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Abstract—It is envisioned that in IPTV services will be run on the
top a heterogeneous mix of network infrastructure. The existence of
multi-mode terminals enable users get associated to the best available
networks according to user preferences and application specific require-
ments. In this paper we study the user-centric service selection for IPTV
services. We propose the user satisfaction function for video services and
validate this function against the objective measurement results. The
users select the service based on his satisfaction function. We model
the service selection problem using dynamic games. We also introduce
novel scheme called cost of learning that incorporates the cost to switch
to an alternate IPTV service provider. Using the Evalutionary game
dynamics, we study the convergence and stability properties in user-
centric IPTV service selection problem. We propose a trusted third
party based architecture solution to realize the user-centric network
selection. For the proof of concept simulations were run in OPNET
and Mathematica.

I. INTRODUCTION

After the initial monopoly-like era in telecommunication era, an
increasing number of (real and virtual) network operators and service
providers have been observed on the market in most countries.
The disintegration of service providers, content providers, network
infrastructure providers etc. have introduced new dynamics in the
telecommunication market. Service consumers benefit from resulting
competition among all the stake holders by having much wider
spectrum for more competitive service quality, price etc. This in
turn results in recently most addressed concept of user Quality
of Experience (QoE). Given such a user-centric network selection
approach, the focus of service providers/operators shift from the only
throughput maximization to a more subjective objective function
of increasing satisfied user pool. Concentrating on IPTV, such an
objective function of operators or service providers necessitates a
framework that estimates the user satisfaction for video applications
in terms of i) network technology technical indices (which in turn
requires mapping of QoS over QoE) and ii) economical preferences
of users such as service pricing etc. Game-theory proves to be a
natural candidate to address the problems of network selection in
the disintegrated telecommunication paradigm. We further consider
the dynamic games to address the problem network(service) selection
for extension of IPTV services and introduce the novel concept of
learning in this regard. We consider more realistic, disintegrated, and
dynamic communication scenario.

One of the reasons that motivated authors to consider dynamic
scenarios in evolving networks is that they seem to show up in
reality more often. In the recent research literature game theory
finds its application in the network traffic, routing, congestion games,
security. However, in most of the studies a static network model
is considered which includes a game which is framed over static
network, static user demand and a fixed iterative learning scheme.
We can not neglect the fact that with increase in the complexity of
existing system we cannot assume the environment to be constant.
Thus we need to study and explore the dynamic behavior of such

systems which involve not only the time dependencies and the state
of the environment but also the variability of the demands, the
uncertainty of the system parameters, the random activity of the
users, the time delays, error and noise in the measurement over
long-run interactions, etc. [9] shows that algorithms that do not
require information about other stake-holders’ actions or payoffs can
not cause the user period-by-period behavior to converge to Nash
equilibrium for a large scale class of games. Hence, most of the time,
there is no guarantee that the behaviors of fully distributed learning
algorithms and dynamics will come close to Nash equilibrium. By
introducing public signals (but irrelevant-payoff signals) into the
interaction, each user (player) can choose his/her action according to
her observation of the value of the signal. Then, a strategy assigns
an action to every possible observation a user can make. If no user
would want to deviate from the recommended strategy (assuming
the others don’t deviate), the distribution is called a correlated
equilibrium. The works in [5], [8] showed that regret-minimizing
procedures can cause the empirical frequency distribution of play
to converge to the set of correlated equilibria. Note that the set of
correlated equilibria is convex and includes the convex hull of the
set of Nash equilibria.

Another aspect in networking and communication games is the
uncertainty. A category of games with uncertainty is known as Ro-
bust games, users in such games need to make their decisions using
algorithms that accommodate limitations in information gathering
and processing. This disqualifies some of the well known decision
making models (such as fictitious play, best reply, gradient descent,
model-based algorithms etc.)

Recently, distributed learning algorithms and feedback based
update rules have been extensively developed in networking and
communication systems. Particular cases of Bush-Mosteller [3]
with slight changes have been examined in [13], [15]. Xing &
Chandramoulli [15] have studied stochastic learning algorithm in
a distributed discrete power control problem. The authors in [15]
have investigated in detail the convergence and the divergence issues
for the two-user two-action case. However, a payoff-reinforcement
learning (Q-value learning) is not examined in their models.

The authors in [6] proposed Q-learning algorithms for non-zero-
sum finite stochastic games in wireless networks. However a general
convergence result of such algorithms remain a challenging open
problem. We give a convergence result for such games with uncon-
trolled and ergodic state transitions. In [4], the authors analyzed the
robustness of the dynamics when users join and leave the network.
However, the case where the users have different behavior (different
learning patterns and different speed of learning) is not examined
in [4]. As we will see in this paper, these two parameters are very
important in terms of convergence time of the combined learning in
a dynamic unknown environment.

