
A Novel Data Streaming Method Detecting
Superpoints

Weijiang Liu∗†, Wenyu Qu†, Gong Jian‡ and Li Keqiu ∗
∗School of Electronic and Information Engineering, Dalian University of Technology, Dalian , China

†School of Information Science and Technology, Dalian Maritime University, Dalian, China
‡School of Computer Science and Engineering, Southeast University , Nanjing , China

Email: wjliu@dlmu.edu.cn, eunice.qu@gmail.com, jgong@njnet.edu.cn, likeqiu@gmail.com

Abstract—Internet attacks such as distributed denial-of-service
(DDoS) attacks and worm attacks are increasing in severity.
Identifying realtime attack and mitigation of Internet traffic is an
important and challenging problem for network administrators.
A compromised host doing fast scanning for worm propagation
can make a very high number of connections to distinct desti-
nations within a short time. We call such a host a superpoint,
which is the source that connect to a large number of distinct
destinations. Detecting superpoints can be utilized for traffic
engineering and anomaly detection. We propose a novel data
streaming method for detecting superpoints and prove guarantees
on their accuracy and memory requirements. The core of this
method is a novel data structure called Vector Bloom Filter
(VBF). A VBF is a variant of standard Bloom Filter (BF). The
VBF consists of 6 hash functions, 4 hash functions of which
projectively select some consecutive bits from original strings as
function values. We obtain the information of superpoints using
the overlapping of hash bit strings of the VBF. The theoretical
analysis and experiment results show that our schemes can
precisely and efficiently detect superpoints.

I. INTRODUCTION

With the rapid growth of Internet, network security has
become one of the major challenges of communication net-
working. Security breaches come in many forms, such as
distributed denial-of-service (DDoS) attacks and worm attacks.
The approach typically taken to manage those breaches has
been to accept the loss when it occurs, and in parallel to
develop and deploy methods to reduce the likelihood of loss.
Network security monitoring is a kind of approach that defend
against and mitigate such large-scale Internet attacks. Firewalls
and intrusion detection/prevention systems (IDS/IPS) are the
cornerstone of a networks security infrastructure [1].

Recently, worms on the Internet have become a pressing
issue following a series of events (such as Slammer, Blaster
and Nachi). A compromised host can send packets to unusually
high number of distinct destinations for worm propagation in a
short time interval. The Slammer worm caused some infected
hosts to send up to 30,000 scans a second [2]. We call such
a host a superpoint. To mitigate worm spreading, a network
monitoring point need quickly identify superpoints and take
appropriate action. To control the consumption of resources in
measurement, we propose a data streaming method to identify
superpoints without maintaining the identifier information of
source node.

Our data structure is a variant of Bloom Filters, consisting of

5 n×m 2-dimentional bit arrays and 6 hash functions. There is
the similar data structure in [3], but we develop a new method
that constructs host information, identify superpoints and esti-
mate cardinality of superpoints. For each packet coming, 5 bits
selected in the bit arrays are set to one. The row indexes for
these 5 bits are calculated by the 5 hash functions with inputs
as source IP address, and the column indexes are obtained by
the same hash function with the input as flow label. Four hash
functions of the five hash functions are used to reconstruct the
host address–the identifier of superpoint, the other one filters
the candidate of superpoint out. The theoretical analysis and
experiment results show that our schemes can precisely and
efficiently detect superpoints.

Note that we cannot detect a malicious host that spoofs IP
addresses and contacts many destinations since VBF relies on
the soure IP address field. Some IP traceback systems provide
a means to find the real attack sources [4],[5].

The main contributions of our work include:
• We design four hash functions, each of which maps a

superpoint ID into the part bit strings of the ID. This is the
key to reconstruct host address (superpoint id).

• We give the method for reconstructing the information of
superpoints. Although the VBF do not preserve any host ad-
dress information, we can reconstruct the address information
of host using the overlapping of hash bit strings of the VBF.

• We introduce bitwise-and in estimating the cardinality
of superpoints. Using bitwise-and requires less bit operating
number than using bitwise-or. Furthermore, the estimate is
more steady.

The rest of this paper is organized as follows. In the
next section, we present a brief look at related work with a
discussion about the context of our work. In Section III, we
review some elementary concepts on superpoints and counting
Bloom filter. In Section IV, we propose our data streaming
model that describes how to construct an VBF and identify
superpoints. Furthermore, we present the analysis of VBF
performance. In Section V, we evaluate their performance
by using some public traces to experiment. We conclude in
Section VI.

