
A Traffic-aware Top-N Firewall Approximation

Algorithm

Ho-Yu Lam, Donghan Wang, H. Jonathan Chao

Department of Electrical and Computer Engineering

Polytechnic Institute of New York University, Brooklyn, NY

Abstract—Packet classification is widely used in various net-
work security and operation applications. Two of the main
challenges are the increasing number of classification rules,
amount of traffic and network line speed. In this paper, we
investigate an approximation algorithm for selecting the top-
N most frequently matched subset of rules from the original
ruleset. The goal is to obtain Top-N rules that covers as much
traffic as possible while preserving the dependency relationships.
Through simulations, we show that our approaches the optimal
while runs in seconds, allowing online adaptation to changing
traffic patterns.

I. INTRODUCTION

As one of the critical network security components, firewall

is deployed in virtually all operational networks. A firewall is

typically deployed at strategic points of the network such that

it will inspect most if not all of the traffic. It is crucial to

maintain high classification throughput.

There is extensive research on enhancing the performance of

individual firewall [1] and ruleset optimization [2]–[7]. How-

ever, in addition to the performance limitation of individual

firewalls, the common practice of perimeter-based deployment

is starting to affect the efficiency and scalability of emerging

data center networks.

In a data center network, Firewalls are often deployed

between the layer 3 (e.g. Internet Protocol) core network and

the layer 2 (e.g. Ethernet) access layer. Virtual Local Area

Network (VLAN) are widely used to partition the network

different security domains such that traffic between domains

traverses the Firewalls. While this works well on enforcing

security policies, it is inefficient as server-to-server traffic

traverse a much longer path than necessary consuming network

bandwidth. The communication also has higher latency.

Proposals for next generation enterprise networks and data

center networks [8]–[11] advocate distributed enforcement of

security policies. Observing that in a data center network,

virtually all switches are managed switches that are capable

of doing packet classifications very efficiently for a limited

number rules, one can make use of these capability to realize

distributed sub-rulesets enforcement (caching) without the

need of massively deploying full featured firewalls. A few

catch-all firewalls can be used for misses to ensure all the

rules are covered.

A prerequisite for a scalable and cost-efficient distributed

enforcement is the availability of an efficient and correct sub-

ruleset selection algorithm. Here we would like to highlight

two observations: (i) Some rules in a ruleset are matched

to a larger portion of traffic (i.e. higher hit-rate) than the

others [12], [13]; (ii) The rules that are most relevant to a

particular network location in the network are related to the

traffic pattern, which changes from time to time and differs

from location to location. In this paper, we explore the idea of

dynamically selecting a subset of N rules (Top-N) with the

highest hit-rates based on traffic pattern.

Such a selection algorithm has the following requirements:

R1: Accepts rulesets with dependencies; R2: Suitable for

online computation; R3: Imposes only light burden on traffic

monitoring; and R4: Dynamically adapts to traffic changes.

Our main goal in this paper is to develop an online algorithm

for obtaining a Top-N subset of rules that satisfies the above

requirements. Optimally dynamic reordering of rules with

dependencies have been shown to be NP-Complete [6], [12].

Section II reviews related work in the literature. Section III

elaborates on the background of the problem and a formal defi-

nition. Section IV details our algorithm and Section V presents

simulation results. We conclude our paper in Section VI.

II. RELATED WORK

There is a rich literature in packet classification algorithms

and data structures such as HiCut, HyperCut, Shunting, etc.

to name a few [1], [7], [14]–[17]. While they greatly advance

the classification speed of a firewall, it is generally true that a

smaller (sub-)ruleset is desirable. It lowers storage requirement

and memory footprint of a data structure, allows high-speed

on-chip memory to be used, reduces the size and power

consumption of some hardware components such as TCAM,

etc.

Another direction of research aims at optimizing ruleset for

smaller sizes [2]–[5]. While these optimization can be very

useful for individual firewalls, they do not allow efficient sub-

ruleset selection.

Traffic-aware firewall optimization and reordering [6], [7],

[12] all face the challenge of dependencies among rules.