Different from distributed learning optimization, we use the term
strategic learning [16].

IEEE INFOCOM 2011 International Workshop on Future Media Networks and IP-based TV

978-1-4244-9920-5/11/$26.00 ©2011 IEEE 103



Only few convergence results are known in strategic learning.
These are obtained for a particular structure of the payoffs and action
spaces: [R1] Lyapunov expected games (any finite robust game in
which the expected payoff leads to an hybrid dynamics which has a
Lyapunov function). Particular classes of these games are potential
games, common interest games, dummy games, congestion games
etc under specific dynamics. [R2] Two-user-two-action games for
well-chosen learning patterns and generic payoffs, [R3] Particular
class of games with monotone expected payoffs, [R4] Particular
classes of supermodular games, submodular games in low dimension
(2 or 3), [R5] Dominant solvable games (games with a dominant
strategy).

Detailed analysis of these results can be found in [12], [1].
All the above convergence results [R1-R5] for specific classes of

games can be extended into the class of robust games.
Once we move from these specific classes of games, the conver-

gence of learning schemes must be proven. Cases of non-convergence
under homogeneous learning including cycling games which leads
to limit cycles and oscillating behaviors may occur. Using specific
learning rates and by carefully choosing the learning scheme, the
multiple-scale learning is known to be convergent in specific classes
of games that generalize Shapley’s games, Jordan games, matching
pennies, variations of Rock-Scissor-Paper games etc. The general-
ization uses the Dulac’s theorem and Poincaré - Bendixson theorem
(see [7]) which states that for planar systems if the w-limit set
is non-empty and if the trace of the Jacobian of the system (the
divergence) is of constant sign for all pair of the variables, then
the system is convergent. Note that these results are limited to
planar systems i.e they can be used only for two-action games or
at most three-actions symmetric games. Using the multiple time-
scale stochastic approximations developed in [2], we study various
combined learning algorithms for stochastic games with particular
state transition structures.

A. Contribution

In this paper, we focus on hybrid and combined strategic learning
in future user-centric IPTV service provider selection. The hybrid
learning focuses on general-sum stochastic dynamic games with in-
complete information and action-independent state transition with the
following novelties: i) In contrast to the standard learning approaches
widely studied in the literature [17], [8] where the users follow the
same predetermined scheme, here we relax this assumption and the
users do not need to follow the same learning patterns. We propose
different learning schemes that the users can adopt. This leads to
heterogeneous learning. Our motivation for heterogeneous learning
in user-centric IPTV service selection follows from the observation
that, in mentioned problem of service selection, the users may not see
the environment in the same way, they may have different capabilities
and different adaptation degrees (in this case options of IPTV service
providers, terminal capabilities etc.). Thus, it is important to take
into consideration these differences when analyzing the behavior of
the wireless medium characteristics and varying service provider
offers. As we will see the heterogeneity in the learning is crucial
in term of convergence of certain systems. ii) Each user does not
need to update his strategy at each iteration. The updating times are
random and unknown by the users. Usually, in the iterative learning
schemes the time slots during which the user updates are fixed. Here
we do not restrict to fixed updating time. This is because some
users come in or exit temporarily (specifically when it comes to
IPTV like services. Owing to this dynamic behavior, IPTV Service
Provider (SP) vary the service cost offers dynamically), and it may
be costly to update or for some other reasons, the users may prefer

to update their strategies at another time. One may think that if
some of the user does not update often, the strategic learning process
will be slower in terms of convergence time; this statement is less
clear because the off-line users may indirectly help the online users
to converge and, when they wake-up they respond to an already
converged system, and so on. iii) We propose a cost of learning
CODIPAS-RL which takes into consideration the cost of switching
the IPTV SPs. (applicable in the context of technology selection
as well) iv) Our theoretical findings are illustrated numerically
in heterogeneous wireless networks with multiple classes of users
and multiple technologies: wireless local area networks (WLAN)
and long term evolution (LTE) using Mathematica and OPNET
Simulation.

To the best of the authors’ knowledge, this is the first paper
analyzing (i) the cost of learning in an heterogeneous and unknown
environment (ii) convergence results for hybrid learning schemes,
(iii) mean field learning in games subject to uncertainty and their
connection to evolutionary game dynamics, (iv) combining theoret-
ical results with the experimental learning scenarios using OPNET
simulator.

We summarize some of the notations in Table I.