II. RELATED WORK

This problem of detecting superpoints has been studied in
recent years. Snort [6] and Flowscan [7] maintaining per-

The First International Workshop on Security in Computers, Networking and Communications

978-1-4244-9920-5/11/$26.00 ©2011 IEEE 1059

flow state require large quantities of DRAM for operation,
so they are unfeasible for monitoring on high speed links.
Venkataraman [8] proposes two flow sampling techniques
for detecting superspreaders. But its accuracy is limited by
sampling rate. Qi Zhao [3] proposes two algorithms to solve
the problems using data streaming algorithm and sampling
technology. But his paper focused on estimating the number
of flows in source or destination IP, and didn’t give a method
to keep the source/destination IP records. Noriaki [9] proposes
an adaptive method of identifying super points by flow sam-
pling, and Guang Cheng [10] proposes an algorithm based
on adaptive sampling. Their common feature is constructing
hash link list for storing the information of hosts (IP) sampled
in memory. The number of memory accesses is drastically
determined by the list length. The maximum list length will
become a bottleneck on high speed links. Authors in [11]
uses the remainder theorem to reconstruct host addresses,
but computational time of large prime is not ignorable. Jin
cao et al in [12] proposes an online sampling approach
for identifying high cardinality host. Estimation accuracy is
subject to sampling rate.

III. SOME ELEMENTARY CONCEPTS

A. Definition of superpoints

There are at least a few definitions for the term flow
depending on the context of research. In this study, we employ
the one adopted from [13] which stems from the packet train
model by Jain and Routhier [14].

Definition 1. A flow is defined as a stream of packets subject
to flow specification and timeout.

In most cases, we call flow specification as flow identifier.
When a packet arrives, the specific rules of flow specification
determine which active flow this packet belongs to, or if no
active flow is found that matches the description of this packet,
a new flow is created. In our experiments, a flow is a stream
of packets subject to timeout and having the same source and
destination IP addresses.

Definition 2. For a measurement period Φ and an arbitrary
given threshold m∗, a superpoint is a source (destination) that
connects to at least m∗ distinct destinations (sources) within
a measurement period Φ.

There are two kinds of superpoint: one is a host that
connects to a larger number of distinct destinations (i.e.
superspreader in [8], super source), the other is a host that
is contacted by a large number of sources (super destination).
Finding super destination is the dual of finding super source.
Without loss of generality, we only describe our algorithm for
identifying super source. The algorithm can be easily applied
to find super destination by replacing source IP by destination
IP. In this paper, all IP address are 32-bit, i.e., IPV4 address. IP
address is the inherent identifier of a superpoint. In general,
we define a superpoint as a host that contributes more than
ϵ% of all flows. In this paper, we select ϵ=0.1 in experiment
respectively.

TABLE I
THE HASH FUNCTIONS OF THE VBF

function name output

h1 first byte, high 4 bits of second byte of SIP
h2 second byte, high 4 bits of third byte of SIP
h3 third byte, high 4 bits of fourth byte of SIP
h4 fourth byte, high 4 bits of first byte of SIP
h5 generate uniform output of 12 bits string
f generate uniform output over {0, . . . ,m− 1}

B. Bloom Filter

A standard bloom filter (BF) for representing a set S =
{x1, x2, . . . , xn} of n elements is described by an array of
m bits, initially all set to 0. A BF uses k independent hash
functions h1, . . . , hk with range {1, . . . ,m}. For each element
x ∈ S, the bits hi(x) are set to 1 for 1 ≤ i ≤ k. A location
can be set to 1 multiple times, but only the first change has
an effect. To check if an item y is in S, we check whether all
hi(y) are set to 1. If not, then clearly y is not a member of S.
If all hi(y) are set to 1, we assume that y is in S, although
we are wrong with some probability. Hence a BF may yield
a false positive, where it suggests that an element y is in S
even though it is not.

IV. DATA STREAMING MODEL

In this section we present a model for detecting superpoints.
We begin with a discussion of constructing a Vector Bloom
Filter (VBF), and then describe how use VBF to detect
superpoints. We also analyze the complexity and accuracy of
the model.