A common tactic in solving the dependencies is to pre-

process the originally ruleset to obtain a totally disjoint ruleset

(one that has no rule overlapping with each other in their

matching space) and then merge the rules after the proposed

optimization. While this approach satisfies R1, the resulting

disjoint ruleset will be so big that it will either burden

traffic monitoring by requiring hit-counts on a large number

of rules (fails R3) or it can only partially satisfy R4 by

The First International Workshop on Security in Computers, Networking and Communications

978-1-4244-9920-5/11/$26.00 ©2011 IEEE 1053

adapting to historically measured traffic patterns through off-

line computation (fails R2).

Yan et al. [18] proposed to optimize rule distribution among

distributed firewalls. They first distribute rules to distributed

firewalls and then optimize the rules in those firewalls. Their

aim is to reduce the highest normalized workload among all

firewalls. However, the algorithm is not suitable for online

computation (fails R2 and R4).

Fu and Zhang [19] presented an online adaptive firewall

allocation scheme that dynamically load-balances firewall

workloads among a farm of firewalls. The number of firewalls

is dynamically adjusted according to the current load. While

this is an online algorithm, the firewalls are centralized in

a firewall farm location with all firewall configured with an

identical set of global rules.

III. PROBLEM OVERVIEW

A firewall rule specifies a matching space in the 5-tuple

of source and destination IP addresses, source and destination

ports and the protocol and is associated with an action. Three

of the simplest actions commonly used in firewall are Allow,

Deny and Drop.

The set of rules (ruleset) used in a firewall is specified

as a sequence of rules. The matching spaces of rules can

overlap with each other. When different actions exist among

overlapping rules, there are conflicts among the rules. Rules

earlier in the sequence have precedence over the later rules.

To provide traffic-aware optimization one will need to

reorder the rules according to their hit-rates. However, re-

ordering rules that conflict with each other changes the action

assigned to packets that fall within the overlapping matching

space. When a lower priority rule r2 (partially) conflicts with

a higher priority rule r1, we say that r2 depends on r1. Any

reordering shall only results in a ruleset that are equivalent to

the original one by resolving the dependencies of reordered

rules.

The idea is to optimize for rules with higher hit-rates so

that an overall higher packet classification throughput can be

achieved. A top-N selection is to select the N rules that max-

imize the total hit-rate achieved by the resulting sub-ruleset.

As an example, consider an OpenFlow-like deployment where

the limited packet classification capability in switches is used

as caches of the whole ruleset and a controller is used as

a catch-all classifier. A top-N sub-ruleset allows operators

to have a small number of top-N rules to be classified at

managed switches while minimizing the miss-traffic converge

at the controller.

When only a subset of rules (sub-ruleset) is extracted for

packet classification, it is possible that a packet that would be

a match in the original ruleset may get no match from the sub-

ruleset. However, it is incorrect for a packet to get an action

from the sub-ruleset that is different from one that it would

get from the original ruleset. Given a ruleset, we would like

to obtain a sub-ruleset of N rules by modifying some of the

rules to resolve their conflicts.

The key concepts, strategy and process of the proposed Top-

N selection are presented next followed by the formal problem

statement in Section III-E.

A. Top-N target list

By sorting the hit-rate table in descending order of hit-rates,

the first N rules are the target rules and together we call them

the target set. Since some of the target rules may depend on

rules that are not in the target set, one cannot simply select

the N target rules as the top-N rules.

B. Dependency graph

5

8 7 9 11 12

13

61 2 3 4

10

1 2 3 4 5 4

Fig. 1. Dependency graph for example. Each number on the edge represents
the number of derived rules

A dependency graph is used to represent the dependency

relationships among rules in a ruleset. A dependency graph

is a directed graph with a vertex vi representing the rule ri
for each rule in the ruleset and an edge ec,d that points from

a vertex with a larger ID c to another vertex with a smaller

ID d where rc depends on rd. Moreover, the graph is acyclic

because, by definition, only lower priority rules can depend

on higher priority rules.