TABLE I
SUMMARY OF NOTATIONS

Symbol Meaning
Rk k−dimensional Euclidean space
W ⊆ Rk state space
N set of potential users (finite or infinite)
Bn(t) random set of active users at time t.
Aj set of actions of user j
sj ∈ Aj a generic element of Aj

Xj := ∆(Aj) set of probability distributions over Aj

aj,t ∈ Aj action of the user j at time t
xj,t ∈ Xj strategy of the user j at t
uj,t perceived payoff by user j at t
ûj,t ∈ R|Aj | estimated payoff vector of user j at t
l2 space of sequences {λt}t≥0,

∑
t∈N |λt|2 < +∞

l1 space of sequences {λt}t≥0,
∑

t∈N |λt| < +∞
(λj,t, νj,t) learning rates of user j at t
mp

t (.) Mean field limit at time t
ζk,c(l̂) user sensitivity towards values of l̂.

II. THE SETTING

A. Description of the IPTV service providers dynamic environment

We examine a system with a finite number of potential users.
The set of users is denoted by N = {1, 2, . . . , n}, n = |N |. The
number n can be 10, 104 or 106. Each user has a finite number
of actions denoted by Aj (which can be arbitrary large, a union
of IPTV SPs and Infrastructure providers). Time is discrete and the
space of time is N = {0, 1, 2, . . .}. A user does not necessarily
interact at all the time steps. Each user can be in one of the two
modes: active mode or sleep mode. The set of users interacting at
the current time is the set of active users Bn(t) ⊆ N . This time-
varying set is unknown to the users. When an user is in active mode,
he does an experiment, and gets a measurement or a reaction to
his decision (of selecting any SP or operator), denoted uj,t ∈ R
(this may be delayed as we will see). Let Xj := ∆(Aj) be the set
of probability distributions over Aj i.e the simplex of R|Aj |. The
number uj,t ∈ R is the realization of a random variable Ũj,t which
depends on the state of nature wt ∈ W and the action of the users
where the set W is a subset of a finite dimensional Euclidean space.
Each active user j updates his current strategy xj,t+1 ∈ ∆(Aj)
based on his experiment and its prediction for his future interaction
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via the payoff estimation ûj,t+1 ∈ R|Aj |.(where payoff is defined as
the user satisfaction, detailed in the later sections)

This leads into the class of dynamic games with unknown payoff
function and with imperfect monitoring (the last decisions of the
other users are not observed). A payoff in the long-run interaction
is the average payoff which we assume to have a limit. In that case,
under the stationary strategies, the limiting of the average payoff
can be expressed as an expected game i.e the game with payoff
vj :

∏
j′∈N Xj′ −→ R, vj(x1,x2, . . . ,xn) = Ex1,x2,...,xn

(
EŨj

)
Assumptions on user’s information: The only information as-

sumed is that each user is able to observe or to measure a noisy
value of its payoff when he is active and update its strategy based
on this measurement, which is realistic.

Note that the users do not need to know their own action space
in advance. Each user can learn his action space (using for example
exploration techniques). In that case, we need to add an exploration
phase or a progressive exploration during the dynamic game.

In order to define rigourously the dynamic robust game, we need
some preliminaries. Next, we introduce the notions of histories,
strategies and payoffs (performance metrics). The payoff is asso-
ciated to a (behavioral) strategy profile which is a collection of
mapping from the set of histories to the available actions at the
current time.

Histories An user’s information consists of his (own)
past activities, own-actions and measured own-payoffs.
A private history up to t for user j is a collection
hj,t = (bj,0, aj,0, uj,0, bj,1, aj,1, uj,1, . . . , bj,t−1, aj,t−1, uj,t−1)
in the set Hj,t := ({0, 1} × Aj × R)t. where bj,t = 1l{j∈Bn(t)}
which is 1 if j is active at time t and 0 otherwise.

Behavioral Strategy A behavioral strategy for user j is a mapping
τ̃j :

⋃
t≥0Hj,t −→ Xj . We denote by Σj the set of behavioral

strategies of user j.
The set of complete histories of the dynamic robust game after

t stages is Ht = (2N × W ×
∏
j∈N Aj × Rn)t, it describes the

set of active users, the states, the chosen actions and the received
payoffs for all the users at all past stages before t. The set 2N

denotes the set of all the subsets of N (except the empty set). A
behavioral strategy profile τ̃ = (τ̃j)j∈N ∈

∏
j Σj and a initial state

w induce a probability distribution Pw,τ̃ on the set of plays H∞ =
(W ×

∏
j Aj × Rn)N.

