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Abstract—In-packet Bloom filters are recently proposed as a
possible building block of future Internet architectures replacing
IP or MPLS addressing that solves efficient multicast routing,
security and other functions in a stateless manner. In such
frameworks a bloom filter is placed in the header which stores
the addresses of the destination nodes or the traversed links. In
contrast to the standard Bloom filter, the length of the in-packet
Bloom filter must be highly adaptive to the number of stored
elements to achieve low communication overhead. In this paper
we propose a novel type of Bloom filter called Adaptive Bloom
filter, which can adapt its length to the number of elements to
be represented with a very fine granularity. The novel filter can
significantly reduce the header size for in-packet bloom filter
architecture, by eliminating the wasting effect experienced in
existing ”block-based” approaches which rely on concatenating
several standard Bloom filters. Nevertheless, it requires slightly
more calculations when adding and removing elements.

I. INTRODUCTION

Seeking for efficient multicast solutions, the application
of Bloom filters is becoming increasingly popular in future
internet architectures [1], [2] designed with a goal to replace
IP or MPLS addressing. The Bloom filter [3] is a simple
yet efficient tool for deciding whether an element belongs
to a set or not. Placed in packet headers, the in-packet
Bloom filters can effectively address a set of nodes or links,
hereby qualifying themselves as a strong candidate solution
for efficient stateless multicast addressing.

The in-packet Bloom filter concept implements source rout-
ing, where each network element (link or host) is assigned
with a (random) address, which is a bit array (codeword), and
the header contains a Bloom filter for the set of elements
(links, hosts) in the multicast tree. The Bloom filter is a
bit array equals to the bitwise OR of the codewords of the
elements involved, also called as zFilter. When a packet with
in-packet Bloom filter arrives to a router, membership testing is
performed. The operation is extremely fast when implemented
on digital signal processor, which leads to simpler router archi-
tecture compared to current IP routers [2]. Basically, a bitwise
AND operation is performed on the Bloom filter placed in the
header and the address of the outgoing link or node. Moreover,
bloom filters are favored for their space efficiency since the
filter requires much less space than listing the identifiers for
each links/hosts in the multicast tree. Furthermore, this allows
routers to stay quasi-stateless, because the routers only need to
know the address of the neighboring nodes and links, and no
global topology information is required for forwarding. As a
price for the space efficiency false positives may occur, which

means there are some elements not contained by the set for
which the membership test gives positive answers.

In such a networking context the number of elements (e.g.
the number of participating hosts in a multicast communi-
cation) is not known in advance and may lie within a wide
range, from few to a few tens of thousands. Therefore using
the original Bloom filter framework one has to design the
filter size for the worst-case, thus wasting storage space when
smaller number of elements are actually in the filter. However
for in-packet Bloom filters the storage space efficiency is the
key requirement to keep the communication overhead at a low
level. Note that, in traditional Bloom filter applications like
in database systems, the storage space of membership testing
and the storage space of adding (or removing) elements is not
distinguished. However, for in-packet Bloom filters a network
management entity may store some additional information
needed to add and remove elements from the filter. As a
consequence we identify two performance metrics for Bloom
filters: storage space for membership testing and storage space
for adding or removing elements. The main requirement for
in-packet filters is to keep storage space for testing as small
as possible.

Numerous variants of the framework aimed at providing a
scalable solution that keeps the simplicity and efficiency of
the original Bloom filter while not relying on the explicit
knowledge of the number of elements [4]–[8]. A common
feature of these studies is that they use original Bloom filters
as building blocks often with varying sizes. To meet the false
positive requirement and also scale with the number of stored
elements several standard Bloom filters are concatenated, and a
single set element is stored in a given Bloom filter block. This
approach eliminates the low performance of the standard filters
requiring huge space because of the conservative assumptions
regarding the set size; however raises the question at a lower
level, in the level of the filter blocks concatenated. Since it is
not known in advance how much elements there will be in a
given block, such ”block” based approaches still suffer from
wasting of storage space for membership testing.

In this paper we propose novel filter variants that can
significantly reduce the header size for in-packet bloom filter
architecture. It is achieved by fully eliminating the wasting
effect stemming from uncertainty of the number of elements
to be stored in the future. We have to sacrifice some of the sim-
plicity of the original Bloom filter construction, and slightly
increase the storage space required for adding elements.

