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Abstract—We first illustrate using examples that existing
measures in literature are not sufficient to fully characterize the
anonymity provided by an anonymous system. We then propose
a new isolation measure, based upon presence of outliers in
a distribution, and show that this measure is critical towards
quantifying the overall anonymity provided by the system. We
provide justification for three distinct aspects of anonymity, im-
portant from the perspectives of a user, a system designer, and an
attacker, leading to a three-dimensional approach towards mea-
suring sender anonymity. We further show how two anonymous
systems can be compared in terms of the degree of anonymity
provided, using the proposed 3-tuple metric and appropriate
weights reflecting the attributes desired in the system. Finally,
we apply the proposed metric to an existing anonymous system
and discuss the insights gained.

Index Terms—Measuring Anonymity, Isolation, Privacy

I. INTRODUCTION

The ability to maintain one’s privacy on the Web has

always been an important concern [1], [2]. Anonymity on

the Web is critical to enable applications such as e-voting,

auctions, payments, and to provide necessary cyber-security

measures [3]. With renewed emphasis on identity protection,

privacy awareness and selective information sharing on social

networks [4], the ability to protect online activities from

possible misuse is gaining importance [5].

Various approaches have been proposed towards providing

anonymous transactions on the Web. A widely employed

technique for providing anonymity is by introducing proxy

server(s) between a sender-receiver pair, for instance as in

Crowds [6]. Crowds [6] attempts to conceal user’s identity

by forwarding user’s message via a number of intermediate

nodes before it is delivered to the end server. Other techniques

used to provide anonymity and information hiding include

introducing delays, mixing [7] and encrypting the messages.

More sophisticated systems providing anonymous communi-

cations include Onion routing [8] and Tor [9], which use a

combination of above approaches to provide unlinkability of

a message from its sender and/or receiver.

The goal of an anonymous system includes providing one or

more of – sender anonymity, receiver anonymity, and unlinka-

bility of sender and receiver. In this paper, we focus solely on

sender anonymity, and provide a metric to quantify the level of

anonymity provided by the system. Potential eavesdroppers or

* This work was supported in part by the US Navy Engineering Logistics
Office Contract No. N41756-08-C-3077.

attackers could reside anywhere in the network, and protecting

the identity of the sender of a message from malicious nodes

is the key concern in most anonymous systems. Various

approaches consider specific attack models such as local

eavesdroppers or collaborating intermediate nodes to analyze

the properties of the system. However, the approach presented

in [10], [11] is slightly different, and considers only the a

posteriori probabilities assigned by an attacker to various users

who are suspected of having sent a particular message, after

the information has been gained from the attack. Our model

is also based upon the latter approach, and is thus suitable to

analyze anonymous systems under any general attack model.

In case of sender anonymity, the attacker attempts to identify

the originator or sender of a particular message, from possible

senders belonging to the anonymity set A. The objective of

the anonymous system design is to prevent such identification

under different models of attacks possible in the system.

Once an attacker has gained sufficient information using a

particular attack, he/she attempts to identify the sender in a

probabilistic manner. The attacker assigns a probability pi to

each user i in the anonymity set A, where pi is a measure

of suspicion with which the attacker considers user i to be

the actual sender of the message. Let N denote the size of

anonymity set A (N = |A|). A probability distribution is

valid if ∀i ∈ {1, . . . ,N} : 0 ≤ pi ≤ 1 and
∑N

i=1 pi = 1.

Given the probability distribution p, the anonymity set A and

the sender j ∈ A, quantifying the lack of sender identification

information available to the attacker amounts to measuring the

level or degree of anonymity provided by the system.