Payoffs Assume that w,Bn are independent and independent of
the strategy profiles. For a given w,Bn, we denote UB

n

j (w,x) :=

E(xk)k∈Bn Ũ
Bn

j (w, (ak)k∈Bn). Let Ew,Bn be the mathematical ex-
pectation relatively to the measure generated by the random variables
w,Bn. Then, the expected payoff can be written as Ew,BnŨB

n

j (., .).
We focus on the limiting of the average payoff i.e

Fj,T = 1
T

∑T
t=1 uj,t. The long-term payoff reduces to

1∑T
t=1 1l{j∈Bn(t)}

∑T
t=1 uj,t1l{j∈Bn(t)}, when considering only

the activity of user j. We assume that we do not have short-term
users or equivalently the probability for an user j to be active is
strictly positive. Given a initial state w and a strategy profile τ̃ ,
the payoff of user j is the superior limiting of the Cesaro-mean
payoff Ew,τ̃ ,BnFj,T . We assume that Ew,τ̃ ,BnFj,T has a limit.
Then, the expected payoff of an active user j is denoted by
vj(esj ,x−j) = Ew,BnUB

n

j (w, esj ,x−j) where esj is the vector
unit with 1 at the position of sj and zero otherwise.

Definition 1 (Expected robust game). We define the expected robust
game as

(
N , (Xj)j∈N ,Ew,BnUB

n

j (w, .)
)
.

Definition 2. A strategy profile (xj)j∈N ∈
∏n
j=1 Xj is a (mixed)

state-independent equilibrium for the expected robust game if and

only if ∀j ∈ N , ∀yj ∈ Xj ,

Ew,BnUB
n

j (w,yj ,x−j) ≤ Ew,BnUB
n

j (w,xj ,x−j), (1)

The existence of solution of Equation (1) is equivalent to the
existence of solution of the following variational inequality prob-
lem: find x such that 〈x − y, V (x)〉 ≥ 0, ∀y ∈

∏
j Xj where

〈., .〉 is the inner product, V (x) = [V1(x), . . . , Vn(x)], Vj(x) =
[Ew,BU

B
j (w, esj ,x−j)]sj∈Aj

.

Lemma 1. Assume that W is compact. Then, The expected robust
game with unknown state and variable number of interacting users
has at least one (state-independent) equilibrium.

The existence of such equilibrium points is guaranteed since
the mappings vj : (xj ,x−j) 7−→ Ew,BU

B
j (w,xj ,x−j) is jointly

continuous, quasi-concave in xj , the spaces Xj , are non-empty,
convex and compact. Then, the result follows by using Kakutani
fixed point theorem or by applying Nash theorem to the expected
robust game.

Since we have existence of state-independent equilibrium under
suitable conditions, we seek for heterogeneous and combined algo-
rithms to locate the equilibria.

III. CODIPAS-RL

We propose an hybrid, delayed, COmbined fully DIstributed
PAyoff and Strategy Reinforcement Learning in the following form:
(hybrid-delayed-CODIPAS-RL)

xj,t+1(sj)− xj,t(sj) =

1l{j∈Bn(t)}
∑
l∈L 1l{lj,t=l}K

1,(l)
j,sj

(λj,θj(t), aj,t, uj,t−τj , ûj,t,xj,t),

ûj,t+1(sj)− ûj,t(sj) =
1l{j∈Bn(t)}K

2
j,sj

(νj,θj(t), aj,t, uj,t−τj , ûj,t,xj,t),

j ∈ N , t ≥ 0, aj,t ∈ Aj , sj ∈ Aj ,
θj(t+ 1) = θj(t) + 1l{j∈Bn(t)},

t ≥ 0, Bn(t) ⊆ N ,
xj,0 ∈ Xj , ûj,0 ∈ R|Aj |.

where ûj,t = (ûj,t(sj))sj∈Aj
∈ R|Aj | is a vector payoff estimation

of user j at time t. Note that when user j uses aj,t = sj , he observes
only his measurement corresponding to that action but not those of
the other actions s′j 6= sj . Hence he needs to estimate/predict them
via the vector ûj,t+1. The functions K1 and λ are based on estimated
payoffs and perceived measured payoff (delayed and noisy) such that
the invariance of simplex is preserved almost surely. The function
K1
j defines the strategy learning pattern of user j and λj,θj(t) is

its strategy learning rate. If at least two of the functions Kj are
different then we refer to heterogeneous learning in the sense that
the learning schemes of the users are different. If all the K1