In our construction instead of using standard Bloom filters
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as building blocks, a special large filter is dimensioned for the
worst-case scenario (based on estimation on the maximal set
size) into which the elements are inserted and a fine grained
truncating mechanism is defined, that provides an optimal
sized filter for the actual number of members meeting the false
positive requirement without wasting space because of the
”blocking” effect. We also show that due to performance rea-
sons it is more reasonable to use non-uniform hash functions
for generating the codewords for the investigated elements.

The rest of the paper is organized as follows. In Section II
we briefly overview the main characteristics of Bloom filters
and the current scalable implementations. As a main result
of the paper we define our novel Adaptive Bloom filter
with fine-grained truncating mechanisms and provide formulae
for determining the truncation point for a given number of
elements and false positive probability in Section III. Since
the required parameters cannot be expressed in a closed form
we formulate an optimization problem, discuss its solutions,
and present the performance of the adaptive filter with the
optimized settings in Section IV and V.

II. BACKGROUND AND RELATED WORK

In the original Bloom filter design [3], a set of elements
chosen from a universe are represented by an array of m bits
(codeword), among of which for each element to be included
in the filter a maximum of k bits are set in positions selected
with k different hash functions. Each of the k hash functions
maps the given element onto one of the m bit positions.
The hash functions are assumed to be independent and each
position is selected with equal probability. The Bloom filter is
an m bit long binary array representing a set of elements. It
consists of the bitwise OR of the codewords of the elements
in the set. As the main feature membership test can simply be
performed by checking 1’s in all bit positions that are set in
the codeword of the underlying element.

The performance of the filter is measured by the false
positive rate that is the probability that an element appears to
be included (by test) but actually it is never added. After the
inclusion of n elements into the filter false positive probability
is usually calculated as:1

Pf ≈
(

1− (1− p)nk
)k

(1)

where p = 1/m is the probability of choosing uniformly one
element among m. Using the above formula the size of the
filter can be determined that ensures a given false positive
probability.

Several modification of the original framework has been
introduced since. In [10] Counting Bloom filters are presented
extending the original framework with the possibility of elim-
inating elements from the filter by introducing multiple-bit
counters in place of bit positions. The aim of Compressed
Bloom filters in [11] is to optimize space requirement using
coding theory, while Spectral Bloom filters [12] address the

1A more rigorous calculation of the false positive probability can be found
in [9].

problem of the multi-set storing. In Weighted Bloom Filter
[13] the uneven membership query rates and membership
probability information of different elements have been taken
into account under reasonable frequency models.

More recent modifications of the Bloom filter framework
aims at applications where the number of set elements is not
known in advance. In [7] smaller standard Bloom filters are
concatenated to ensure scaling with the number of elements
introducing a false positive probability growing linearly with
the number of filters. Independently Scalable Bloom filters
were introduced in [4], [6] which are built in phases with each
phase the size of the newly added filter grows exponentially
guaranteeing the false positive rate remaining under a prede-
fined threshold. The Incremental Bloom filter in [5] applies
fill factor threshold technique instead of the false positive
probability defining the Restricted Fill Bloom Filter. The paper
provides optimal solution for the memory requirement in cases
when certain information about the distribution of the number
of elements is known in advance.

A common property of the above dynamically increasing
filters is that with inserting new elements into the filter the size
quickly grows with large quanta of integral multiples of the
bit-length representing the elements. These procedures usually
require more memory than necessary since the last block is
almost always partially filled. In the following we introduce
a new construction where filter size can be finely tuned to
the number of stored elements with an adaptive fine-grained
truncating mechanisms.

III. ADAPTIVE BLOOM FILTERS

To ensure a moderate communication overhead in-packet
Bloom filters must be highly adaptive to the number of
stored elements (links, hosts, etc.) satisfying a predefined false
positive threshold fp. Throughout this paper we treat this
requirement in the following way: Let mi be the size of a
filter, when representing i elements. Our main target hereafter
is to minimize the cost function given in the form

C =
n
∑

i=1

ci ·mi (2)

where ci is the part of the input and denotes the relative
frequency of including exactly i elements into the filter. For in-
packet Bloom filters ci is the probability of having a multicast
demand with exactly i links and hosts. This cost function
expresses the average amount of memory the filter consumes
when used in networking applications.

