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Abstract—A novel distributed compressed wideband sensing
scheme for Cognitive Radio Sensor Networks (CRSN) is proposed
in this paper. Taking advantage of the distributive nature of
CRSN, the proposed scheme deploys only one single narrowband
sampler with ultra-low sampling rate at each nodes to accomplish
the wideband spectrum sensing. First, the practical structure
of the compressed sampler at each node is described in detail.
Second, we show how the Fusion Center (FC) exploits the
sampled signals with their spectrum randomly-aliased to detect
the global wideband spectrum activity. Finally, the proposed
scheme is validated through extensive simulations, which shows
that it is particularly suitable for CRSN.

I. INTRODUCTION

Many advanced sensor network applications require that
the sensed information are delivered in the form of broad-
band multimedia by resource-constrained sensor nodes, or
need the sensor nodes to be survivable in highly dynamic
spectrum environments. This is hard to achieve in traditional
wireless sensor networks (WSN), since they usually compete
for limited available bandwidth on fixed unlicensed bands. A
promising sensor networking solution for these applications is
the newly introduced paradigm of Cognitive Radio Sensor Net-
works (CRSN) [?], which incorporates cognitive radio (CR)
capability into the traditional WSN. Without causing harmful
interference to the primary user (PU) systems, CRSN can
provide dynamic spectrum access and the bandwidth as high
as possible to meet the application-specific QoS requirement.

According to the NSF Spectrum Occupancy Measurements
[?], the spectrum occupation pattern is sparse. Exploiting this
sparse prior, several compressed wideband sensing schemes
are developed based on the literatures of compressed sensing
(CS) [?]. Tian developed a distributed compressed spectrum
sensing approach for wideband CR networks [?]. Her scheme
can achieve high-performance at low sampling rate below the
Nyquist rate. Several other works [?]-[?] have also studied the
application of CS on wideband spectrum sensing. However, to
the best of our knowledge, their emphasis is not on the specific
sampling methods, i.e. little information is provided about
the structure of the sampler and their feasibility in practical
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implementation. Moreover, their sampling rate for individual
CR should exceed the sum of the active bandwidth, which is
still too high for the energy-constrained CRSN nodes.

In this paper, we propose a novel distributed compressed
wideband sensing scheme for CRSN. The main contributions
of this paper are two-fold. First, we propose practical wide-
band sampling structure in fine detail. Second, the required
sampling rate in our scheme is equivalent to the bandwidth
of a single subband, much lower than existing schemes. Our
sampling structure is similar to the Sub-Nyquist sampler pro-
posed recently by Mishali and Eldar - the modulated wideband
converter (MWC) [?]. The major difference is that we only
deploy one sampling channel in a single CRSN node, and each
node randomly mixes the signals of all subbands by spectrum
aliasing. This simple structure is extremely convenient for
implementation in the resource-constrained CRSN, due to its
low hardware cost and power consumption.

The rest of this paper is organized as follows. In Section II,
we establish basic models for the PU signal and the CRSN,
and formulate our target problem. In Section III, we introduced
the distributed compressed wideband sensing scheme in detail.
Then, extensive simulation results are presented in Section IV
to further validate our proposed algorithm. Finally, the whole
paper is concluded in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the radio environment to be an ultra-wide
frequency band where different PU systems and large numbers
of CRSN nodes coexist.

A. Primary User Signal

The entire W wide spectrum is centered at zero and can be
divided into L non-overlapping subbands of equal bandwidth
B, thus W = L · B. We assume there are J PUs occupying
some of the subbands. According to [?], the PU signal is sparse
within the range of the whole spectrum. Therefore, we can
safely assume that J is much smaller than L. Note that we
will take this assumption as our basic prerequisite throughout
this paper.