j are
identical but the learning rates λj are different, we refer to learning
with different speed: slow learners, medium or fast learners. Note
that the term λj,θj(t) is used instead of λj,t because the global clock
[t] is not known by user j (he knows only how many times he
has been active, the activity of others is not known by j). θj(t)
is a random variable that determines the local clock of j. Thus, the
updates are asynchronous. The functions K2

j , and νj are well-chosen
in order to have a good estimation of the payoffs. τj is a time delay
associated to user j in its payoff measurement. The payoff uj,t−τj
at t − τj is perceived at time t. We examine the case where the
users can choose different CODIPAS-RL patterns during the dynamic
game. They can select among a set of CODIPAS-RLs denoted by
L1, . . . ,Lm,m ≥ 1. The resulting learning scheme is called hybrid
CODIPAS-RL. The term lj,t is the CODIPAS-RL pattern chosen by
user j at time t.
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A. CODIPAS-RL patterns

We examine the above dynamic game in which each user learns
according to a specific CODIPAS-RL scheme.

1) Bush-Mosteller based CODIPAS-RL: L1: The learning pattern
L1 is given by

xj,t+1(sj)− xj,t(sj) = λθj(t)1l{j∈Bn(t)} ×
uj,t − Γj

supa,w |Uj(w, a)− Γj |
(
1l{aj,t=sj} − xj,t(sj)

)
, (2)

ûj,t+1(sj)− ûj,t(sj) =

νθj(t)1l{aj,t=sj ,j∈Bn(t)} (uj,t − ûj,t(sj)) (3)
θj(t+ 1) = θj(t) + 1l{j∈Bn(t)} (4)

where Γj is a reference level of j. The first equation of L1 is
widely studied in machine learning and have been initially proposed
by Bush & Mosteller in 1949-55 [3]. The second equation of L1

is a payoff estimation for the experimented action by the users.
Combined together one gets a specific combined fully distributed
payoff and strategy reinforcement learning based on Bush-Mosteller
reinforcement learning.

B. Main results

We introduce the following assumptions. [H2], ∀j ∈
N , lim inft−→∞

θj(t)
t > 0

[H3] λt ≥ 0, λ ∈ l2\l1, E (Mj,t+1 | Ft) =
0, ∀ j, E

(
‖Mj,t+1 ‖2

)
≤ c1

[
1 + supt′≤t ‖ xt′ ‖2

]
where

c1 > 0 is a constant.
It is important to mention that these assumptions H2-H3 are

standard assumptions in stochastic approximations for almost sure
convergence. However the vanishing learning rate can be time-
consuming. In order to design fast convergent learning algorithms,
constant learning rate (λt = λ) can be used as well, and convergence
in law can be proved under suitable conditions. In this case the
expectation of the gap between the solution of differential equations
and the stochastic process is in order of the constant learning rate i.e
O(λ). In particular, if λ −→ 0 one has a weak convergence. Below
the give the main results for time-varying learning rate under H2-H3.

Consequence for IPTV service selection games Under suitable
conditions of the learning rate, the above learning schemes can be
studied by their differential equation counterparts, and the result
applies directly to autonomous self-organizing networks with ran-
domly changing IPTV service offers, variable number of interacting
users that impact on the video service quality and in turn influences
the user QoE, and random updating time slots. Next, we provide
our second main result which establishes heterogeneous learning
convergence and capture the impact of different behavior of the users.

Theorem 1 (heterogenous rates). Assume H2-H3 and
Assume that the payoff-learning rates are faster than
strategy learning rates i.e [H4] λt ≥ 0, νt ≥ 0, (λ, ν) ∈
(l2\l1)2, λt

νt
−→ 0. Then, hybrid-delayed-CODIPAS-RL

scheme with variable number of players has the asymptotic
pseudo trajectory of the following non-autonomous system:{

ẋj,t(sj) = gj,t
∑
l∈L pj,t,lf

(l)
j,sj

(xj,t,Ew,BU
B
j (w, .,x−j,t))

xj(sj) > 0 =⇒ ûj,t(sj) −→ Ew,BU
B
j (w, esj ,x−j)

We define two properties:
• NS: Nash stationary property refers to the configuration in which

the set of Nash equilibria of the expected game coincide with the
rest points (stationary points) of the resulting hybrid dynamics.
• PC: Positive Correlation property refers to the configura-

tion where the covariance between the strategies generated by

the dynamics and the payoff is positive. i.e F (x) 6= 0 =⇒∑
j,sj

uj(esj ,x−j)Fj,sj (x) > 0 where F is the drift of the dynamics.
We say that the expected robust game is a potential game if there
exists a regular function W such that uj(esj ,x−j) = ∂

∂xj(sj)
W (x).

