2). It

should be noted that ASE can be approximately calculated

based on the value of SNR instead of exact SINR in (24).

V. NUMERICAL RESULTS

We consider the deployment of macro BSs as shown in

Fig. 2(a) for our simulation. There are 10 macro BSs in 8 �8km2. In order to avoid edge effects, we only observe the area

of 5�5km2. Typical transmission and total operational powers

for macro and micro BSs are summarized in Table I [17]. For

more detailed descriptions of simulation setups, refer to our

technical report [12].

TABLE I: Additional total power consumptions required for

the target ASE increment.

BS Types Macro Micro Micro Micro

TX / OP Powers [in W] 20 / 865 2 / 43 1 / 38 0.5 / 35

Target ASE 10% 4325W 645W 836W 1050W

Increment 15% 9515W 1476W 1672W 2240W
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Fig. 2: HCS deployment: (a) snapshot after the deployment of

15 micro BSs and (b) normalized ASE increment according

to the deployment of different types of BSs.

A. Base Station Deployment

On top of the deployment of macro BSs, we consider the

deployment of micro BSs to further increase ASE in the

area of interest. Fig. 2(a) show the snapshots after 15 micro

BSs additionally deployed by the proposed greedy deployment

algorithm. As expected, the micro BSs tend to be placed in

the boundaries of the cell because this makes each micro BS

cover larger area, resulting in more ASE increment.

In Fig. 2(b), we investigate the performance improvement

according to the additional deployment of BSs having different

transmission powers. Four types of BSs are considered: the

macro BS with transmit power of 20W and the micro BSs

with transmit power of 0.5W, 1W and 2W, respectively. Note

that there are diminishing marginal returns on the normalized

ASE increment. To meet the target ASE increment of 10%,

while only five additional macro BSs are needed, 15, 22 or

30 micro BSs (three to six times more than macro BSs).

Nevertheless, the transmission power consumptions (pM andpm) of additional micro BSs are much less than that of

additional macro BSs. For example, while 100W is consumed

by the macro BSs, only 30W, 22W, or 15W is consumed by

the micro BSs. When we reflect the total power consumptions

(PM and Pm), the advantage of micro BSs becomes more

clear. Table I shows the required the additional total power

consumptions for different target ASE increment. Compared

to the case of macro BSs, deploying micro BSs can reduce

more than 3kW and 6kW for the target ASE increments of

10% and 15%, respectively. This corresponds to about 70%

energy savings.
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Fig. 3: Additional energy consumption compared to that of an

optimal exhaustive search.
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Fig. 4: Energy saving during one week.

B. Base Station Operation

We now examine the performance of the proposed BS

operation algorithms in Section IV. Fig. 3 shows the percent-

age of additional power consumption for different algorithms

by varying the normalized required ASE compared to the

result of an optimal exhaustive search. Note that such simple

distributed algorithms can closely approximate the complex

centralized algorithm. Moreover, their maximum deviations

from the optimal solution are less than 7%.

In order to obtain the realistic amount of energy saving, we

further consider real traffic traces recorded in a metropolitan

urban area during one week as shown in [2]. Fig. 4 shows the

percentage of total energy saving during one week. As can be

seen, around 60-70% of energy consumption can be reduced

by dynamic BS operation. Given that OPEX of wireless

network operators for electricity is more than 10 billion dollars

globally [2], this could translate to huge economic benefit to

the operators.

VI. CONCLUSION

In this paper, we proposed an energy-aware hierarchical

cell configuration framework that provide both theoretical and

practical guidelines on how wireless network operators man-

age their BSs. We specifically focused on a problem pertaining

to total energy consumption minimization while satisfying

the requirement of ASE, and decomposed it into deployment

problem at peak time and operation problem at off-peak time.

For the deployment problem, we proposed a constant-factor

approximation greedy algorithm. For the operation problem,

we propose two distributed online switching algorithms. Ex-

tensive simulations based on the acquired real BS topologies

and the traffic profiles show that the proposed algorithms can

considerably reduce the total energy consumption by up to

60-70%, depending on the configurations.
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