Various approaches have been presented to quantify the

degree of anonymity provided by an anonymous system. One

of the approaches considers just the probability assigned to

the actual sender j [6], [12]. Information theoretic measures

towards quantifying the degree of anonymity are discussed in

[13], [10]. A simple entropy based measure is given by [13]:

S = −
N

∑

i=1

pilog2(pi), (1)

where S could be interpreted as the number of bits of

additional information that the attacker needs in order to

completely identify the sender j. The measure S equals zero

when pj = 1, and equals log2(N ) (which is the maximum

possible entropy) when pi = 1
N , ∀i ∈ {1, . . . ,N}. Let us
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denote the latter probability distribution as D. A normalized

entropy based measure is given by [10]:

d =
S

log2N
= −

∑N
i=1 pilog2(pi)

log2N
. (2)

An interesting property of this measure is that, when the

sender j is completely identified (pj = 1), d equals zero. And

d = 1 under distribution D, since the sender j is as likely to

have sent the message as any other user in A in the eyes of

the attacker, and is thus relatively (completely) unidentifiable.

Shortcomings of both simple and normalized entropy based

measures are outlined in [11], where counterexamples are

constructed to show that two distributions could have the same

measure but provide practically different anonymities. Authors

in [11] introduce local anonymity θ = max1≤i≤N pi, argue

that θ is more important than d from the perspective of a

user, and derive appropriate relations between θ, S and d.

Since the probability assigned to the actual sender is upper

bounded by θ, a low value of θ is sufficient to hide the

actual sender’s identity. However, considering θ alone is not

sufficient to characterize the anonymity of the distribution,

since the probability assigned to the sender must be viewed in

relation with the probabilities assigned to other users. Thus,

the normalized entropy d is important as well.

In this paper, we first show (in Section II) that the existing

measures of S, d and θ are not sufficient to completely char-

acterize the (sender) anonymity provided by the system. Next,

we argue that a new measure is needed to quantify the isolation

of a user (or a set of users) in the distribution p. We propose a

new measure to quantify this isolation, based upon presence of

outliers in a distribution, and discuss its properties (in Section

III). We then propose a three-dimensional approach towards

measuring sender anonymity (in Section IV), and provide

justification for the three distinct aspects in this approach,

considering the perspectives of a user, system designer and

attacker respectively. We discuss comparison of anonymous

systems using the proposed 3-tuple metric and suitable choice

of weights (in Section V). Finally, we apply the proposed

metric to an existing anonymous system (in Section VI) and

summarize our conclusions (in Section VII).

II. DRAWBACKS OF EXISTING MEASURES

In this section, we consider examples of anonymous sys-

tems with different anonymity properties, and show that even

though an attacker assigns quite different probability distri-

butions in these systems, the existing anonymity measures

declare the two systems to be equally anonymous. Let D1 and

D2 denote the a posteriori probability distributions assigned in

the two anonymous systems, and let the sizes of the anonymity

set be denoted N1 and N2 respectively.

Example 1: Consider two systems with N1 = 7 and N2 =
N + 1, where the distributions are given by:

D1 : p1 = 0.4, p2 = 0.4, pk = 0.04, ∀k ∈ {3, . . . , 7}.

D2 : p1 = 0.4, pk =
0.6

N
, ∀k ∈ {2, . . . , N + 1}.

Here, it is apparent that the attacker has more information

about the actual sender in System 2, compared with System 1
(particularly if N is large). We have,

d1 = −
∑N1

i=1 pilog2(pi)

log2N1
= 0.708.

d2 = −
∑N2

i=1 pilog2(pi)

log2N2
= −0.4log2(0.4) + 0.6log2

(

0.6
N

)

log2(N + 1)
.

Equating d1 = d2, we get,

0.708 =
0.971 + 0.6log2N

log2(N + 1)
.

For large values of N , using log2(N + 1) ≈ log2N , we get,

log2N = 8.99 ⇒ N ≈ 508.

Choosing N = 508, d2 = 0.708 = d1 (up to 3 places of

decimal). The local anonymity measure for both the systems

is the same, i.e. θ1 = θ2 = 0.4. Note that the simple entropy

measure (given by (1)) for the two systems is not the same,

and is in fact counterintuitive. Computing, we get, S1 = 1.986
and S2 = 6.364. Thus, S1 < S2, which seems to suggest that

System 2 has higher degree of anonymity than System 1.1 �

In Example 1, we considered two systems with different

sizes of anonymity sets. Next, we show that existing measures

fail to differentiate systems with same anonymity set size.