Note that for in-packet Bloom filters mi is the size of
the header when i link or host is included in the multicast
tree. Clearly, the length of the header depends on the false
positive threshold and on the actual link/host addresses, which
is further elaborated in the next section.

To achieve a minimal cost according to (2), in what follows
we introduce an Adaptive Bloom filter construction that relies
on non-uniform hash functions setting bits in a codeword with
probability pi depending on their position i. From this an M -
bit long filter is built up, however depending on the maximum
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tolerable false positive probability fp only the first mj bits are
deployed in the packet header where j is the current number
of elements in the set. Clearly M ≥ mn must hold, where
n is the maximum number of element that the filter may
contain. For ensuring optimal filter size for a given distribution
of element set sizes, membership test parameters should be
carefully adjusted at distinct parts of the filter.

Theorem 1: The false positive probability of the heteroge-
neous m-bit Bloom filter with bit probabilities p1, p2, . . . pm
where

∑m
i=1 pi can be calculated as:

PH
f =

(

1−
m
∑

i=1

(

pi (1− pi)
nk
)

)k

(3)

Proof: Let the set of link elements to be checked against
our filter denoted by S. We generate the bits of a codeword for
a given element with probabilities depending on their position:
p1, p2, . . . pm where

∑m
i=1 pi. The probability that the adaptive

Bloom filter at position i, denoted by Bi, is not set after the
insertion of n elements using k hash functions per element is
clearly computed by:

P (Bi = 0) = (1− pi)nk (4)

By the law of Total Probability the probability that the jth
hash function generating a bit position in the codeword of
element s (where s ∈ S is not included in the Bloom filter)
selects position i (or more formally hj(s ∈ S) = i), when the
ith bit in the filter is set is given by:

Phj =
m
∑

i=1

P (Bi = 1 | hj(s) = i)P (hj(s) = i)

=
m
∑

i=1

P (Bi = 1)P (hj(s) = i), (5)

as hash functions are independent of the state of the Bloom
filter. Putting (4) into (5) and using that P (hj(s) = i) = pi
we get:

Phj =
m
∑

i=1

(1− (1 − pi)nk)pi (6)

After applying all k hash functions and assuming the bit-
false events to be independent [9] the probability that all the
bits of the codeword of element s is included in the Bloom
filter (that is we get a false positive answer for the membership
query of element s) is given by the formula:

Pf ≈ (
m
∑

i=1

(pi − pi(1− pi)nk))k (7)

Applying that
∑

pi = 1 immediately gives the statement of
the theorem.

It is easy to see that the special setting of p1 = p2 =
· · · = pm = 1/m recovers the result for the original Bloom
filter. The heterogeneity of the bit set probabilities at different
parts of the element codewords ensures that the information

is concentrated at predefined areas in the filter carefully
adjusted according to the relative frequency ci of membership
cardinality i. E.g. when the number of set members stored in
the future is expected to be relatively small, bit set probabilities
optimally adjusted at the beginning of the filter ensures that
most of the time only a small truncation of the filter will be
enough for satisfying a given false positive requirement. This
property provides us the possibility to reduce C the weighted
average filter size for membership testing.

With respect to the efficient computation of formula (3),
in the homogeneous case of p1 = p2 = · · · = pm = 1/m
the optimal number of hash functions can easily be given in
a closed form [3]. The heterogeneous problem, on the other
hand leads to a optimization task that can only be numerically
dealt with. Although in many cases the establishment of the
set membership filter is not a time constrained process.For this
purpose, in the next section, we present an interesting heuristic
alternative for the Adaptive Bloom filter where near-optimal
solution can more easily be found in a closed form, and its
performance is comparable to that of the original Bloom filter
(3). For fast computation a numerical optimization process
is also proposed along with some comparisons of the results
to related scalable type Bloom filters derived from relevant
literature.

IV. ”BLOOM-LIKE” MEMBERSHIP SET FILTERS

The performance of the proposed adaptive filter in the
previous section mainly depends on the values of pi and k (i.e.
the number of hash functions), therefore their quasi optimal
setting is crucial. In this section a recursive heuristic approach
is presented that is considered being an approximation of the
original heterogeneous Bloom filter (3), for which a near-
optimal closed form solution is proved to be obtainable by
moderate effort. Then in the next section we formulate a
numerical optimization problem which fine tunes the heuristic
solution.