We assume real-valued continuous-time wideband signal of
the primary users to be x (t), which is band-limited within(
−W

2 , W
2

)
and its Fourier transform can be defined by

X (f) =

∫ +∞

−∞
x (t)e−j2πftdt (1)
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As mentioned above, the frequency domain is zero centered
and divided into L subbands of equal bandwidth B, X (f) can
be re-written as

X (f) =

+L0∑
l=−L0

Xl (f) (2)

where L = 2L0 + 1 and

Xl (f) =

{
X (f) , f ∈

((
l − 1

2

)
B,
(
l + 1

2

)
B
)

0, otherwise
is the

signal in the lth subband of the wideband spectrum. Thus,
we can represent the primary signal using a vector X (f) =[
XL0

(f) , · · · , X0 (f) , · · · , X−L0
(f)
]T

. Since x (t) is real-
valued continuous-time signal, the real part of Fourier trans-
form X (f) is an even function, and the imaginary part is an
odd function. Then, obviously |Xl (f)| = |X−l (f)|.

B. Secondary User System: CRSN nodes and Fusion Center

The Secondary User (SU) system is comprised of CRSN
nodes and Fusion Centers. The spatially distributed CRSN
nodes can be wireless terminals such as webcams, cellphones
and laptops. Their application-specific QoS requires that these
CRSN nodes deliver event features reliably and timely in the
form of multimedia, resulting in high bandwidth demands.
Therefore, our objective is to design a resource-efficient wide-
band spectrum sensing scheme for the CRSN.
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Fig. 1. An overview of the considered system model.

As shown in Fig.??, CRSN nodes located in a restricted
locality form a cluster. All nodes in one cluster sense the wide
band cooperatively. There is a Fusion Center (FC) in each
cluster, which is a special kind of node equipped with more
or renewable power sources. As a result, FC have additional
computation capability and longer transmission ranges. Since
all the CRSN nodes in a cluster are close to each other,
we assume that a common control channel can be found to
exchange spectrum sensing information.

Suppose that there are K CRSN nodes engaged in the
wideband spectrum sensing task. Because these K nodes are
close to each other, the PU activities in their ambient radio
environment are assumed to be identical. However, due to
different channel fadings, the received primary signal can be

different at each CRSN nodes. During the sensing interval,
the primary signal received by the kth CRSN nodes can be
expressed by

Xk (f) = X (f)Hk (f) +W k (f) (3)

Using Hk (f) =
[
Hk

L0
(f) , · · · ,Hk

0
(f) , · · · ,Hk

−L0
(f)
]T

and Wk (f) =
[
W k

L0
(f) , · · · ,W k

0
(f) , · · · ,W k

−L0
(f)
]T

to
represent channel fading and noise of all subbands, we can
rewrite (3) in the matrix form

Xk (f) = diag
(
Hk (f)

)
X (f) +Wk (f) (4)

III. DISTRIBUTED COMPRESSED WIDEBAND SPECTRUM
SENSING SCHEME

In this section, we propose a cooperative spectrum sensing
scheme that can effectively distribute the sensing task to many
CRSN nodes and relieve the sensing and processing burden
on a single node. We first describe the compressed aliasing
sampling scheme originated from the Modulated Wideband
Converter (MWC), then explain the fusion strategy and corre-
sponding recovering algorithm.
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Fig. 2. Distributed Compressed Wideband Sensing Scheme.

As shown in Fig.2, our proposed sensing scheme comprises
two steps.

Step 1: K CRSN nodes sample the wideband independently
at ultra-low rate equivalent to the bandwidth of a single
subband, then report the aliased spectrum information to the
FC.

Step 2: After receiving all the aliased spectrum information
from the K CRSN nodes, the the FC performs compressed
sensing recovery algorithm, and broadcast the sensing result
to all the CRSN nodes within the cluster.

A. Distributed Sampling based on Spectrum Aliasing

The sampling method is similar to the Modulated Wideband
Converter(MWC) [?][?]. The difference is that we only deploy
one channel of the MWC system in a single CRSN node. The
sampling structure in the kth CRSN node is shown in Fig.3.