Example 2: Consider two systems with N1 = N2 =
100, where the distributions are given by (for some N ∈
{3, . . . , 97}):

D1 : p1 = p2 = 0.2, pk =
0.6

98
, ∀k ∈ {3, . . . , 100}.

D2 : p1 = 0.2, pk =
0.5

N
, ∀k ∈ {2, . . . , N + 1},

pl =
0.3

(99 −N)
, ∀l ∈ {N + 2, . . . , 100}.

We have,

d1 = −
∑100

i=1 pilog2(pi)

log2100
= 0.804.

d2 = −
0.2log2(0.2) + 0.5log2

(

0.5
N

)

+ 0.3log2

(

0.3
99−N

)

log2100
.

Equating d1 = d2, we get,

0.5log2N + 0.3log2(99 −N) = 3.856.

The integer value of N which satisfies the above equation

with minimum error is given by N = 15. Choosing N = 15,

d2 = 0.806 ≈ d1. The local anonymity measure for both the

systems is the same, i.e. θ1 = θ2 = 0.2. In this example, since

the attacker is able to isolate two users in System 1 and one

user in System 2, the degree of anonymity provided by the

two systems appears to be different. �

1Therefore, we do not consider simple entropy measure in other examples.

1012



3

Next, we provide an example to show that normalized

entropy measure could sometimes be misleading.

Example 3: Consider two systems with N1 = N2 = N ,

where the distributions are given by:

D1 : p1 = 0.3, pk =
0.7

N − 1
, ∀k ∈ {2, . . . , N}.

D2 : p1 = p2 = 0.3, pk =
0.4

N − 2
, ∀k ∈ {3, . . . , N}.

Here, for all N > 3, θ1 = θ2 = 0.3 and d1 > d2. For e.g.,

for N = 10, d1 = 0.933 and d2 = 0.834. However, System

2 seems to provide a higher degree of anonymity than the

System 1, since the attacker is able to isolate a single user in

the anonymity set in System 1 (particularly for large N ). �

III. MEASURING ISOLATION IN ANONYMOUS SYSTEMS

In all the examples considered in the previous section, one

observation is apparently common. In one of the distributions,

exactly one user is being isolated by the attacker i.e. the

probability assigned to exactly one user is substantially higher

than that assigned to other users in the anonymity set. As a

result, the degree of anonymity provided by the corresponding

anonymous system seems to be lower than the other system.

However, the measures d and θ are unable to satisfactorily

quantify this isolation of the user in the anonymity set. In this

Section, we propose a new measure, Isolation factor (denoted

I) to measure the degree of isolation in the system.

A user in the anonymity set is considered isolated, if the

probability assigned to that user is significantly larger than that

assigned to other users in the set. Viewing these probabilities

as a set of observations, the probability assigned to the isolated

user corresponds to an outlier in this set. An outlier is a statis-

tical observation which appears to deviate considerably from

the rest of the observations. Multiple approaches exist to detect

an outlier in a sample of data [14]. Model-based methods

identify observations which are deemed unlikely based upon

the mean and standard deviation of the distribution, and are

commonly used. One such method, which is able to identify

multiple outliers, is the Peirce’s criterion [15], [16], [17]. Here,

observations deviating from the mean beyond an appropriately

computed threshold are declared outliers. When the number of

observations is relatively small (< 60), a simplified procedure

to detect outliers based upon Peirce’s criterion could be used

[17]. However, we use the detailed procedure proposed in [16]

which is valid for up to 150 observations. When the number

of observations is larger, the algorithm is applied to multiple

sets of observations, obtained by dividing the original set into

equal sized pieces of < 150 observations each, as suggested

in [16]. Outlier detection is discussed in the Appendix.

A. Isolation Factor

Using the above approach, we detect all outliers in the

probability distribution which are significantly larger than the

mean. Let L denote the number of outliers detected. A new

measure, Isolation factor (I) is defined in order to measure

the extent of additional information the attacker would gain

due to the presence of these outliers. If L = 0, I is defined

to be zero. The desired properties of this measure include:

• Isolation factor should decrease as number of outliers

increase, since the information gained by the attacker

decreases as the number of isolated users increase.