The proof is omitted due to the space limitations.
Impact of these results for IPTV service selection games In

many cases, the games have specific structures such as aggregative
games, potential games, supermodular games. This result gives the
convergence of heterogeneous learning to equilibria in dynamic
robust potential games but also in dynamic monotone games.

IV. MEAN FIELD HYBRID LEARNING

In this subsection we show how to extend the learning framework
to large number of players called mean field learning.

A. Learning under noisy strategy

Following the above lines, one can generalize the CODIPAS-RL in
the context of Itô’s stochastic differential equation (SDE). Typically,
the case where the strategy learning has the following form: xt+1 =
xt +λt(f(xt, ût) +Mt+1) +

√
λtσ(xt, ût), can be seen as an Euler

scheme of the Itô’s SDE: dxj,t = fj(xt, ût)dt + σj(xt, ût)dBj,t,
where Bj,t is a standard Brownian motion in R|Aj |. This leads
stochastic evolutionary game dynamics where the stochastic stability
of equilibria can be used to find robustness of the system under
stochastic fluctuations. Note that the distribution the noisy strategy-
learning or equivalently the mean field learning can be charac-
terized by a solution of the following partial differential equation
called Fokker-Planck-Kolmogorov equation ∂tmj,t(x)+div(fjmt)−
1
2 trace(σσ

t∂2xxmt) = 0, where div is the divergence operator and
∂2xx is the matrix of second derivatives of mt(.) with the respect to
x. Particular case of this class of dynamics are evolutionary game
dynamics with diffusion terms. We refer to [11] for the derivation
of these equations which require the theory of distribution and
integration by parts.

B. Cost of learning CODIPAS-RL

In this subsection we introduce a novel way of learning under
switching cost called Cost-To-Learn CODIPAS-RL. Usually in learn-
ing in games , the cost of switching between the actions, the cost of
experimenting with another option are not taken into consideration.
In this section we take these issues into account and study their
effects in the learning outcome. In our scenario, the learning cost
can arise in three different situations: (i) service provider switch,
(ii) infrastructure switchover (codec-switchover, handover), (iii) joint
service provider-switch-handover-and-codec switch-over. In a more
general setting, one can think about a cost to have a new technology
or a cost to produce a specific product. The reason for this cost of
learning approach is that, in many situations, changing, improving
the performance, the quality of experience of a user, guaranteeing to
a quality of service etc has cost. At a given time t, if user j changed
its selection (SP switchover, codec switchover, handover etc) i.e., if
user j moves, its objective function is translated form the standard
utility plus an additional cost for moving from the old configuration
to the new one. Then, there is no additional cost to learn if the action
remains the same.

V. USER SATISFACTION FUNCTION

When it comes to the measurement of user satisfaction for IPTV
services, one is faced with few natural questions. i) How to quantify
the perceived user satisfaction with respect to video quality? ii) Does
the service cost affect user satisfaction? if yes, how to quantify the
user satisfaction with respect to service costs? iii) How to capture
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Fig. 1. Proposed IPTV Architecture

Fig. 2. Procedures overview

user satisfaction with respect to service contents, security etc. To
answer the mentioned questions, we come to the conclusion that there
is a need to model the user satisfaction function that can capture the
quantitatively capture user satisfaction. In this connection, we use
our previous work on user QoE [10].

VI. USER-CENTRIC IMS BASED IPTV ARCHITECTURE

We assume that operators are integrated through a neutral and
trusted third party (as shown in Figure-1) which is responsible
for Accounting, Authorization, Authentication etc. In the proposed
architecture each user maintains a separate business relationship
with SP he is subscribed to, thus complete user profile should
be maintained by HSS of trusted third party and each SP should
receive only SP specific user data from HSS. It should further be
noted that our approach addresses the fully disintegrated scenario
where the SP or content providers are owned by the network
infrastructure providers. However, the proposed analytical framework
is rich enough to be applicable to any third party entity. The function
components of third party entity include the standardized IPTV
components such as Service Discovery Function (SDF), Service
Control Function (SCF), Service Selection Function (SSF), User
Profile Server Function (UPSF), and Decision Maker (DM).

Decision Maker (DM) entity on third party collects IPTV service
data such as Video on Demand (VoD) catalogue, Electronic Program
Guide (EPG), and TV channels (from SSF and SDF components) as
offers from the SP. DM makes the decision over the best available
SP, the decision related information is then delivered to users in the
service attachment and selection process of UE. Owing to the fact
that users do not have a contract(s) with IPTV service providers, SCF
has to bridge to IPTV service providers by acting as Back-to-Back

User Agent (B2BUA) in case of session establishment. On the other
hand IPTV SPs also consists of standardized IPTV components, their
SDFs and SSFs are requested for service data by third party func-
tional entity. As the third party requires service related information
(i.e., service costs and provided QoS) for service selection decision
making. Such process of acquiring the mentioned information can be
realized by extending the common standardized service descriptions.
In the proposed architecture, IPTV SPs implement the standardized
functionalities for authentication, service authorization, and session
establishment.

