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Abstract—We consider the problem of periodic task scheduling
in sensor nodes powered with energy harvesters. In particular,
we focus on systems with stochastic energy sources such as solar
panels, and we present two energy-aware scheduling algorithms
that reduce the likelihood of task violations. Our algorithms,
called Smooth to Average Method (STAM) and Smooth to Full
Utilization (STFU), are static schedulers that do not require
prescience of the incoming energy to operate effectively.

Index Terms—Real-Time Scheduling, Recurring Tasks, Energy
Harvester, Sensors

I. INTRODUCTION

A wireless sensor network (WSN) consists of collaborat-
ing sensor nodes with capabilities of sensing, computation
and communication [16]. Wireless sensor networks can be
deployed for a plethora of purposes such as habitat monitor-
ing [6], earthquake detection [18], or healthcare [15].

For ease of deployment, wireless sensor networks usually
do not rely on existing infrastructure, and sensor nodes are
typically battery powered. Therefore, the lifetime of these
embedded devices is limited by the amount of energy that can
be stored in the batteries. Furthermore, in many applications
such as forest monitoring, the number of sensors and their
locations might render the activity of replacing nodes’ batteries
infeasible or very costly [8]. There is a need for green solutions
capable of powering sensor network applications with ambient
energy.

To solve the above problem, intensive research has been
conducted on energy harvesting as a way to extend the lifetime
of wireless sensor networks. Several types of energy such
as solar, eolic (wind), vibrational, and thermal among others
can be scavenged from the surroundings of a sensor node to
replenish its battery [14]. Promising as it may seem, energy
harvesting poses new challenges to the scientific commu-
nity [5]:

o Environmental energy sources behave stochastically,
making the accurate prediction of incoming energy levels
very difficult.

o Conventional task scheduling techniques were not de-
signed for energy-limited scenarios and cannot deal prop-
erly with uncertainty in energy availability.

It has been pointed out that the traditional scheduling
methods, such as Earliest Deadline First (EDF), may not work
well under energy-limited conditions [8], and as such new
algorithms such as the Lazy Scheduling Algorithm (LSA) have
been proposed to “solve” the problem [8]. Although it has
been theoretically proven that LSA is optimal, it requires
an accurate prediction on the incoming energy source to
operate well. Energy prediction, however, is non-trivial, and
it is challenging to implement a suitably intelligent prediction
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algorithm on a typical sensor node due to the computational
resources available on such a platform. Installing a pre-trained
energy prediction model does not work either, because such a
model depends on where and when the model was built and
may not generalize when the sensors are deployed in different
places and function over a long time period.

In this paper, we make contributions by proposing two
new scheduling techniques, the Smooth to Average Method
(STAM) and Smooth to Full Utilization (STFU), to handle
energy uncertainty and deadline constraints without relying on
any energy prediction model'. In our simulation-based eval-
uations, we consider solar energy scavenging through photo-
voltaic conversion, as it provides the highest power density of
conventional environmental energy harvesting techniques [12].

In the remainder of the paper we first discuss related work
on energy-aware scheduling, and formalize the problem of
periodic real-time task scheduling. We then present two static,
energy-aware scheduling algorithms and give an evaluation of
their performance compared to related work through simula-
tions. Finally, we give some concluding remarks.

II. RELATED WORK

Important early work in real time scheduling by Liu and
Layland [4] presented two classic scheduling algorithms, rate-
monotonic priority assignment and deadline-driven scheduling,
and assessed their performance based on processor utilization.
Their work, however, did not consider energy constraints.
Moser et al. [8], in more recent work, described energy-aware
LSA scheduling and proved that it optimally deals with time
and energy constraints in a system whose energy storage is
replenished predictably. The suitability of this approach under
realistic energy harvesting conditions, however, is unclear.

Research into energy-aware algorithms for sensor nodes is
an active area. Kansal et al. [3] presented power management
algorithms based on duty-cycling between active and low-
power modes of sensor nodes with energy harvesting capabil-
ities to achieve perennial operation at a desired performance
level. Niyato er al. [10] investigated the impact of sleep
and wake-up strategies on data communication among solar-
powered nodes. These strategies are dependent on battery
charge, solar radiation level and number of packets in the
data queue. In [19], Vigorito et al. proposed an adaptive
duty-cycling algorithm that ensures that power supplied to
sensor nodes is kept within operational levels in several energy
harvesting scenarios. The algorithm does not require previous
information on the energy source dynamics and presents low

ILater in this paper we build an energy charging model for solar energy
harvesting; however this model is purely for the purpose of performance
comparison and in a real implementation such a model is not required.
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computational demands. In [9], Moser et al. presented an
adaptive power management model that can be customized
to address different constraints and optimization objectives in
energy harvesting systems, such as tradeoffs between commu-
nication and memory usage.