• Isolation factor should be proportional to the extent of

deviation of the outliers, since the larger the deviation, the

higher is the perceived suspicion of the attacker towards

the corresponding users.

• For the same number and value(s) of outlier(s), the

Isolation factor should increase with an increase in the

size of the anonymity set, as the attacker’s suspicion set

becomes a smaller fraction of the total number of users.

For a probability distribution p with N users and L outliers,

let us assume without loss of generality, that the first L
probabilities in p correspond to the outliers. The Isolation

factor I is defined as:

I =

√

∑N
i=1(pi − p̄)2 −

√

∑N
i=L+1(pi − q̄)2

max{1,L} , (3)

where p̄ is the sample mean with outliers (and equals 1
N ), and

q̄ is the sample mean without outliers, i.e. q̄ =
P

N
i=L+1

pi

N−L .

Note that the definition of the measure satisfies the desired

properties mentioned above. The numerator in (3) measures

the impact of outliers in increasing the standard deviation of

the distribution, while the denominator adjusts this impact

based upon the number of outliers. Next, we discuss some

interesting properties of this new measure.

B. Properties of Isolation Factor

Proposition 1: Isolation factor I lies in the range [0, 1].
Proof: When there are no outliers, q̄ = p̄ and I = 0,

indicating no isolation in the distribution. When user j is

completely isolated i.e. pj = 1 and pi = 0, ∀i 6= j,

I =

√

(

1 − 1

N

)2

+
N − 1

N 2
=

√

N − 1

N . (4)

In this case, I → 1 as N → ∞. For all other scenarios,

including more than one outlier, 0 < I < 1, as shown below.

I =

√

∑N
i=1(pi − p̄)2 −

√

∑N
i=L+1(pi − q̄)2

max{1,L}

≤

√

√

√

√

N
∑

i=1

(pi − p̄)2 −

√

√

√

√

N
∑

i=L+1

(pi − q̄)2 ≤

√

√

√

√

N
∑

i=1

(pi − p̄)2.

Therefore, I2 ≤ ∑N
i=1(pi − p̄)2 =

∑N
i=1 p

2
i − 1

N ≤ ∑N
i=1 p

2
i .

Since 0 ≤ pi ≤ 1, ∀i ∈ {1, . . . ,N},
∑N

i=1 p
2
i ≤

(

∑N
i=1 pi

)2

= 1, as
∑N

i=1 pi = 1. Thus I2 ≤ 1 and hence

I ≤ 1.

I = 0 when there is no isolation in the system, and I = 1
when the degree of isolation in the system is the maximum.

Thus, the Isolation factor provides a measure of the extent of
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additional information the attacker gains due to the presence

of the outliers in the distribution. Let the outlier probabilities

be denoted p1, . . ., pL. Let l̄ denote the mean of outlier

probabilities, i.e. l̄ =
P

L
i=1

pi

L .

Proposition 2: Isolation factor I satisfies the inequality:

I ≤ l̄

(

1 +
1√
N

)

. (5)

Proof: Follows from (3), using
√
A+B ≤

√
A +

√
B,

for A,B ≥ 0, and is omitted due to space constraints. Detailed

proof is provided in [18].

IV. THREE DIMENSIONAL MEASURE OF ANONYMITY

We believe that the three measures namely, normalized

entropy d, local anonymity θ and Isolation factor I, are all

essential towards measuring the degree of anonymity of an

anonymous system. Note that all the three measures lie in the

range [0, 1]. Although a higher value of d is desirable from

the system’s perspective, a lower value of θ and I would be

preferred from an end user’s perspective. Let us denote the

degree of anonymity of a system by the 3-tuple (d, θ, I).

A. Motivation and Perspective

The objective of an anonymous system is to guarantee

that the sender of a message be non-identifiable within the

anonymity set. In the a posteriori probability distribution,

this would be achieved when d = 1, i.e. pi = 1
N , ∀i ∈

{1, . . . ,N}. Thus, the normalized entropy d is an important

measure from the system designer’s perspective.