Generally the standardized IPTV procedures over UE start up and
service consumption consists of following steps [14]: i) Network
attachment, ii) IMS registration, iii) IPTV service attachment, iv)
IPTV service selection, and v) IPTV session establishment. We now
briefly discuss the important interaction details.

A. IPTV Service Discovery: After the UE is switched ON, the
network attachment and IMS registration procedures trigger and UE
attaches to the network of the visited operator network. Since UE is
not a subscriber of the operator, therefore the procedures of roaming
case are applied. The IMS registration from the P-CSCF of the
operator network are forwarded from the operator IMS network to the
third party IMS. After being successfully authenticated in the third
party IMS, the UE is available for communication over a secured
connection.

B. IPTV Service discovery: The service discovery process starts
after UE’s successful IMS registration. This process is divided in
service attachment and selection. The consequence of this process is
the service data allocation from different IPTV SPs and triggering
decision making process. Given our basic assumption of existence of
reliable third party, it is realistic to assume that the trusted third party
owns a subscription with each SP and UE is successfully registered
and authenticated with each SP prior to the following steps (however
UE by default is authenticated to the default infrastructure provider):
After the trusted third party SDF retrieves service discovery request
from the UE it requests the DM for service data that is to be deliver
to the user. The DM then carry out the SP selection decision for
the UE generate service request, DM evaluates the SPs’ offered
data from SDF and SSF functionalities of the IPTV SPs (which
are extended by auction bidding like capabilities to provide enriched
service information). In fact the decision making process starts after
getting service data from all IPTV SPs. As the result all service data
of the winning IPTV service provider(s) is aggregated in service
description documents provided by the trusted third party SSF(s)
to the UE in the service discovery response. This dictates that
SSF can make use of an additional filter process that matches the
user preferences and UE capabilities. As depicted in Figure-2 IPTV
SPs can send updated service data offers within the subscriptions
from the trusted third party. New offers may trigger a new DM
process and result in updated service data notification to the UE,
thus enabling UEs to successively select and consume the media of
different service providers following the proposed service selection
approach.

C. IPTV session establishment: The signalling for media session
initiation to the SP network pass through IMS networks as well as
the SCF of the trusted third party network. This follows that fact
that only the trusted third party is a registered user of the service
provider. Therefore, the SCF acts as a B2BUA and intercepts a user
initiated session, creates a new session to the IPTV service providers
and stores an association between both for a later intermediation of
session signalling (session tear-down).

Note: Figure 2 depicts the details of signalling for overall proce-
dures.
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VII. NUMERICAL ANALYSIS

In order to demonstrate the user-centric IPTV service selection,
and demonstrate the effect of learning in such a telecommunica-
tion landscape, we run extensive rounds of simulation runs. The
simulation scenario dictates that IPTV consumers are under the
coverage of heterogeneous technologies owned by different infras-
tructure providers. We consider the Long Term Evolution (LTE) and
WLAN access network technologies. We extensively implement the
integration of these two technologies following 3GPP standards for
intra-operator heterogeneous technologies integration. Intra-operator
mobility management is carried out using Mobile IPv6. Furthermore
in total there are four IPTV service providers, who are considered as
potential candidate service providers (competitors) to extend IPTV
services to the consumers. Service requests of different quality
classes, content types are generated by consumers. The arrival of
requests is modeled by Poisson process, and the service quality
class is chosen randomly. In order to capture the different consumer
preferences we assume that the sizes of different quality class
requests are assumed to be static and are 200kbps, 500kbps, and
800kbps for low, medium, and high video quality respectively. The
capacities of LTE and WLAN network technologies are 32Mbps
(Downlink)/ 8Mbps (Uplink), 8Mbps respectively. As the network
technologies are owned by two different operators, the technical
configuration of the technologies owned by both the operators are
very similar. However the service pricing scheme is operator specific,
which influences the user-centric service selection decision.