Predicting stochastic energy sources is non-trivial. Lu et
al. [5] assessed three prediction techniques: regression analy-
sis, moving average, and exponential smoothing. Their tech-
niques met the requirements of high accuracy and low com-
putation and memory demands imposed by a real-time energy
harvesting embedded system. Recas et al. [13] employed the
Weather-Conditioned Moving Average (WCMA) model, which
adapts to seasonal changes in solar power harvesting as well
as sudden weather changes. Moser et al. [8] introduced energy
variability curves to predict the power provided by a harvesting
unit. Energy predictions based on these curves are highly
accurate when a sensor node’s utilization is low. In [17] Susu et
al. used a discrete-time Markov chain in which only transitions
between consecutive states, representing energy levels gener-
ated by a solar panel, were allowed. This restriction hinges
on the fact that abrupt changes in the energy provided in
a time step are highly improbable. Niyato er al. [10] made
use of a Markov chain model that takes into consideration
the influence of clouds and wind on solar radiation intensity.
Due to the limited computational and memory resources
available on a typical sensor node, however, implementing
suitably accurate dynamic energy prediction models appears
challenging, making scheduling algorithms based on energy
prediction impractical.

In [2], Jiang et al. present a hybrid implementation of en-
vironmentally powered sensors based on two supercapacitors
and one rechargeable battery.

III. PROBLEM FORMULATION

To model task execution in the sensor nodes, we assume
the following:

o (A1) The requests for all tasks are periodic, with constant
interval between requests. Such tasks are also called
recurring tasks.

e (A2) Each request of a task has a hard deadline, which
is defined as the time when the next request for the task
arrives.

e (A3) A task has constant run-time. Run-time refers to the
time to execute the task without interruption. We assume
that the priority of tasks may change, but once being
executed, a task cannot be interrupted.

o (A4) The task drains energy with a constant rate during
its execution time?.

e (AS5) The tasks are independent in that requests for a
given task do not depend on the initialization or the
completion of requests for other tasks.

e (A6) The sensor node includes an energy harvester to
supply power. It also has an energy storage module
(capacitors or rechargeable batteries) with the maximum
capacity of C.

2Energy consumption on sensor nodes largely depends on the operations
of peripheral devices (e.g., sensors and wireless transmitters) associated with
the task rather than executing code in the microprocessor.

We can denote a set of recurring tasks by {71, 72,..., 7},
with each task represented by a tuple 7, =< T}, D;, P; >,
where T; denotes the periodic interval time between requests
for the task, D; denotes the task’s execution duration, and
P; denotes the task’s energy consumption per time unit (i.e.
power consumption). For a set of tasks scheduled according to
some scheduling algorithm, we say that a fask violation occurs
at time ¢ if the node’s energy level drops to zero or ¢ is the
deadline of an unfulfilled request.

In this paper we consider the question of scheduling tasks
to reduce the likelihood of task violations.

IV. NEW ENERGY-AWARE SCHEDULING ALGORITHMS

We have developed two new techniques that, when com-
bined with known scheduling algorithms, reduce the likelihood
of an energy violation while meeting task deadlines. We call
the algorithms the Smooth to Average Method (STAM) and
Smooth to Full Utilization (STFU).

A. Smooth to Average Method

First we illustrate a core concept, virtual tasks, used in our
methods.

Definition 1: Given a task 7; =< T;, D;, P; > and a power
threshold value P, its equivalent virtual task is defined as the
task 7, =< /I’“thl >. For STAM, Dl = |—D1 X Pl/P~| and
P, = D; x P;/D;. We use a power threshold P = >".(P; x
D;/T;).

To distinguish, we call the real task 7; a physical task in
the rest of the paper.

Remark 1: When the power threshold value P is larger than
P;, the task 7; is the same as the task 7;. When the power
threshold value P is smaller than P;, task 7; and the virtual
task 7; will consume the same amount of energy, but the virtual
task 7; spreads over a longer execution time than task 7;. Any
scheduling algorithm that can schedule the virtual task without
violating its deadline constraint will meet the deadline for the
physical task as well.