A. Hash functions of a VBF

A vector bloom filter (VBF) is a variant of bloom filter
which consists of k + l + 1 hash functions. The first k hash
functions which projectively select some consecutive bits from
original strings as function values, are used to reconstruct host
addresses. The middle l hash functions which can ensure the
sources hashed into value range uniformly, are used to filter
some host candidates out. The last functions is used to generate
column index of bit for all flows insert. The vector means that
each entry in VBF is not a single bit but instead a bit vector.
Instead of having one array of size n shared by the k+ l hash
functions, each hash function has a range of n consecutive
vector locations disjoint from all others. In this work, k is set
to 4, and l is set to 1. The meaning of these hash functions is
showed in Table I.

Let IP address A = s1s2s3s4s5s6s7s8 be a superpoint
identifier, where si(1 ≤ i ≤ 8) all are 4 bits strings. An
IP address is a 32-bit string. Then

h1(A) = s1s2s3, h2(A) = s3s4s5, h3(A) = s5s6s7, and
h4(A) = s7s8s1.

Now, we introduce string functions: tail and head. For w
a string of length n bits, tail(w) chooses low 4 bits of w and
head(w) gets high 4 bits of w. For example, if w = s1s2s3s4,
then tail(w) = s4, head(w) = s1.

1060

Fig. 1. Update procedure for a VBF

Definition 3 Let H1,H2 be hash functions. If
tail(H1(B)) = head(H2(B)) for any IP identifier B,
we say that H1 is overlap-related to H2, denoted as
H1 → H2.
H1 → H2 means that the hashed values of the same original

string by H1 and H2 have the same value at the overlapping
bit positions.

Property 1. There is an overlap-relation loop in the VBF,
i.e., h1 → h2 → h3 → h4 → h1.

Property 1 can be induced from the definition of hash
functions of the VBF. It suggests the overlap relationship
between these hash functions. These relationships are the
key to reconstruct original string (IP address). The length
of overlap string is a trade-off between space efficiency and
reconstructing reliability. The longer the overlap string is, the
larger the space overhead is, but the higher the reliability is.
When all original strings are not displayed, it is a key point to
judge whether two different hash strings are mapped from the
same original string. The overlapped bits among different hash
strings deployed in this paper really benefits the judgement.
We claim that two hash values obtained by two overlay-related
hash functions are mapped from the same original string if they
have the same value at the overlapping bit positions.

B. Data structure and algorithm

The data structure used in the VBF is denoted as A =
(A1, A2, · · · , A5). Ai(1 ≤ i ≤ 5) is a 4096 × m bit array
Ai[j][k](0 ≤ j < 4096, 0 ≤ k < m) associated with
a function hi. All Ai(1 ≤ i ≤ 5) share a hash function
f : {0, 1, · · · , 232 − 1} → {0, 1, · · · ,m − 1}. When a packet
pi = (si, di)) arrives, each Ak is updated by setting the bit in
its row hk(si) and column f(si, di) as illustrated in Fig.1. The
bits in A are set to all 0s at the beginning of measurement.
The algorithm of updating A is shown in Fig.2.

Let w be a superpoint identifier, |w| denote the cardinality
of w, i.e., the number of all flows generated by w. Note that
Ai[j] is the jth row of Ai(viewed as bit vectors), let C(Ai[j])
denote the number of bits in Ai[j] that are 0s. Assume that no
other source is hashed to the same rows as w is hashed. Thus,

1. Initialize
2. Ak[j, l] = 0, k = 1, . . . , 5 j = 0, . . . , 4047

l = 0, . . . ,m− 1
3. Update
4. Upon the arrival of a packet (si, di)
5. col = f(si, di)
6. for k=1 to 5
7. row = hk(si)
8. Ak[row, col] = 1
9. endfor

Fig. 2. Algorithm of update for VBF

C(A1[h1(w)]) = C(A2[h2(w)]) = · · · = C(A5[h5(w)]), sim-
ply denoted as C(w) irrespective of arrays. A fairly accurate
estimate of |w| in [15] is

|w| = mln
m

C(w)
(1)

Property 2. max{C(Ai[hi(w)])|1 ≤ i ≤ 5} ≤
C(A1[h1(w)]&A2[h2(w)]& · · ·&A5[h5(w)]) ≤ C(w).

Property 2 is obtained from the hash collision. According
to cardinality threshold m∗, we can give a zero bit number
threshold Z∗. How to obtain Z∗ according to m∗ will be
presented in this section. Hence, by Equation (1) and Property
2, at the end of each measurement epoch, we only collect
the hash strings whose corresponding vectors contain zero bit
number less than Z∗. Denote the string collected as (u, V [u])
where u is a string of 12 bits and V (u) is bit vector Ai[u]
of row u. Thus we get five sets H1,H2,H3,H4 and H5

composed of (u, V [u]) from the five different hash spaces,
respectively.