Algorithm 1 Dependency Graph Construction

1: Input:

• A ruleset with priority

2: Output:

• A set of dependency graph G = (V,E)

3: procedure DEPENDENCY GRAPH CONSTRUCTION

4: Initialize a vertice vi ∀ri
5: for each pair of rules (vi, vj) do

6: if overlap ((vi, vj)) and p(ri) 6= p(rj) then

7: add an edge eij from vj to vi
8: w(eij)← no. of derived rules

To construct a dependency graph, the matching spaces of

rules are pair-wisely compared. Two rules that have overlap-

ping matching spaces and differ in actions are connected by an

edge. The weight of the edge w(eij) represents the minimum

number of derived rules of ri that results after disjointing ri
and rj . Algorithm 1 is used to construct the graph.

C. Top-N selection

Top-N selection is a process to select up to N rules in

order to maximize the overall hit-rate. The hit-rate of a rule

1054

is the fraction of packet classification queries that the rule has

provided an action for. Hit-rates are easily obtained using hit-

counts, which are available in most managed switches and is

part of OpenFlow specification.

D. Selection strategy

We examine each target rule in order to decide whether to

include it in the top-N list and what position to place it in the

list. Rules that are independent of others (i.e. no conflict), are

safely included. Rules that only depends on other target rules

can also be included, as long as their relative order is preserved

in the resulting list. For target rules that depend on at least one

non-target rule, we need to either resolve the conflicts with the

dependent rules or include the dependent rules to the top-N

list, retaining their relative priorities.

Conflicts can be resolved by splitting the target rule con-

cerned into smaller derived rules that are disjoint with the

dependent rules. It is noteworthy that in either way, some

target rules, starting from bottom of the target list, have to

be excluded from the sub-ruleset because we can only have

N rules in the sub-ruleset. This unavoidably lowers the overall

hit-rate provided by the resulting sub-ruleset.

The proper choice between the two options mainly depends

on: 1) The number of derived rules that are required to resolve

the dependency; 2) The total hit-rate offered by the dependent

rule(s); and 3) The total hit-rate of the target rules that would

be excluded in each options.

E. Formal problem statement

The top-N selection constructs a new graph G′ = (V ′, E′)
with up to N vertices from the original dependency graph G =
(V,E). Let h(vj) to be the hit-rate of the rule rj . The total

hit-rate, given by
∑

j h(v
′

j), v
′

j ∈ V ′, should be maximized.

The essential part of our solution towards the problem is the

partition operation. Equation 1 depicts the operation, where rc
is a target rule and Gc = (Vc, Ec) is a dependency sub-graph

rooted at rc in G.

(V P
c , ER

c) = partition(vc, Gc) (1)

Specifically, given a target rule rc, for each of its dependency

rd, the partition operation either: 1) includes the dependent

rule rd and all the rules in the dependency sub-graph rooted

at rd, or 2) partitions the target rule rc into k derived rules

rc,1...k such that the derived rules are disjoint with rd. The first

case leads to vertices as elements in set V P
c that represents the

set of derived rules to be included, while the second leads to

edges as elements in set ER
c that represents the dependencies

(and hence the dependent rules) that are retained. Therefore

the partition operation results in a change from Gc to G′

c =
(V P

c , ER
c). From the original dependency graph G, one can

extract the set of original edges Ec from the dependency sub-

graph Gc. By subtracting ER
c from Ec, we obtains the set of

edges EB
c representing resolved dependencies. Similarly, we

can obtain the set of retained vertices V R
c = Vc − V P

c .

A top-N selection problem can be described as an optimiza-

tion problem shown below:

max
∑

j

h(v′j) (2)

s.t. V ′ =V P ∪ V R (3)

|V ′| ≤N (4)

(V P , ER) =
⋃

i

partition(vi, Gi) (5)

V R =
⋃

i

V R
i (6)

E =
⋃

i

(EB
i ∪ER

i) (7)

E′ =
⋃

i

ER
i (8)

where vi ∈V and v′j ∈ V ′

i =1, · · · ,m,m ≤ |V |

j =1, · · · , n, n ≤ N

In the optimization, it maximizes total hit-rates in G′, which

represents the portion of the network traffic that the top-

N sub-ruleset can cover. The set of constrains connects the

newly constructed graph G′ = V ′, E′ to the original one

G = V,E. That is, the vertex set V ′ in G′ contains two

sets: V P representing derived rule set and V R representing

retained dependent rule set. The E′ in equation 8 are edges

connecting vertices of target rules to their retained dependent

rules. The total number of rules included in the top-N list shall

not exceed N , as indicated in constrain 4.