Within the simulation settings, we configure that all the users in the
system have the same initial probability list i.e., 0.45,0.35,0.25,0.05
for SP-1, SP-2, SP-3 and SP-4 respectively. We also configure that
SP-1 and SP-2 offer higher service costs when compared with the
SP-3 and SP-4. To capture the system behavior for users preferences
over the service costs, we further configure two simulation settings
namely i) excellent service settings and ii) fair service settings. In
the early settings a IPTV users prefer quality over the service costs,
whereas the later case is converse to the earlier. Figure-4 depicts the
results of user strategy convergence in excellent service settings. As
can be seen that user initial probability converges such that SP-1
and SP-2 are assigned the equilibrium probabilities of 0.3 and 0.7
respectively, whereas the low quality offering service providers are
assigned zero probabilities. On the other hand the initial strategies
of user in Figure-3 converge such that user prefers SP-3 and SP-
4 more as compared to the other relatively more expensive service
providers. However it should be noted that the decision of service
provider selection is based on the user satisfaction function and not
only on the cost preferences of the users.

The configuration of the technical indices are the same for all
the underlying technologies, thus the operators offer of technical
parameters are influenced by the congestion, available bandwidth,
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wireless medium characteristics etc. The simulation was run for
number of iterations and the convergence of user probabilities of
network selection was observed for variable learning schemes. Thus
on the basis of the presented results we can confidently claim that the
proposed learning scheme fits well to the future user-centric IPTV
service selection paradigm.

VIII. CONCLUSION

In this paper, we have presented hybrid and heterogeneous strate-
gic learning schemes in IPTV service selection in heterogeneous 4G
networks. We have illustrated how important these learning schemes
are in dynamic service selection scenario, where the measurement
can be imperfect, noisy and delayed and the environment random and
changing. We proposed user satisfaction function. Our contributions
are validated through extensively simulating the realistic scenario
using Mathematica numerical examples and OPNET simulations. We
considered and simulated the LTE, and WLAN technologies taking
into consideration the effect of switching costs in the payoff function.
We illustrated the proposed cost of learning CODIPAS-RL scheme
to find the corresponding solution in an iterative fashion.

REFERENCES

[1] Markos P. Anastasopoulos, Dionysia K. Petraki, Rajgopal Kannan, and Athana-
sios V. Vasilakos. Tcp throughput adaptation in wimax networks using replicator
dynamics. IEEE TSMC partB, June 2010.

[2] V. S. Borkar. Stochastic approximation: a dynamical systems viewpoint. 2008.
[3] R. Bush and F. Mosteller. Stochastic models of learning. Wiley Sons, New York.,

1955.
[4] Shah Devavrat and Shin Jinwoo. Dynamics in congestion games. Sigmetrics,

2010.
[5] D. Foster and R. V. Vohra. Calibrated learning and correlated equilibrium.

Games and Economic Behavior, 21:40–55, 1997.
[6] F. Fu and M. van der Schaar. Learning to compete for resources in wireless

stochastic games. IEEE Trans. Veh. Tech., 58(4):1904–1919, May 2009.
[7] J. Guckenheimer and P. Holmes. Nonlinear oscillations, dynamical systems, and

bifurcations of vector fields. Springer-Verlag, New York, 1983.
[8] S. Hart and A. Mas-Colell. A simple adaptive procedure leading to correlated

equilibrium. Econometrica, 68:1127–1150, 2000.
[9] S. Hart and A. Mas-Colell. Uncoupled dynamics do not lead to nash equilibrium.

Amer. Econ. Rev., 93, 2003.
[10] Manzoor Ahmed Khan and Umar Toseef. User utility function as quality of

experience (qoe). In Proceedings of the ICN’11, pages 99–104, 2011.
[11] J.M. Lasry and P.L. Lions. Mean field games. Japan. J. Math., 2:229–260,

2007.
[12] H. Tembine. Distributed strategic learning for wireless engineers. Lecture notes,

Supelec, 200 pages, 2010.
[13] M.A.L. Thathachar, P.S. Sastry, and V.V. Phansalkar. Decentralized learning of

nash equilibria in multiperson stochastic games with incomplete information.
IEEE transactions on system, man, and cybernetics, 24(5), 1994.

[14] ETSI TISPAN. ETSI TS 182 027 V2.4.1 (2009-07); Telecommunications and
Internet converged Services and Protocols for Advanced Networking (TISPAN);
IPTV Architecture; IPTV functions supported by the IMS subsystem, 2009.

[15] Y. Xing and R. Chandramouli. Stochastic learning solution for distributed
discrete power control game in wireless data networks. IEEE/ACM Transactions
on Networking, 16(4):932–944, August 2008.

[16] H. P. Young. Strategic learning and its limits. Oxford University Press, 2004.
[17] H. P. Young. Learning by trial and error. Games and Economic Behavior,

Elsevier, 65:626–643, March 2009.

108