Our algorithm for merging string is shown in Fig.3. An
algorithm for generating IP address is shown in Fig.4. Finally,
our algorithm for detecting superpoints is given in Fig.5. Note
that we use bitwise-and as the instead of bitwise-or in our
algorithm, because bitwise-and have some good features:

We rewrite Formula (4) in [3] as follows

F̂s =
∑

1≤i≤k DTi
−
∑

1≤i1<i2≤k DTi1

∪
Ti2

+
∑

1≤i1<i2<i3≤k DTi1

∪
Ti2

∪
Ti3

+ · · ·+ (−1)k−1DT1

∪
T2···Tk

(2)

where F̂s is an estimator for |T1

∩
T2

∩
· · ·

∩
Tk|. Although

the above estimator is almost unbiased, it is not a good
estimator of because computation complexity and variance.
Intersection of k sets needs almost 2k bitwise-or operations,
but logk2 operations are enough if using bitwise-and.

Consider the basic case k = 2. T1 is associated with bit
vector A1, T2 is associated with bit vector A2, and there are
m bits in each vector. Let C(A1) denote zero bit number of
A1,C(A2) denote zero bit number of A2. Assume that the case
all bits are zero or one does not happen in operation process of
bitwise-or and bitwise-and. We have the following property:

1061

Merge String(Input1,Input2,Output)
1. Output=Φ
2. for each (u, V [u]) ∈ Input1
3. for each (w, V [w]) ∈ Input2
4. if tail(u) == head(w)
5. v = merge(u,w);
6. V [v] = V [u]&V [w];// & bitwise-and operator
7. if C(V [v]) ≤ Z∗

8. adding (v, V [v]) into Output
9. endif

10. endif
11. endfor
12. endfor

Fig. 3. Algorithm for merging string

Generate IP(Input1,Input2,Output)
1. Output=Φ
2. for each (u, V [u]) ∈ Input1
3. for each (w, V [w]) ∈ Input2
4. if tail(u) == head(w) and tail(w) == head(u)
5. v = merge(u,w);
6. V [v] = V [u]&V [w];//& bitwise-and
7. if C(V [v]) ≤ Z∗

8. adding (v, V [v]) into Output
9. endif

10. endif
11. endfor
12. endfor

Fig. 4. Algorithm for generating IP

Property 3. mln m
C(Ai&A2)

≥ F̂s, where & is bitwise-and
operator.

Proof: Let C(A1) = a,C(A2) = b, and C(A1&A2) = c.
Hence, C(A1|A2) = a+ b− c, where | is bitwise-or operator.

F̂s = mln(ma) +mln(mb)−mln(m
a+b−c)

= mlnm+mln(a+b−c
ab)

but mln m
C(Ai&A2)

= mlnm −mln(c), thus mln m
C(Ai&A2)

−
F̂s = −mln(c)−mln(a+b−c

ab) = mln(ab
(a+b−c)c). Since (a−

c)(b − c) ≥ 0 ⇔ ab
(a+b−c)c ≥ 1. Therefore the property is

obtained.
For example, let m = 512, C(A1) = 112, C(A2) =

112, C(A1&A2) = 212, then C(A1|A2) = 12. We have
F̂s = −365,mln m

C(Ai&A2)
= 1922.

Although the estimator obtained by using bitwise-and is
not unbiased, it has some good features. For example, ac-
cording to property 2,3, it always is larger than the ac-
tual value and it is steady. Therefore, we manage to cor-
rect the deviation so that it may become a fair estimator.
Now, we analyze the deviation. Without considering the es-
timate deviation of Equation (1). For a superpoint w, value
C(A1[h1(w)]&A2[h2(w)]& · · ·&A5[h5(w)]) comes from two
parts: one is C(w) from w, which is determinate; the other

is dedicated by other flows except w, which is random. In
general, the first four hash functions in VBF are not perfectly
random. No random function slightly affects value because
many vectors are saturated by ones. However, hash functions
h3 and h4 can be thought as a random function in the view of
performance because they contain the active low 12 bits of IP
address. Moreover, h5 may be perfectly random. Therefore,
we think there are two random functions in the five functions.
Now, we analyze approximately. Assume there are s flows
in a measurement epoch. Averagely, each vector in a hash
space receive s

4096 flows. According to Equation (1), they will
occupy t = m(1−e−

s
4096m) bit positions in one hash space(set

1). If the corresponding bit positions of some vector in the
other hash space is occupied by another flows, the deviation
happens (note that we only think there are two hash spaces).
Averagely, the number of flow incoming into the t bit positions
is δb =

t
m ∗ s

4096 = st
4096m .