According to Fig.3, after the primary signal xk(t) arrives
at the kth CRSN node, it is multiplied by a high frequency
mixing function pk(t). pk(t) is a Ts-length periodic spread-
spectrum mixing function which aims to alias the spectrum
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Fig. 3. Compressed sampling structure based on aliasing for a CRSN node.

and thus obtain a mixture of signals from all the subbands.

pk(t) = αkm,m
Ts

M
≤ t ≤ (m+ 1)

Ts

M
, 0 ≤ m ≤ M − 1 (5)

where αkm ∈ {+1,−1}, and pk(t) = pk(t + nTs) for every
n ∈ Z. In practice, pk(t) is characterized by pseudorandom
sequences generated by certain seeds known at the FC. There-
fore, the aliasing pattern of the spectrum is known at the FC.

Then, the mixed analog spectrum signal goes through a
Low-Pass Filter (LPF) with cutoff frequency 1/2Ts and the
filtered signal is sampled at rate fs = 1/Ts. For convenient
spectrum access, we choose fs to be equal to B, so low that
existing A/D converters are competent for the task.

We perform discrete-time Fourier transform (DTFT) on the
sampled data, in order to obtain the frequency domain form
of the mixed spectrum. According to [?],

Y k(ej2πfTs) =

+L0∑
l=−L0

ckl X
k(f − lB) (6)

where f ∈ Fs = [−B/2,+B/2], L0 =
⌈
W−B
2B

⌉
, and

ckl = B
∫ 1/B

0
pk(t)e−j 2π

Ts
ltdt is the Fourier coefficient of

pk(t). After a closer examination, we can easily find that (6)
is a weighted sum of the spectrum of all subbands, and can
be rewritten in the matrix form:

Y k (f) = ck
(
diag

(
Hk (f)

)
X (f) +Wk (f)

)
(7)

where ck =
[
ckL0

, · · · , ck−L0

]
.

At last, we calculate the average level of the band-limited
spectrum mixture, and transmit this aliased spectrum informa-
tion to the FC through the control channel.

Y k ≡ Ȳ k(f) =

+B/2∫
−B/2

∣∣Y k(f)
∣∣ df (8)

B. Fusion Strategy and Recovering Algorithm

K CRSN nodes engage in the spectrum sensing task and
report their spectrum mixture value to the fusion center, all
the reported value can compose a K-length vector Y =[
Y 1, · · · , Y K

]T
Here, we further use the assumption that all the K CRSN

nodes and the FC are close to each other and their channel
fadings are approximately the same, i.e. H1 (f) = · · · =
Hk (f) = H (f). It can be estimated at the FC and broadcasted
to all the CRSN nodes.

The K-length vector collected from K distributed CRSN
nodes to the FC can be expressed as

Y =
+B/2∫
−B/2

|C (diag (H (f))X (f) +W (f))| df

=
+B/2∫
−B/2

|A (f)X (f) +W′ (f)| df
(9)

where C is the Fourier coefficient matrix of mixing functions
p (t), A (f) is a K × L measurement matrix, Akl (f) =
ckl Hl (f) and W′ (f) is also a noise vector.

Assuming that the channel fading are also almost flat

within a single subband, i.e. Hl ≡ H̄l(f) =
+B/2∫
−B/2

|Hl(f)| df ,

equation (9) can be rewritten as

Y = AX+W′ (10)

where Akl = ckl Hl, and we denote X =
+B/2∫
−B/2

|X (f)| df ,

W′ =
+B/2∫
−B/2

|W′ (f)| df to be the average level of the primary

signal and noise, respectively.
Based on the analysis in [?], A can be expressed as (11)

(on the top of next page), where θ = e−j 2π
L and

dl =
1

Ts

∫ Ts
L

0

e−j 2π
Ts

ltdt =

{
1
L l = 0

1−θl

j2πl l ̸= 0
(12)

Considering (10), where X is is an unknown sparse vector
of dimension L, Y is the measured vector of dimension K, and
A is the known random measurement matrix of size K ×L .
Our final goal is to recover the original primary signal X from
the measured compressed vector Y and determine the idle
subbands for opportunistic spectrum access. This is exactly
the compressed sensing (CS) problem [?] since K << L.