The best case would be the rules in the original ruleset

have no dependencies (i.e. E = ∅, or G has no edges).The

optimization problem then becames:

max
∑

i

h(vi) (9)

s.t. |V | ≤N (10)

where vi ∈V, i = 1, · · · ,m,m ≤ |V |

Its corresponding solution is simply sorting all the vertices

vi ∈ V in descending order of h(vi) and the first N vertices

form the required top-N list.

When dependencies exist, i.e.E 6= ∅, the optimization relies

on a partition operation to produce the new graph G′. Recall

that for each dependency ei,j , the partition operation needs

to decide either to resolve the dependency or to include all

rules in the dependency sub-graph rooted at vj . One can

observe that a brute-force optimization algorithm will lead

to an exponential complexity, because the partition operation

needs to consider all combinations of partition decision. The

exponential complexity is evident when several dependent

rules overlap with each other. A rule with n dependent rules,

has 2n combinations to take into account.

Let us consider an illustrative example with a dependency

graph as depicted in Figure 1. Suppose that the partition

operation has decided to partition the target rule r10 to resolve

1055

the conflict with the dependent rule r3. After performing

the partition, the resulting derived rules may or may not

overlap with the remaining dependent rules the same ways

as the original rule. In order to make decisions on whether to

partition for subsequent dependent rules, such as r5, we can

not make the decision based on the edge weights of r10 and r5
in the original dependency graph. Instead a new dependency

graph or at least part of it needs to be reconstructed and

weights recalculated, such that it reflects the derived rules. Any

algorithm working in this manner has exponential complexity.

IV. TOP-N APPROXIMATION ALGORITHM

Original ruleset Size of Top-N list

Dependency graph

Hit-rate table

Top-N list

Top-N target list Approximate table

Processed

Top-N target list

1. Reorder and choose top N rules

2. Resolve the dependency

3. Partition

Fig. 2. Top-N selection overview.

Given the complexity of Top-N selection problem, we

proposed a heuristic algorithm to solve it efficiently. The

proposed approximation Top-N approximation algorithm has

the following steps, illustrated in Figure 2: 1) The Top-N

target list is constructed by choosing the N rules with highest

hit-rates followed by reordering them in descending order

of priority. 2) A dependency sub-graph rooted at the first

rule in the target list is obtained. Starting from the root, the

partition_decision algorithm (Algorithm 3) makes a

decision of either partitioning the target rule or including the

dependent rule in the Top-N list, for each dependent rule in

the sub-graph.

After the above two steps, each target rule has a list of

dependent rules RP to resolve conflicts and another list of

dependent rules RD to be included together in the top-N list.

Step 3, initializes an empty top-N list and iteratively processes

the target rules in descending order of the hit-rates. Using

conflict resolution algorithms such as [20], each target rule is

partitioned to resolve conflicts with RP , if any. The resulting

derived rules and RD are added to the top-N list. The iteration

terminates when there are more than N rules in the top-N list

or all target rules have been processed. This step is represented

in Algorithm 2.

A. Approximation table

The approximation table is a pre-computed table that rep-

resents all the possible combinations of scenarios where two

Algorithm 2 Top-N Selection

1: procedure TOP-N SELECTION

2: select N target rules with highest reference

3: sort them to descending priority

4: for each target rule ri do

5: T = partition decision(ri, G)

6: if Top-N list is full then

7: Stop and output the Top-N list

8: else

9: put T into Top-N list

Algorithm 3 Partition decision

1: procedure PARTITION DECISION

2: for each rule rj that ri depends on do

3: if rj disjoints with all the other rules that ri
depends on and size(sub tree rooted at rj) ≥ v(eij) then