Let m∗ = mln(mx), where m∗ is the threshold. Solving the
formula, we obtain x = me−

m∗
m . So we set

Z∗ = me−
m∗
m − δb, δ = mln(

m

Z∗)−m∗. (3)

To determine Z∗ and δ, we need to estimate total flows
number. Since h5 is random, we use A5 to estimate as follows

s =
4095∑
i=0

mln(
m

C(A5[i])
) (4)

where C(A5[i]) is replaced with 1 if it is equal to 0.
Now, we use a packet trace from the MAWI working group

of the WIDE project (MAWI) [18]. We will describe the trace
in Section V in detail. The trace contains 2453203 packets
from 157020 flows. We select ϵ=0.1 for the definition of a
superpoint. Then the threshold value is 157020 ∗ 0.1% = 157.
Under this definition, we have 75 superpoints in this trace. In
our algorithm for this trace m = 512, we get:

δb = 2.53 ≈ 3, Z∗ = 374, δ = 4.

C. Complexity Analysis

The above scheme has low storage (SRAM) complexity and
allows for high speed links.

Memory (SRAM) consumption. Define Mvbf bytes as the
required memory size of VBF. We have

Mvbf = 5 ∗ 4096 ∗m/8 = 2560m

where m is the number of bit in a vector. Thus a moderate
amount of SRAM can support very high link speeds. Assume
that a flow consists of 10 packets, i.e., the average flow size
of 10 packets [16], 640KB (m = 256) SRAM is can support a
measurement epoch which is longer than 6 seconds for a link
with 10 million packets per second. However, 3MB SRAM
can support 30 seconds for OC-192. In [17] 72Mbits SRAM
is in production and available today.

Streaming speed. In our algorithm, the processing time is
determined by the Bloom filter. The calculation of the hash
values in VBF can be executed in parallel on hardware, so we

1062

Detect Superpoint
1. Merge
2. Merge String(H1,H2,H12)
3. Merge String(H12,H3,H123)
4. Generate IP(H123, H4, IP)
5. Filter
6. Output=Φ
7. for each (v, V [v]) ∈ IP
8. V [v] = V [u]&A5[h5(v)];
9. if C(V [v]) ≤ Z∗

10. adding (v, V [v]) into Output
11. endif
12. endfor
13.Estimate
14. for each (u, V [u]) ∈ Output
15. u is identified as a superpoint with cardinality
16. Cardinality(u) = mln(m

C(V [u]))− δ

17. Endfor

Fig. 5. Algorithm for detecting superpoints

can ignore the time needed to obtain hash values. Moreover,
CPU calculation time is much shorter than memory access
time, so we use the required number of memory accesses
to measure the required processing time. In parallel, VBF
requires one write to SRAM . Using less than 5ns SRAM
In [17], on an OC768 link the packet time of minimum length
(40bytes) is 8ns, so the VBF can support 40Gbps link.

V. EVALUATION AND EXPERIMENTS

In this section, we use VBF to identify superpoints of some
real traces and compare the experimental results with the
actual values of the traces. We also compare the VBF with
other algorithms.

A. Traffic trace

In order to make the experimental data representative, we
use packet header traces gathered from as different locations
of the Internet as possible. They include the MAWI Working
Group of the WIDE Project(MAWI) [18], Jiangsu provincial
network border of China Education and Research Network
(CERNET) [19], and NLANR [20]. The trace form MAWI
was collected on a trans-Pacific line (150Mbps link), on March
30, 2009 at 00:00 am. The IPv6 packets of MAWI are filtered
out in following experiments.

The CERNET were collected at Jiangsu provincial network
border of China Education and Research Network (CERNET)
on April 17, 2004. The backbone capacity is 1000Mbps; mean
traffic per day is 587 Mbps.