It is proved that a random sign matrix, whose entries are
drawn independently from ±1 with equal probability, has the
RIP of order S if K ≥ C · S log (L/S) [?][?], where C is a
positive constant. Also, any fixed unitary row transformation
of a random sign matrix has the same RIP [?]. From (12),
we can see SK×L is a random sign matrix, this implies that
AK×L also has RIP and (10) can be solved using existing CS
recovery methods.

In this paper, we employ the basis pursuit (BP), a con-
vex programming method that can solve CS problems in
polynomial-time. We choose BP for the following two reasons.
First, the sparsity level of the input signal is known in other
OMP [?] related CS recovery algorithm. However, in our
scenario, the sparsity level means the number of the active
subbands and can not be estimated beforehand. Second, the
BP algorithm has robust performance in the noisy scenario.

We first estimate global spectrum vector X̂ through l1
minimization based noisy BP algorithm:

min
∥∥∥X̂∥∥∥

l1
subject to

∥∥∥AX̂−Y
∥∥∥
l2
≤ σ2

W (13)
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AK×L =

 α1,0 . . . α1,L−1

...
. . .

...
αK,0 · · · αK,L−1


 θL0·0 . . . θ−L0·0

...
. . .

...
θL0·(L−1) · · · θ−L0·(L−1)


 dL0 . . . 0

...
. . .

...
0 · · · d−L0


 HL0 . . . 0

...
. . .

...
0 · · · H−L0


= SK×L × FL×L ×DL×L ×HL×L

(11)

where σ2
W is the variance of the Gaussian noise W ′.

And then define a decision vector d̂ of the PU activity state
by comparing the lth subband estimation X̂l with a decision
threshold λ:

d̂ =
[
d̂L0 , · · · , d̂l, · · · d̂−L0

]
(14)

where d̂l =

{
0, X̂l < λ

1, X̂l > λ
The decision vector serves as our compressed wideband

spectrum sensing result. After this decision vector is obtained
at FC, this final result is broadcasted to all the CRSN nodes
within the cluster. The CRSN nodes then access the spectrum
according to this sensing result.

IV. PERFORMANCE EVALUATION

To evaluate the accuracy of our proposed compressed sens-
ing recovery algorithm, we define the normalized root mean-
square estimation error (MSE):

MSE = E


∥∥∥X̂−X

∥∥∥
l2

∥X∥l2

 (15)

Just like any cognitive radio network, we choose the proba-
bility of detection Pd and the probability of false alarms Pf as
our wideband sensing performance metrics. In the multi-band
scenario, they can be expressed as

Pd = E

(
Num

l=L0,...,−L0
(dl=1 and d̂l=1)

Num
l=L0,...,−L0

(dl=1)

)

Pf = E

(
Num

l=L0,...,−L0
(dl=0 and d̂l=1)

Num
l=L0,...,−L0

(dl=0)

) (16)

where dl =

{
0, the lth subband is idle
1, the lth subband is busy

represents the

PU activity pattern on the spectrum.
In the following experiments, we set the system parameters

to be an ultra-wideband regime. For all scenarios, we set
the total bandwidth of the spectrum W to be 6GHz, and it
is equally divided into 201 subbands of bandwidth 30MHz.
Among them, 30 subbands are occupied by PUs. Note that
the spectrum is symmetric to the zero point, there are J = 15
independent active PUs, half the number of the occupied
subbands. The PU occupation ratio is 15%.

1) Comparison of Sampling Rate:
In Table I, we compare the sampling rate between our

scheme and existing ones. Here, we explain how our scheme

achieves same or better performance. In our setting, for
Nyquist Sampling, the sampling rate should be twice of the
one-sided bandwidth, which is 6GHz. For existing compressed
spectrum sensing schemes [?]-[?], each node first obtains local
sensing result. Thus, the dimension of the local measured
vector should be about 4× the sparsity level to achieve exact
recovery. This is the four-to-one practical rule well known to
many CS researchers [?]. As a result, the sampling rate should
be four times of the occupied bandwidth, which is 3.6GHz in
our setting.