Remark 2: The motivation of introducing virtual tasks is to
smooth the energy consumption in the long run. If we make a
schedule using the virtual tasks, and then execute the physical
tasks according to that schedule, the system will implicitly
wait for energy replenishment before running a request that
consumes a large amount of energy. The waiting time is
proportional to the energy amount consumed by the request.

Intuitively, it would be a good choice to smooth the energy
consumption to the average power requirement of all tasks in
a given task list. The STAM is designed for such a purpose.
We generate a set of equivalent virfual tasks by increasing the
duration of any task that uses greater than average power, thus
smoothing each task to approximately the average power. In
these virtual tasks, the total energy remains the same as that
in the real tasks. Virtual tasks cannot be scheduled to run at
the same time and are not preemptible. Once the virtual tasks
are scheduled, the physical tasks are inserted at the end of
the corresponding virtual task’s timeslot. Thus a physical task
that consumes high energy is guaranteed to run after an idle
period during which energy is harvested, and so the likelihood
decreases that the system will run out of energy when the task
runs.
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Algorithm 1 Generate STAM Task List

INPUT: realTasks {list of [period, duration, power]}
INPUT: N {number of tasks}
OUTPUT: vTasks {same format as realTasks}
P <+ mean(realTasks|:, 3])
for i =1to N do
if taskList[i, 3] > P then
E « realTasksli, 2] x realTasks]i, 3]
D <« [E/P]
P+ £
vTasksli,:] < [taskList[i,1] D P]
else
vTasksli,:] < taskList[i,:]
end if
end for

The STAM algorithm calculates the energy consumption of
each task by multiplying its runtime by the task’s power con-
sumption. After taking the mean energy consumption across
all of the tasks in the task list, each task is compared to this
value and virtual tasks are generated accordingly. If the given
task’s power consumption is above the mean power value, the
virtual duration is calculated by taking the ceiling of the energy
of the task divided by the calculated power mean. This will
extend the duration of the virtual task allowing the total energy
consumed to be more evenly distributed across the duration of
the task’s runtime. If the given task’s power consumption is
below the calculated energy mean, the algorithm is unable to
perform any smoothing and will use the unchanged physical
task to generate a schedule. The pseudocode of generating
STAM task list can be found in Algorithm 1.

B. Smooth to Full Utilization

A potential problem of STAM is that the virtual tasks may
be spread across too long a duration, such that no scheduling
is possible to meet the virtual tasks’ deadline constraints. This
may happen if some physical tasks require very high energy
and thus the corresponding virtual tasks force the system to
wait for a long time. To avoid this problem, we propose a
different heuristic to smooth the energy consumption, called
Smooth to Full Utilization (STFU). A virtual task generated
by STFU is defined as the task 7; =< T;,D;, P; > where
Di: ’—Dz XPl/P—l and pz:Dz XPl/DZ

The STFU algorithm is similar to STAM, but instead of
smoothing all tasks to the average energy usage, STFU attempts
to create a virtual task list with 100% virtual utilization®, Uy .
In other words, in a schedule generated from a virtual task
list output by STFU, the likelihood of there being a virtual
task scheduled at any arbitrary time is as close as possible to
100%.

Utilization U is defined in equation 1, where £ is the number
of tasks, D; is the duration of the it task, and T is the period

of the i*" task.
E D,
U= g = )
o T

3The CPU utilization calculated based on virtual tasks is called virtual
utilization.
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Fig. 1. Four tasks scheduled by EDF with no smoothing.

To generate a virtual task list with STFU, first each task is
given a virtual duty cycle dy representing what proportion of
the total runtime will be allocated to the corresponding virtual
task. The goal of STFU is to allocate more time to tasks that
use greater energy, so that a high-energy task has more time
to harvest energy before executing. For example, a task that
uses 40% of the total energy consumed by tasks should be
given a virtual duty cycle of dy = 40%. Virtual tasks cannot
have a shorter duration than their real equivalents (otherwise
the real task would not fit in the virtual task’s timeslice), so if
a task’s physical duty cycle d is greater than dy then it will
be unchanged. The pseudocode of generating STFU task list
could be found in Algorithm 2.