4: decision ← PARTITION

5: for each group do

6: S ← all rules in this group

7: sD ← 0 ⊲ total number of derived rules

8: rk ← getfirst(S)

9: sD ← sD + v(eik)
10: if size(rk) ≥ sD then

11: decision ← PARTITION

12: T ← derived rules

13: else

14: decision ← KEEP

15: T ← all rules in the dependency graph root at

rk

16: while S is not empty do

17: Q← all rules in S and overlap with rk
18: for each rule rk ∈ Q do

19: sl ← lookup(rk, rl) ⊲ lookup the

approximation table

20: if size(rk) ≥ sl then

21: decision ← PARTITION

22: T ← derived rules

23: else

24: decision ← KEEP

25: T ← all rules root at rkFrep

26: return T

overlapped rules r1 and r2, both depended on by a target rule

r0, and the associated estimated number of additional derived

rules of r0 to disjoint with r2.

Table I shows the 2D approximation table, which includes

6 combinations.

To understand how the table is computed for each dimen-

sion, let us first look at how it represents the overlap relations

between two rules. There are three types of overlap relations

between two rules in each tuple as shown in Figure 3.

More specifically, given a target rule r0 that depends on

rules r1 and r2, and the partition decision for r1, we can obtain

the number of additional derived rules thorough following

1056

No. Combination Additional rules after partition

1 11 3

2 22 0

3 33 0

4 12 2

5 13 4

6 23 4

TABLE I
THE 2D-APPROXIMATION TABLE. NUMBERS IN THE COMBINATION

COLUMN REPRESENTS THE TYPE OF OVERLAP.

1.

2. 3.

or
r2

r1

r2

r1

Fig. 3. Three types of overlap relations between two rules in 1-dimension.

steps: (1) Generate all derived rules to disjoint r0 with r1.

(2) For each derived rule, generate a new set of derived rules

to disjoint it with r2. (3) Permute all the derived rules, and

merge those only differing in one dimension (Optional). (4)

Count the number of the total derived rules. The 3rd step

makes the approximation more tight. However, without it, we

can still get a good estimate, which is shown in the section V.

V. EVALUATION

Our simulation experiments shows the proposed algorithm

achieves good approximation efficiently.

Both the brute-force optimal algorithm and the approxima-

tion algorithm are written in Perl. We synthesized rulesets of

100 to 6500 rules in 800 rules increments as follows. For

each rule’s source and destination IP addresses, random 32

bits unsigned integers are generated as the upper and lower

bounds of each IP address range. Similar, ranges of 16 bits

unsigned integers are used for source and destination ports. A

single random value is used for protocol. The random numbers

are generated with uniform distribution. Random hit-rates are

assigned to each rules following three different distributions

as shall be discussed in Section V-A. The experiments are

conducted on a 64bit Linux machine with Intel Core i7 950,

quad core, 3.07 Ghz CPU with 6GB memory. Although a

machine with large amount of memory is used, we observe

that our program only used 60MBs at peak while processing

1000 rules.

A. Cumulated hit-rates in Top-N

To exam how close the approximate algorithm is to the

optimal one, we compared the cumulated hit-rate of both

algorithms. The cumulated value is the summation of the hit

rate of all the rules in either ruleset or Top-N list. We use

a ruleset of 100 rules and varies the size of Top-N from 10

to 100 in steps of 10 rules. Hit-rates of the 100 rules are

randomly assigned a value between 0 and 1 with uniform

distribution, exponential distribution and normal distribution.

In uniform distribution case, an upper-bound of 0.01 is set for

all the rules expect one rule who will take the remaining value.

Experiments under each distribution are repeated on 10 set of

random hit-rates. We ran the brute-force optimal algorithm and

our approximation algorithm on the rulesets for each N . For

each distribution, the average of the sum of hit-rates in the

resulting 10 top-N rulesets are presented in Figure 4, 5 and 6,

respectively. The original ruleset is also included as a baseline

by simply selecting the first N rules according to the original

rule order.