However, as pointed out in [11], a higher value of d may

not be sufficient to convince the end user. For a user trying

to utilize the services provided by an anonymous system, she

would like to have some guarantees on her maximum exposure

for any message she sends in the system. This would be

achieved when θ is minimized. Thus, the local anonymity θ

is an important measure from the end user’s perspective.

Now let us consider the attacker’s point of view. Once the

attacker has performed the attack and has assigned the prob-

abilities based upon the information gained from the attack,

the attacker would like to make a guess (his best bet) as to

which user(s), from among those in the anonymity set, is most

likely to have sent the message. The attacker’s task gets easier

when there is a single user (or a set of users) which is clearly

isolated in the distribution. The larger the value of I, the

more successful is the attack from the attacker’s perspective.

Thus, the Isolation factor I is an important measure from the

attacker’s perspective, and including this measure helps better

understand the overall anonymity of the system. Thus, all the

three measures in the 3-tuple metric (d, θ, I) are important

measures of sender anonymity provided by a system, albeit

one measure may be rendered more important than the others,

depending upon the perspective under consideration.

Let us consider an anonymous system with 3-tuple metric

(d, θ, I). For a given N , maximum anonymity is achieved

under the probability distribution D, defined in Section I. In

this case, d = 1, θ = 1
N and I = 0. As N → ∞, θ → 0, and

the maximum anonymity corresponds to 3-tuple (1, 0, 0).

B. Metric Interpretation and Evaluation

In order to characterize the overall anonymity of the system,

we propose that the desired attributes of the system be repre-

sented using weights assigned to each of the three dimensions

of the 3-tuple metric, and the overall anonymity of the system

should be viewed in relation to these weights. Let Wd, Wθ and

WI denote the weights associated with d, θ and I respectively,

such that,

0 ≤Wd, Wθ, WI ≤ 1, and Wd +Wθ +WI = 1. (6)

These weights are designed to reflect the attributes desired in

the system. For instance, if an end user is only interested in

local anonymity, she would view the system (and the 3-tuple

metric) using weights Wd = WI = 0, and Wθ = 1.

Once the weights have been assigned, representing
√
Wd ·d,√

Wθ · (1 − θ) and
√
WI · (1 − I) on the x−, y− and z−

coordinates respectively, the 3-tuple metric corresponds to a

point in the 3-dimensional unit sphere2. The distance of this

point from origin is interpreted as the overall anonymity of

the system, with the maximum anonymity corresponding to a

distance of 1. Specifically, this distance (denoted R) equals

R =
√

Wd · d2 +Wθ · (1 − θ)2 +WI · (1 − I)2. (7)

Maximum possible distance, Rmax =
√
Wd +Wθ +WI =

1. The distribution D with N → ∞ results in maximum over-

all anonymity of R = 1, regardless of the weights assigned.

Similarly, the distribution with least anonymity, given by

p1 = 1, pk = 0, ∀k ∈ {2, . . . ,N}, results in minimum overall

anonymity of R = 0, as N → ∞, regardless of the weights

assigned
(

since d = 0, θ = 1, and I =
√

N−1
N from (4)

)

.

Proposition 3: For distributions D1 and D2 with d1 > d2,

θ1 < θ2 and I1 < I2, overall anonymity R1 > R2, for all

choices of weights Wd, Wθ and WI .

Proof: Follows from (7).

The degree of anonymity provided by a system is accurately

characterized by 3-tuple (d, θ, I). The overall anonymity R
should only be considered to compare different anonymous

systems. For such comparisons, the choice of weights becomes

important. However, from Proposition 3, this choice is not

important for obvious comparisons, where one system is

evidently better than the other. (Note that Proposition 3 can be

extended to scenarios such as d1 > d2, θ1 = θ2 and I1 = I2.)

Only in cases where this comparison is non-trivial, the weights

should be chosen carefully to reflect user preferences during

the comparison. Indeed, with a different choice of weights,

the results of such comparisons are expected to differ. We

recommend considering equal weights Wd = Wθ = WI = 1
3 ,

in general. However, more sophisticated choices are also

possible.