Algorithm 2 Generate STFU Task List
INPUT: realTasks {list of 7, =< T;, D;, P; >}
INPUT: N {number of tasks}
OUTPUT: vTasks {same format as realTasks}
Eiotar =0
fori:=1to N do
di + D;/T;
E; +—d; x P;
Etotal — Etotal + Ez
end for
for i =1to N do
d <+ Ei/Etotal
dy < maz(D;, |T; x d])
Py« D; x Pz/dV
vTasks[t] < [T; dy Py]
end for

Figure 1, Figure 2, and Figure 3 show four tasks scheduled
by EDF, EDF with STAM, and EDF with STFU, respectively.
Like in STAM, each real task with STFU smoothing is sched-
uled at the end of its virtual equivalent’s time slice. The third
task, which uses the most energy over a long run, is scheduled
after a long period spent collecting energy. The second task
uses very little energy overall, and is given just a short period
to collect energy. For this task set, U = 27% and Uy ~ 96%.

V. EVALUATION RESULTS
In this section, we present a simulation-based evaluation of
the STAM and STFU schedulers.
A. Simulator Details

Our simulation framework includes a stochastic energy har-
vesting process, a task list generator, the scheduling processes,
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Fig. 2. Four tasks scheduled by EDF with STAM smoothing.
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Fig. 3. Four tasks scheduled by EDF with STFU smoothing.

and an execution process. We execute n simulations on one
task list per run, and generate task lists for r runs. Each task
list consists of k tasks.

The tasks are generated with random periods, durations, and
energy requirements. The periods and durations are distributed
uniformly in discrete time steps, ranging respectively from 10
to 40 and from 1 to 4. The energy is half-normally distributed,
and proportional to the task’s period (i.e. a task requiring high
energy is expected to run at a low frequency).

We consider only task lists that are temporally schedulable,
which we define as having a CPU utilization U less than
100% (see Equation 1). For each task list we also generate
a corresponding virtual task list using STAM and STFU.

We use the model of a photovoltaic energy harvester, which
converts a solar irradiance G into a current I, as a stochastic
energy source for our simulation. The energy drawn from
the environment is modeled as a 3-state Markov chain ([11],
[8]) representing three weather conditions (Figure 4). At each
discrete time step during the simulation the Markov chain is
updated, and the energy is generated and is added to an energy
pool (e.g. a battery).

We generated a table of energy inputs to the system using
the solar cell model provided by Simulink’s SimElectronics

Fig. 4. Markov Chain Weather Model.
70%

15% 15%

TABLE I
SOLAR PANEL ENERGY OUTPUT (BOLD VALUES ARE USED IN OUR
WEATHER MODEL)

G [I.AD T [
50 0.190 175 0.665
75 0.285 200 0.760
100 0.380 225 0.855
125 0.475 250 0.950
150 0.570 275 1.045
EDF | —
EDF-STAM 1 1
EDF STFU m—— —
ALAP-STAM [ Static 1
LSA I Cynamic ]
LSA STAM —
0 0. 0.02 0.03 0.04 005 0.06

Probability of Violation

Fig. 5. Violations rate with and without dynamic task rescheduling; results
averaged from 1000 task lists of less than 50% utilization.

toolkit, configured with values from [1]. The solar cell’s
current output with a battery load is related to its radiation
input as determined by the linear function I, = 0.0038G. We
use the values of G = 50,100, 200(-%;) to represent stormy,
cloudy, and sunny weather conditions in our weather model,
respectively.

The output current of the photovoltaic cell, I., is governed
by a two-diode formula given in [7] and modeled by the
Simulink model. The current flows into a battery, which we
simulate using a linear model without relaxation effect. The
battery capacity at time ¢, B; is calculated using Equation 2
per [10].

By = By_1 + I.At — IzAt 2)
where
B;_1 is the battery capacity at the previous time step,
1. is the charge current due to solar harvesting during
At, and
1 is the discharge current due to task execution during

At.
We represent I. and I; as constant averages during the interval

At. Furthermore, the battery is limited in capacity, such that
if By = B,,q, then any excess energy that is harvested is lost.

B. Simulation Results

For performance evaluation we used earliest-deadline-first
(EDF) and as-late-as-possible (ALAP) scheduling to schedule
real tasks, STAM virtual tasks, and STFU virtual tasks. In
EDF, each task is scheduled as early as possible, in order of
increasing deadline. In ALAP, tasks are scheduled at the latest
time possible such that no task misses its deadline.

For comparison purposes, we implemented dynamic Lazy
Scheduling Algorithm (LSA) as described by Moser et al. [8]*.
Additionally, we implemented a sfatic LSA that incorporates

4We implement LSA-I as described in that paper
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Fig. 6. Violation probability computed over 100 simulations, as a function
of physical task utilization for static schedulers.

an off-line prediction of when the battery is at full capacity. To
create a static LSA schedule we pre-process an ALAP schedule
using our dynamic simulation routine, with a constant minimal
energy input in place of the stochastic input. This constant
input is the prediction we give to LSA. As a result, in LSA tasks
will be statically rescheduled when the model can guarantee
that the battery is at maximum capacity, e.g. at the start of
the simulation before any tasks have run. Energy may still
be wasted in the static-schedule, stochastic simulation model
when the battery reaches its maximum capacity unexpectedly.