We also use a pair of unidirectional traces from NLANR:
IPKS0 and IPKS1, collected simultaneously on both directions
of an OC192 link on June 1, 2004. The link uses Packet-
over-SONET connecting Indianapolis (IPLS) to Kansas City
(KSCY). Table II summarizes all the traces used in the
evaluation. We will use all traces to evaluate our detecting
algorithm.

TABLE II
TRACES USED IN OUR EXPERIMENTS. NOTE THAT SOURCE IS SOURCE IP

AND FLOW LABEL IS 2-TUPLE < srcIP, dstIP >.

Trace ♯ of ♯ of ♯ of ♯ of threshold
sources flows packets superpoints (0.1%)

IPKS0 13639 52564 1453219 87 52
IPKS1 16031 41043 1453219 79 41
MAWI 47778 157020 2453203 75 157
CERNET 30281 91195 4032981 156 91

B. Evaluation metric
We use FNR and FPR to evaluate our scheme in identifying

accuracy:

FNR =
s−

s
, FPR =

s+

s

where s is the actual number of superpoints, s− is the number
of superpoints being incorrectly not identified, and s+ is the
number of non-superpoints being incorrectly identified.

We adopt the Weighted Mean Relative Difference (WMRD)
as our evaluation metric for estimated cardinality. Suppose the
number of flows of superpoint i is ni and our estimation of
this number is n̂i. The value of WMRD is given by:

WMRD =

∑
i |ni − n̂i|∑
i (

ni+n̂i

2)
.

In computing, if a non-superpoint is incorrectly identified, its
ni is zero; similarly, if a superpoint is not identified incorrectly,
its n̂i is 0.

C. Accuracy of the VBF
In this section, we evaluate the accuracy of the VBF in

estimating the cardinalities of superpoints and in detecting
superpoints. Here the VBF will be compared with the flow
sampled algorithm (Sampled) in [8], and the Bitmap algorithm
(Bitmap) in [3]. For Sampled, sample rate p is set 1/8 and the
estimated cardinality is given by scaling cardinality sampled
by 8. For Bitmap, we set the size of 2D array A to 2MB(
512rows× 16384columns). Figure 6 compares the cardinal-
ities of the superpoints estimated using three algorithms with
their actual cardinalities in traces IPKS0, IPKS1, CERNET,
and MAVI respectively, where the Xaxis is the actual car-
dinalities of the superpoints, and the Yaxis is the estimated
cardinalities of the superpoints. The diagonal line is used as a
standard line to compare the estimation performance. If a point
is nearer to the diagonal line, then the estimated cardinality
is closer to the actual value. Figure 6 shows that nearly all
points by VBF are on or closer to the diagonal line. It is
seen that in estimating cardinality VBF is much better than
Sampled and Bitmap. In Table III three methods are compared
quantitatively. For Bitmap, the bit vectors become almost full
when the cardinality value is close to 3194(mlnm). To be fair,
in Table 3, we only consider superpoints whose cardinality is
between the threshold and 3000 for Bitmap. In Table III, FNR,
FPR, and WMRD of VBF are relatively small that shows VBF
can efficiently and accurately identify the superpoints in the
traces.

1063

(a) CERNET (b)MAVI

(c) IPKS0 (d)IPKS1
Fig. 6. Comparison of Accuracy in estimating cardinalities of VBF, Sampled
and Bitmap.

TABLE III
EVALUATION METRIC BY THE THREE ALGORITHMS FOR DISTINCT TRACES

Trace Algorithms FNR FPR WMRD

VBF 0.05 0.29 0.18
IPKS0 Sampled 0.05 0.51 0.48

Bitmap 0.35 0.06 0.56

VBF 0.04 0.05 0.12
IPKS1 Sampled 0.06 0.75 0.53

Bitmap 0.27 0.03 0.86

VBF 0 0.04 0.08
MAWI Sampled 0.02 0 0.12

Bitmap 0.40 0.11 0.60

VBF 0.01 0.01 0.23
CERNET Sampled 0.08 0.20 0.23

Bitmap 0.50 0.25 1.40

VI. CONCLUSIONS

In this work, we have described how to construct a Vector
Bloom Filter (VBF) and designed the corresponding algo-
rithms to identify superpoints. The VBF can be used for
high speed links with high accuracy. Although our current
scheme only focus on detecting superpoints instead of exacting
detailed flow statistics, we believe that detecting superpoints is
an important problem in many network security and measure-
ment applications. The advantages of our schemes include:
1)No need to maintain host identity in processing. 2)The
Computation complexity of the hash functions is low that
is due to its simply selecting some consecutive bits. 3) Can
support 40Gbps links because parallel hash functions diminish
access SRAM time.The theoretical analysis shows that false
negative rate originated by hash collision is very low. The
experimental results demonstrate that our schemes can identify
superpoints precisely and efficiently.