The differences between the approximate and optimal al-

gorithm are shown in Figure 7. The three polylines indicate

-10

-5

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

H
it
 r

a
ti
o

 d
if
fe

re
n

c
e

(%
)

Size of the Top-N

Uniform distribution
Exponential distribution

Normal distribution

Fig. 7. Difference between the approximate and the optimal algorithm

that the Top-N list computed by the approximate algorithm

are around 10% worse than the optimal one. This difference

between the two algorithms decreases as the size of Top-N

grows. Especially, when the size of Top-N list and the ruleset

is equal, both algorithms give an identical Top-N list, since

in such case, the job for them is just to reorder the ruleset in

priority descendent order.

B. Running time

We also recorded the running time of our approximate

algorithm on different size of ruleset, ranging from 100 to

6500. The approximation algorithm is used to calculate 25%,

50%, 75% and 100% of Top-N rules in ruleset of different

sizes. The result is represented in figure 8.

 0

 10

 20

 30

 40

 50

 0 1000 2000 3000 4000 5000 6000 7000

R
u
n
n
in

g
 t
im

e
(s

)

Size of the rule set

Top 25%
Top 50%
Top 75%

Top 100%

Fig. 8. The running time of program implementing the approximate
algorithm.

The experiment on the running time reflects two trends of

the approximate algorithm. First, it takes longer, as the size

of the original ruleset increases; Second, for a specific size of

original ruleset, the running time of the approximate algorithm

1057

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
u
m

u
la

te
d
 h

it
 r

a
te

(%
)

Size of the Top-N

Approximate
Optimal

Fig. 4. Cumulative hit-rate with uniform dis-
tributed hit-rate dataset

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
u
m

u
la

te
d
 h

it
 r

a
te

(%
)

Size of the Top-N

Approximate
Optimal

Fig. 5. Cumulative hit-rate with exponential
distribution hit-rate dataset

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
u
m

u
la

te
d
 h

it
 r

a
te

(%
)

Size of the Top-N

Approximate
Optimal

Fig. 6. Cumulative hit-rate with normal distri-
bution dataset

also increases with the size of Top-N list. Note that no result

is obtained from the optimal algorithm for rulesets of 200 or

more rules because it failed to complete in a reasonable time

(one day in iour experiments). Our approximation algorithm is

able to finish computing with at most 20 seconds for selecting

a 75% top-N rules out of 6500 rules. For most settings, it

takes only seconds to finish.

VI. CONCLUSION

This paper suggested four basic requirements to a top-N

sub-ruleset selection problem. An optimization framework has

been proposed and the challenges of the problem are identi-

fied. A greedy-like heuristic algorithm is proposed to choose

rules among those with the highest hit-rates, their associated

dependencies and derived rules that have their dependencies

resolved. The algorithm does not require conflict-free ruleset

to be pre-computed. The required hit-rate statistics are readily

available with little overhead from most managed switches,

routers and firewalls.

The simulations show that the top-N approximation algo-

rithm achieves cumulative hit-rate is reasonably close to the

optimal. The running time is in the order of seconds and thus

is able to respond to dynamic changes in traffic pattern.

As future work we intend to improve the performance of

constructing dependency graph by partially modifying existing

graph to reflect the change of the rules or the order. We would

also enhance the precision of approximation table to make the

Top-N approximation algorithm closer to the optimal solution.

REFERENCES

[1] A. Kennedy, X. Wang, and B. Liu, “Energy efficient packet classification
hardware accelerator,” in Parallel and Distributed Processing, 2008.

IPDPS 2008. IEEE International Symposium on, April 2008, pp. 1–8.
[2] A. X. Liu, E. Torng, and C. R. Meiners, “Firewall compressor: An

algorithm for minimizing firewall policies,” in INFOCOM ’08: Proc. of

the 27th Conf. on Comp. Comm., Phoenix, AZ, USA, 2008.
[3] H. Kaplan, E. Molad, and R. E. Tarjan, “Dynamic rectangular intersec-

tion with priorities,” in STOC ’03: Proc. of the thirty-fifth annual ACM

symposium on Theory of computing. New York, NY, USA: ACM, 2003.
[4] D. A. Applegate, G. Calinescu, D. S. Johnson, H. Karloff, K. Ligett,

and J. Wang, “Compressing rectilinear pictures and minimizing access
control lists,” in SODA ’07: Proc. of the eighteenth annual ACM-SIAM

symposium on Discrete algorithms, Philadelphia, PA, USA, 2007.
[5] C. R. Meiners, A. X. Liu, and E. Torng, “Topological transformation

approaches to optimizing tcam-based packet classification systems,” in
SIGMETRICS ’09: Proc. of the 11th intl joint conf. on Measurement

and modeling of comp. sys., New York, NY, USA, 2009.