Although our focus is on static scheduling, we also imple-
mented dynamic versions of each of the schedulers described
above. In the dynamic version of each scheduler, the simula-
tion detects in real time when the battery unexpectedly reaches
full capacity and responds by immediately scheduling the next
pending task.

In Figure 5 we show simulation results for statically
scheduled systems, and for systems that support dynamic re-
scheduling. In this experiment we performed 1000 trials on
different task lists with one trial consisting of 100 simulations
for each scheduler on the task list. Each simulation covered a
period of 100 time units, and if the battery charge dropped to 0
during the simulation we considered the simulation to generate
a violation; hence producing an estimate of the probability
of a violation in a 100 time unit trial. The static simulation
routine executes each task as it appears in the input schedule.
The dynamic simulator monitors the battery’s energy level
and, if the battery is at its maximum capacity (i.e. harvested
energy cannot be stored), tries to re-schedule a task to run
immediately.

As expected, EDF—the optimal periodic scheduling algo-
rithm in systems with unlimited energy—results in the most
violations. Schedules generated by applying the EDF scheduler
to the virtual task lists generated by the STAM and STFU
algorithms perform better. Scheduling STFU virtual tasks using
EDF results in a significant improvement over plain EDF,
approaching the performance of the more complex scheduling
algorithms.

The ALAP and LSA static schedulers performed much better
than the EDF-based algorithms (Figure 6). Results for schedul-
ing STFU using ALAP were not reported as the performance of
the scheduler approaches that of EDF for high CPU utilization
task lists. As expected, using STAM virtual tasks to generate
ALAP and LSA schedules improved the performance.

Power

L L L L
0 W 20 30 40 S0 BO 70 B0 80 100
Time (time units)

Battary charge

1 1 1 1
0 10 20 30 40 50 G0 70 a0 90 100

Time (time units)

Fig. 7. Schedule (top) and battery charge level (bottom) during simulation
of EDF algorithm.
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Fig. 8. Schedule (top) and battery charge level (bottom) during simulation

of EDF algorithm on STFU tasks.

The dynamic versions of the scheduling algorithms resulted
in very low violation rates because the model detected and
responded to a full battery. Running ALAP and LSA on STAM
tasks produced slightly worse results than on physical tasks.
This is a result of the small idle time inserted before the
physical tasks, which causes energy to be wasted when a STAM
task is rescheduled. The dynamic versions of ALAP and LSA
perform equally well, since our version of LSA is equivalent
to ALAP when pre-processed.

Figures 7 to 10 show the change in battery charge level
when simulating a particular task list scheduled with four
different algorithms. Figures 7 and 8 show the relative per-
formance of plain EDF and EDF performed on STFU tasks.
The battery levels for the two simulations both have a down-
ward trend at approximately the same rate, but in the STFU
simulation the battery level rate of change is smoother. The
large dip in charge that causes a violation at time 99 is “filtered
out” by STFU, which gives the system a chance to collect more
energy and recover. The smoothing effect is also demonstrated
in Figures 9 and 10 for the static LSA algorithm with and
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of static LSA algorithm.
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Fig. 10. Schedule (top) and battery charge level (bottom) during simulation
of static LSA algorithm with STAM tasks.

without STAM.

VI. CONCLUSION

We have presented novel algorithms appropriate for the
scheduling of hard real time periodic tasks for sensing devices
powered through energy harvesting. Unlike most previous
work in this area, our approach to task scheduling is static,
and does not require a model of energy replenishment.

Experiments conducted through simulations that incorporate
a dynamic energy replenishment model show that our schedul-
ing algorithms perform better than classic, non-energy-aware,
static scheduling algorithms. Furthermore, our static schedul-
ing approaches perform at a level similar to the current state
of the art, energy-aware scheduling algorithms that require
prediction models such as proposed by Moser et al. [8].

As an on-going project, we have implemented a solar-
powered wireless sensor node, and we are developing current
monitoring to accurately measure energy charging and dis-
charging rate. In future work, we will evaluate our approach

by running a data acquisition application on our solar-powered
sensor nodes.
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