The idea comes from the observation that in (3) the ith bit
is set with probability approximately qi = kpi when kpi � 1
which considering that M , the (almost never used) total length
of the filter, is typically large compared to k can be accepted
as a reasonable assumption. Let us call qi as bit probabilities.
The behavior of the above Bloom filter can be simulated by
simply applying Bernoulli random variables for each i index
with parameter kpi. To establish the false positive probability
of such a Bloom filter ”imitation” we have the following
Theorem:

Theorem 2: The false positive probability of a m bit long
filter established by bitwise ORing n codewords generated by
m number of independent Bernoulli random variables applied
to the ith position with set probabilities qi:

PL
f =

m
∏

i=1

(1− qi(1 − qi)n) (8)

Proof: In the described algorithm the probability that a
bit at the ith position in the filter containing n elements is not
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set can clearly be computed by:

qbi = (1− qi)n. (9)

The probability that the bit of the codeword of a new element
at the ith position is set while the filter at the same bit position
is not (which is the only case when a codeword is considered
to be not included in the filter due to the ith bit position) is:

qnii = qiqbi = qi(1 − qi)n. (10)

Applying the above for all m bit positions and exploiting
full independence among them we get to the statement of the
Theorem.
To shed some light on the connection between formulae (8)
and (3) we can use the following line of thoughts:

Taking the well-known approximation
m
∏

i=1

(1− xi) ≈ 1−
m
∑

i=1

xi, (11)

for positive m and xi when mxi � 1, it can be applied to (8)
and so we get:

PL
f ≈ 1−

m
∑

i=1

qi(1− qi)n. (12)

Now applying (11) in the form of:

(1 − x)m ≈ 1−mx, (13)

and substitute qi = kpi we get

PL
f ≈ (1 −

m
∑

i=1

pi(1− kpi)n)k. (14)

Finally using that kpi � 1, applying again (13) in the same
direction we arrive to

PL
f ≈ (1−

m
∑

i=1

pi(1 − pi)kn)k. (15)

which is exactly (3).

A. Heuristic Recursive Closed Formula

In the following relying on a simple recursive heuristic
we establish a sub-optimal qi constellation in a closed form
which is also used as an initial point for further numerical
optimization in the next section.

According to our problem formulation in Section III we
search for m1, . . . ,mn and q1, . . . , qmn in case of given fp and
n, which minimize C cost function (2) under the constraints:

mi
∏

j=1

(

1− qj(1 − qj)i
)

≤ fp i = 1, . . . , n. (16)

To minimize mi for any given i separately under the
constraint (16) is recursively performed by minimizing
(

1− qj(1− qj)i
)

, which has the minimum at qj = 1/(i+ 1)
for all j. Now as a heuristic decision let us choose:

qmi−1+1 = qmi−1+2 · · · = qmi =
1

1 + i
. (17)

Next mi is calculated accoridng to qj by the recursive process:

m1 =
⌈

log fp
log(3/4)

⌉

(18)

and

mi = mi−1 +

⌈

log fp −
∑mi−1

j=1 log(1− qj(1− qj)i)
log(1− ii(i + 1)−i−1)

⌉

.

(19)
Using the above formulation a suboptimal solution based
on the filter construction described in Section IV can be
calculated.

V. GREEDY SEARCH FOR FINE TUNING BIT
PROBABILITIES

In this section we define a non-linear optimization problem
which seeks for the optimal values for qj .

A. Optimization Problem for Adaptive Bloom-like filters

For Adaptive Bloom-like filters of Section IV we have Eq.
(16) which has n constraint to fulfill. Let M be a constant
definately at least M ≥ mn If q1, . . . , qM are known according
to the recursive process of Eqs. (18) and (19) mi can be
evaluated for i = 0, . . . , n. Let us denote this recursive process
by mi = α(i, fp, q1, . . . , qM ). Note that, evaluating α for a
given q1, . . . , qM values can be done in linear time.

The task of the optimization process for Adaptive Bloom-
like filters is to find the q1, . . . , qM vector, for a given fp
threshold such that

min
q1,...,qm

n
∑

i=1

ci · α(i, fp, q1, . . . , qM ) (20)

is minimal. Note that, according to Eq. (20) the total cost of
a given q1, . . . , qm vector can be evaluated in O(nm).