[6] H. Hamed and E. Al-Shaer, “Dynamic rule-ordering optimization for
high-speed firewall filtering,” in ASIACCS ’06: Proc. of the 2006 ACM

Symp. on Inform., comput. and commun. security. New York, NY,
USA: ACM, 2006, pp. 332–342.

[7] S. Acharya, M. Abliz, B. Mills, T. F. Znati, J. Wang, Z. Ge, and
A. Greenberg, “OPTWALL: A hierarchical traffic-aware firewall,” in
NDSS ’05: Proc. of the 12th Annual Network and Distributed System

Security Symposium, San Diego, CA, USA, 2005.
[8] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and

S. Shenker, “Ethane: taking control of the enterprise,” in SIGCOMM

’07: Proc. of the 2007 Conf. on Applicat., technol., architectures, and

protocols for comput. commun. New York, NY, USA: ACM, 2007.
[9] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., 2008.

[10] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown,
and S. Shenker, “Nox: towards an operating system for networks,”
SIGCOMM Comput. Commun. Rev., 2008.

[11] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford,
G. Xie, H. Yan, J. Zhan, and H. Zhang, “A clean slate 4D approach
to network control and management,” SIGCOMM Comput. Commun.

Rev., vol. 35, no. 5, 2005.
[12] S. Acharya, J. Wang, Z. Ge, T. Znati, and A. Greenberg, “Traffic-

aware firewall optimization strategies,” in ICC ’06. IEEE International

Conference on Communications, 2006., vol. 5, June 2006.
[13] J. Wallerich, H. Dreger, A. Feldmann, B. Krishnamurthy, and W. Will-

inger, “A methodology for studying persistency aspects of internet
flows,” SIGCOMM Comput. Commun. Rev., vol. 35, no. 2, pp. 23–36,
2005.

[14] P. Gupta, , P. Gupta, and N. Mckeown, “Packet classification using
hierarchical intelligent cuttings,” in in Hot Interconnects VII, 1999, pp.
34–41.

[15] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet classification
using multidimensional cutting,” in SIGCOMM ’03: Proceedings of

the 2003 conference on Applications, technologies, architectures, and

protocols for computer communications. New York, NY, USA: ACM,
2003, pp. 213–224.

[16] J. M. Gonzalez, V. Paxson, and N. Weaver, “Shunting: a hard-
ware/software architecture for flexible, high-performance network intru-
sion prevention,” in CCS ’07: Proceedings of the 14th ACM conference

on Computer and communications security. New York, NY, USA:
ACM, 2007, pp. 139–149.

[17] E. Cohen and C. Lund, “Packet classification in large isps: design and
evaluation of decision tree classifiers,” SIGMETRICS Perform. Eval.

Rev., vol. 33, no. 1, pp. 73–84, 2005.
[18] G. Yan, S. Chen, and S. Eidenbenz, “Dynamic balancing of packet

filtering workloads on distributed firewalls,” in Quality of Service, 2008.

IWQoS 2008. 16th International Workshop on, June 2008, pp. 209–218.
[19] H. Fu and M. Zhang, “Online adaptive firewall allocation in

internet data center,” Computer Communications, vol. 29, no. 10,
pp. 1858 – 1867, 2006, monitoring and Measurements of IP
Networks. [Online]. Available: http://www.sciencedirect.com/science/
article/B6TYP-4GFV2B9-1/2/869517e9a153d81d923c43aae2e28195

[20] M. G. Gouda and A. X. Liu, “Structured firewall design,” Comput. Netw.,
vol. 51, no. 4, pp. 1106–1120, 2007.

1058