Consider anonymous systems S1, S2 and S3 with overall

anonymity R1, R2 and R3 respectively. If R1 > R2, System

2Note that square root of weights is considered in order to assign the
maximum overall anonymity of 1 to a system with distribution D and
N → ∞, regardless of the weights assigned. Other ways to interpret the
3-tuple metric may also be plausible.
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S1 is considered to be R1

R2
times more anonymous than System

S2. Also, if S1 is u times more anonymous than S2, and S2 is

v times more anonymous than S3, then S1 is u · v times more

anonymous than S3.

V. COMPARISONS OF SYSTEMS WITH NEW METRIC

Example 1 revisited: Consider two systems with N1 = 7
and N2 = 509, where the distributions are given in Section II.

We have d1 = d2 = 0.708, and θ1 = θ2 = 0.4. For D1, the

number of outliers detected L1 = 0, and the Isolation factor

I1 = 0. For D2, the number of outliers detected L2 = 1, and

the Isolation factor is computed as I2 = 0.398. Considering

weights Wd = Wθ = WI = 1
3 , the overall anonymity of

System 1 equals R1 = 0.788, and for System 2 equals R2 =
0.639. Thus, System 1 is more anonymous than System 2,

under the chosen set of weights. Thus, using the 3-tuple metric

allows us to distinguish the two systems in terms of the degree

of anonymity provided. �

Example 2 revisited: Consider two systems with N1 =
N2 = 100, where the distributions are given in Section II, and

N = 15. We have d1 = 0.804, d2 = 0.806, and θ1 = θ2 =
0.2. For D1, the number of outliers detected L1 = 2, and

the Isolation factor is computed as I1 = 0.136. For D2, the

number of outliers detected L2 = 1, and the Isolation factor is

computed as I2 = 0.112. Considering weights Wd = Wθ =
WI = 1

3 , the overall anonymity of System 1, R1 = 0.823, and

for System 2, R2 = 0.832. Thus, System 2 is slightly more

anonymous than System 1, under the chosen set of weights.

In System 2 even though the first user is being isolated, the

attacker does not suspect this user a lot more than the next 15
users. On the other hand, in System 1, the attacker suspects

first 2 users very highly. Therefore, System 2 turns out to be

more anonymous than System 1. �

Let us examine the impact of choice of weights upon

comparison of systems, using Example 3 in Section II.

Example 3 revisited: Consider two systems with N1 =
N2 = 11, where the distributions are as given in Sec-

tion II. The 3-tuple metric for these systems are given

by (0.927, 0.3, 0.219) and (0.821, 0.3, 0.163) respectively.

Clearly, d1 > d2 and (1 − I1) < (1 − I2).
Case I: Let us consider a system designer’s perspective and

choose Wd = 0.8, Wθ = 0.1 and WI = 0.1. This results in

R1 = 0.893 and R2 = 0.811, and System 1 evaluates to be

more anonymous than System 2.

Case II: Let us consider an attacker’s perspective and choose

Wd = 0.1, Wθ = 0.1 and WI = 0.8. This results in R1 =
0.789 and R2 = 0.823, and System 2 evaluates to be more

anonymous than System 1.

Case III: Let us consider an end user’s perspective and

choose Wd = 0.1, Wθ = 0.8 and WI = 0.1. This results

in R1 = 0.734 and R2 = 0.728, and System 1 evaluates to

be slightly more anonymous than System 2 (similar to Case

I). Since θ1 = θ2, the degree of anonymity provided by the

two systems is similar from the end user’s perspective. �

Thus, an anonymous system may be more anonymous from

the perspective of system designer, but could turn out to be
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less anonymous for an attacker. Anonymity of a system should

be viewed keeping the desired attributes of system in mind.