We should point out that although the required sampling rate
decreased a lot with previous compressed spectrum sensing
methods, it is still too high for the resource-constraint CRSN
in the ultra-wideband regime. The novel idea of our scheme
is to find a distributive compressed sampling structure, and
further reduce the individual sampling rate. In our scheme, we
effectively distribute the sensing load evenly to each CRSN
nodes by splitting the compressed sampling process, and
acquire the sensing result at the FC. Our individual sampling
rate is fs and the sum sampling rate for a cluster is K × fs.
With the same CS recovery algorithm, the performance is
mainly influenced by the sum sampling rate. In other words,
the performance remains unchanged as long as K × fs is a
constant. The decrease in fs will result in the increase of
K, and vice versa. We can allocate individual sampling rates
that the sum sampling rate of all CRSN nodes reaches four
times of the occupied bandwidth. When K × fs = 3.6GHz,
our scheme can achieve equivalent performance to existing
compressed spectrum sensing schemes. For convenience of
spectrum access, we choose the local sampling rate to be equal
to the bandwidth of SU subband, i.e. fs = B = 30MHz. As
more CRSN nodes engage in the sensing task, more robust
performance can be achieved.

For all the following Monte Carlo experiments, we repeat
a hundred thousand times to compute the target value.

2) Performance of Compressed Sensing
In the first experiment, we examine the effect of measure-

ment noise and K on the recovery accuracy in terms of MSE.
As shown in Fig.4, we adjust the K from 25 to 50, and
find that the MSE drops as K increases. It shows that, if
too few measurements are collected, the performance of the
compressed sensing algorithm will deteriorate.

3) Performance of Distributed Wideband Sensing
In the second experiment, we evaluate the performance of

distributed wideband sensing in terms of Pd and Pf versus
the number of engaged CRSN nodes K. We adjust K from
25 to 50, and find that Pd increases quickly, while Pf drops.

16



TABLE I
A COMPARISON OF SAMPLING RATE REQUIRED BY DIFFERENT SCHEMES

System Parameters
Total Bandwidth 6 GHz

Subband Bandwidth 30 MHz
Occupied Bandwidth 900 MHz

Total Subbands 201
Occupied Subbands 30
Occupation Ratio 15%

Comparison of Sampling Rate at Individual Node
Conventional Nyquist Sampling 6 GHz

Existing Compressed Spectrum Sensing 3.6 GHz
Distributed Compressed Wideband Sensing 30 MHz
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Fig. 4. MSE of compressed sensing vs K.

This implies that as more CRSN nodes engaged in the sensing
task, the detecting performance of the cluster improves. The
numerical results are shown in Fig.5.
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Fig. 5. Probability of detection and false alarm vs K.

We also computed the Receiver Operating Characteristic
(ROC) curve under different K. As shown in Fig.6, the closer
the curve is to the upper left corner, the better the performance
is. The four curves represent the cases when CRSN nodes
numbers are 25, 30, 40 and 60. The performance improves as

the engaging CRSN nodes number K grows. Interestingly, we
observe that as K outnumbers J by four times, the detector’s
performance is nearly optimal.
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Fig. 6. ROC curve of the proposed detector.

V. CONCLUSION

In this paper, we proposed a distributed compressed wide-
band sensing scheme for the resource-constrained Cognitive
Radio Sensor Networks (CRSN). First, we described the
considered scenario by modeling the primary user signal
and the clustered CRSN structure. Second, we provided a
specific and practical structure for the sampler, which has very
low sampling rate at individual node. Then, we introduced
the sensing information fusion scheme, and described the
compressed sensing recovery algorithm at the fusion center.
Finally, we carried out several numerical simulations to vali-
date our proposed scheme.
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