B. Optimization Problem for Adaptive Bloom filters

Simlarly for Adaptive Bloom filters of Section III we have
Eq. (3) which defines the false positive rate. By assigning
k := d

∑M
j=1 cje we define the following n constraint to fulfill
(

1−
m
∑

i=1

(

qi
k

(

1−
qi
k

)nk
)

)k

≤ fp (21)

Similarly, according to the recursive process of Eqs. (18)
and (19) mi are evaluated for i = 0, . . . , n, and the objective
remains Eq. (20).

C. Optimization process

As an initial solution we take results of the heuristic closed
formula presented in Section IV-A. Inspired by the fast cost
evaluation method we propose simple greedy random search
to obtain a near optimal solution for q1, . . . , qM . As shown on
Algorithm 1, in each random operation we generate a random
index 1 ≤ j ≤ mn, and a random small value δ � 1, and δ is
rapidly decreasing during the search process. Next we perform
a randomly selected operation, which can be (1) qk := qk + δ
for k = 1, . . . , j, and (2) qk := qk − δ for k = 1, . . . , j, and
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Fig. 1. The value of qj for different j when the fp = 0.1 and n = 200.

(3) qk := qk + δ for k = j + 1, . . . ,M , and (4) qk := qk − δ
for k = j + 1, . . . ,M . If the modified solution has a larger
C, the last random operation is reverted. The greedy random
process is repeated until 300 consecutive random operations
cannot decrease the cost of the solution C. See also Fig. 1
for the qj values for the heuristic closed formula and after
optimization with objectives of the two cost functions defined
in Sections V-A and V-B.

Algorithm 1: Optimize q1, . . . , qM
Set qj according to the recursive approach in Sec. V.;
δ = 0.1; t = 0; Cb = ∞;
while δ > 0.0001 do

k = rand(mn) a random index;
switch rand(4) do

case 1 for k = 0, . . . , jj do qk = qk + δ;
case 2 for k = 0, . . . , jj do qk = qk − δ;
case 3 for k = jj + 1, . . . ,M do qk = qk + δ;
case 4 for k = jj + 1, . . . ,M do qk = qk − δ;

end
Evaluate cost C;
if C ≥ Cb then where Cb is the best save solution

revert the values of q1, . . . , qM ;
t = t+ 1;

else
Cb = C; t = 0;

end
if t > 300 then δ = δ/10; t = 0;

end
return q1, . . . , qM ;

D. Evaluation

Five methods have been implemented for evaluation. The
three methods proposed in the paper are the recursive heuristic
formula presented in Section IV-A, the optimization of Section
V-A, and the optimization of Section V-B. Besides two more
methods the Incremental Bloom filter presented in [5] and
the Scalable Bloom filter of [6]. Fig. 2 shows the values
of mi for i = 1, . . . , n obtained by the five methods. Both
Incremental and Scalable Bloom filters add large blocks to
the filters, which is indicated by large steps in the increase
of storage requirement for membership testing. At the same
time all Adaptive Bloom filters provide a smooth increase in
the size of storage space as the number of elements in the
filter grows, which saves an average of 40%. The averages are
shown on Fig. 3 for different false positive values calculated
in the homogeneous setting ci = 1/n (see equation (2)).
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The performance of the Adaptive Bloom filters after the
optimization of Section V-B outperform all the counterparts for
every false positive threshold investigated. In our experience
the optimization process of Section V can save up to 50%
of the storage space for membership testing compared to the
recursive heuristic solution.
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VI. CONCLUSIONS

Our paper extends the palette of in-packet Bloom filters by
introducing a concept called Adaptive Bloom filter. As a main
feature it can reduce the storage size required for membership
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testing compared to alternative scalable Bloom filter designs.
This property is particularly important for implementing state-
less multicast addressing in future Internet proposals, as the
filter is placed in the header of each packet. Non-uniform hash
functions lie in the heart of the novel filter achieving a desired
distribution of the information coded by the bits set. For simple
evaluation purposes a heuristic recursive closed formula is
given along with an optimization approach for finding near
optimal parameter settings. The numerical results support that
an average of 40% save is achieved by the Adaptive Bloom
filter in the membership testing storage requirement against its
counterparts.
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