VI. METRIC APPLICATION TO CROWDS

Consider the Crowds [6] system with N users, where

each user forwards the request to a randomly chosen user

with probability pf , and contacts the server directly with

probability (1 − pf ). [6], [10] consider an attack model with

C collaborating jondos (or users) in the system. The size of

anonymity set equals N , and the probability assigned to each

collaborating jondo equals 0. Given that a collaborator is on

the path between sender and receiver, the probability that the

sender is the first collaborator’s immediate predecessor is given

by [6]:

p1 = 1 − pf

N − C − 1

N
. (8)

Thus, one of the users (predecessor of first collaborating jondo

on the path) is suspected to be the sender with probability

p1. Assuming, all other non-collaborative users are equally

suspected,

pi =
1 − p1

N − C − 1
=
pf

N
, ∀i ∈ {2, . . . , N − C}. (9)

Using this probability distribution, we evaluate the 3-tuple

metric for Crowds for various values of pf , N and C, and
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compare these systems under equal weights, Wd = Wθ =
WI = 1

3 . Figure 1 depicts the overall anonymity (R) for N =
100. As the number of collaborating jondos (C) increases, the

anonymity of the system decreases. Further, the anonymity

increases as the probability of forwarding (pf ) increases for

all values of C, with the increase being higher when C is

small. Figure 2 depicts the anonymity of the system under a

fixed number of collaborating jondos (C = 9). We observe that

the anonymity increases with an increase in N for all values

of pf . However, the anonymity of the system saturates as N

is increased further, with the saturated anonymity value being

quite close to (and greater than) the probability of forwarding

(pf ). Thus, in order to achieve an overall anonymity of > 0.75,

we should either have N = 50 and pf = 0.9 or N = 100 and

pf = 0.8. When C is small, increasing the probability of

forwarding (pf ) would substantially increase the anonymity

in Crowds. However, when C is large, increasing the number

of users (N ) instead (such that C is a smaller fraction of N )

would lead to a higher degree of anonymity.

VII. SUMMARY AND CONCLUSIONS

We proposed a new isolation measure, based upon pres-

ence of outliers in a distribution, which is critical towards

quantifying the overall anonymity of a system. We proposed

a three-dimensional approach towards measuring anonymity,

and have applied our metric to an existing anonymous system,

Crowds. We provided justification for three distinct aspects of

the proposed 3-tuple metric, and provided interpretation of the

metric in terms of attributes desired in the system.
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APPENDIX

Outlier Detection: We briefly discuss the algorithm used to

detect outliers in a set of observations. The algorithm starts by

assuming that there is at least one outlier in the set. Using some

calculations, this hypothesis is either accepted or rejected. If

accepted, the algorithm assumes that there are at least two

outliers in the set, and so on. The algorithm stops when a

hypothesis gets rejected, and the number of outliers is declared

to be the value corresponding to the previous iteration. Let N

denote the total number of observations, and n denote the

total number of suspected observations during an iteration of

the algorithm. The sample standard deviation is denoted ε, and

the error threshold used in outlier detection is given by x · ε.
λ ·ε is the mean error after n observations have been declared

outliers. To declare n observations as outliers, the following

inequality should be satisfied [16]

λN−n e
1
2

n (x2−1) (ψ x)y < QN , (10)

where ψ x = 2√
2π

∞
∫

x

e−
1
2

x2

, and

QN =
nn (N − n)N−n

NN
, λN−n Rn = QN . (11)

x2 = 1 +
N − n

n
(1 − λ2), R = e

1
2

(x2−1) ψ x. (12)

Assuming n = 1, Q is computed using (11). Now, assuming

log10R = 9.2 (infact, log10R = 10 − 9.2, and we are just

following the same notation as in [15], [16]), λ is computed

using (11) and x is computed using (12). Then, R is obtained

using (12) (an appropriate table can also be used [17]), and

this value of R is used to recompute λ and x. This procedure is

followed until the value of x converges. The converged value

of x is used to define the error threshold. The observation i

is declared outlier if |pi − p̄| > x · ε. In the next iteration,

we assume n = 2, compute x and check for outliers. The

algorithm detects all outliers in the set, deviating in either

direction from the mean. Since, we are interested only in

observations whose value is significantly larger, we trim the

output of the algorithm, and choose only the outliers which

are greater than the mean.
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