For future work, we would like to combine flow sampling
method with VBF for enhancing scalability.

ACKNOWLEDGMENT

This work is supported in part by 973 Program of China
under Grant No.2009CB320505, National Natural Science
Foundation of China under Grant No.90818002, 60973115 and
China Postdoctoral Science Foundation funded project under
Grant No.20080430182.

REFERENCES

[1] A.El-Atawy,E.Al-Shaer,T.Tran and R.Boutaba, Adaptive early packet
filtering for protecting firewalls against DoS attacks. IEEE INFOCOM
2009, Brazil, April 2009. pp 2437-2445

[2] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver.
Inside the slammer worm. Security and Privacy Magazine. 2(4) ,pp 33-39,
2003

[3] Qi Zhao, Abhishek Kumar, and Jun Xu, Joint Data Streaming and
Sampling Techniques for Detection of Super Sources and Destinations.
IMC 2005, pp 77-90.

[4] MT.Goodrich, Probabilistic packet marking for large-scale IP traceback,
IEEE/ACM Transactions on Networking 16(1), pp 15-24(2008).

[5] Yang Xiang, Wanlei Zhou, and Minyi Guo, Flexible Deterministic Packet
Marking: An IP Traceback System to Find the Real Source of Attacks,
IEEE Transactions on Parallel and Distributed Systems, vol. 20, no. 4,
pp 567-580, Apr. 2009, doi:10.1109/TPDS.2008.132.

[6] M.Roesch. Snort-lightweight intrusion detection for network. In proc.
USENIX Systems Administration Conference, pp 228-238, 1999.

[7] D. Plonka. Flowscan: A network traffic flow reporting and visualization
tool. In USENIX LISA, pp 305-318,Dec. 2000.

[8] S. Venkataraman, D. Song, P. Gibbons, and A. Blum. New streaming
algorithms for fast detection of superspreaders. In Proc. NDSS, pp 149-
166, 2005.

[9] Noriaki Kamiyama, Tatsuya Mori, Ryoichi Kawahara: Simple and Adap-
tive Identification of Superspreaders by Flow Sampling. In:INFOCOM
2007. pp 2481-2485

[10] Guang Cheng, Jiang Gong, Wei Ding, Hua Wu and ShiQing Qiang.
Detecting superpoint algorithm based on adaptive samling,Science China
Ser E-Inf Sci, 2008, 38 (10) pp 1679-1696.

[11] Xiaohong Guan, Pinghui Wang,Tao Qin, A New Data Streaming Method
for Locating Hosts with Large connection Degree. IEEE Globecom 2009,
November 2009, pp 1-6.

[12] Jin Cao, Yu Jin, Aiyou Chen, Tian Bu. and Zhi-Li Zhang, Identifying
High Cardinality Internet Hosts,In IEEE INFOCOM 2009, pp 810-818,
April 2009.

[13] Claffy, K.C., Braun,H.W., and Polyzos, G.C.: A parameterizable method-
ology for Internet traffic flow profiling. IEEE JSAC13(1995) pp 1481-
1494.

[14] Jain,R. and Routhier, S.A.: Packet trains-measurements and a new model
for computer network traffic. IEEE JSAC 4(1986) pp 986-995.

[15] K.Y. Whang, B.T. Vander-zanden, and H.M. Taylor. A linear-time prob-
abilistic counting algorithm for database applications. ACM Transaction
on Database Systems, 15(2),pp 208-229, June 1990.

[16] A. Kumar, M. Sung, J. Xu, and J.Wang. Data streaming algorithms for
efficient and accurate estimation of flow size distribution. In Proc. ACM
SIGMETRICS, pp 177-188,2004

[17] Cypress Semiconductor Corporation, http://www.cypress.com/,
2010,Oct.

[18] WIDE, http://tracer.csl.sony.co.jp/mawi/samplepoint-
F/20090330/200903300000.html, 2010,Oct.

[19] JSLAB, http://ntds.njnet.edu.cn/data/index.php,2010,Oct.
[20] NLANR, ftp://wits.cs.waikato.ac.nz/pma/long/ipls/3/,2010,Oct.

1064

