
On Reoptimizing Multi-Class Classifiers∗

Kun Deng† Chris Bourke† Stephen D. Scott† Robert E. Schapire‡

N. V. Vinodchandran†

December 5, 2006

Abstract

Significant changes in the instance distribution or associated cost function of a learning problem
require one to reoptimize a previously learned classifier to work under new conditions. We study the
problem of reoptimizing a multi-class classifier based on its ROC hypersurface and a matrix describing
the costs of each type of prediction error. For a binary classifier, it is straightforward to find an optimal
operating point based on its ROC curve and the relative cost of true positive to false positive error.
However, the corresponding multi-class problem (finding an optimal operating point based on a ROC
hypersurface and cost matrix) is more challenging and until now, it was unknown whether an efficient
algorithm existed that found an optimal solution. We answer this question by first proving that the
decision version of this problem is NP-complete. As a complementary positive result, we give an algo-
rithm that finds an optimal solution in polynomial time if the number of classes n is a constant. We also
present several heuristics for this problem, including linear, nonlinear, and quadratic programming for-
mulations, genetic algorithms, and a customized algorithm. Empirical results suggest that under uniform
costs several methods exhibit significant improvements while genetic algorithms and margin maximiza-
tion quadratic programs fare the best under nonuniform cost models.

Keywords: Receiver Operator Characteristics, classifier reoptimization, multi-class classification.

1 Introduction

We study the problem of re-weighting classifiers to optimize them for new cost models. For example, given a
classifier optimized to minimize classification error on its training set, one may attempt to tune it to improve
performance in light of a new cost model. Equivalently, a change in the class distribution (the probability of
seeing examples from each particular class) can be handled by modeling such a change as a change in cost
model. More formally, we are concerned with finding a nonnegative weight vector (w1, . . . , wn) to minimize

m∑
i=1

c

(
yi, argmax

1≤j≤n
{wj fj(xi)}

)
, (1)

given labeled examples {(x1, y1), . . . , (xm, ym)} ⊂ X ×{1, . . . , n} for instance space X , a family of confidence
functions fj : X → R+ for 1 ≤ j ≤ n, and a cost function c : {1, . . . , n}2 → R+.

This models the problem of reoptimizing a multi-class classifier in machine learning. A machine learning
algorithm takes a set S = {(x1, y1), . . . , (xm, ym)} ⊂ X × {1, . . . , n} of labeled training examples and selects
a function F : X → {1, . . . , n} that minimizes misclassification cost on S, which is

∑m
i=1 c(yi, F (xi)), where

cost c(yi, F (xi)) is a nonnegative function measuring the cost of predicting class F (xi) on example xi whose
∗Preliminary results appeared in Deng et al. (2006).
†Dept. of Computer Science, University of Nebraska, Lincoln, NE 68588-0115, USA, {kdeng, cbourke, sscott,

vinod}@cse.unl.edu
‡Dept. of Computer Science, Princeton University, 35 Olden Street, Princeton, NJ 08540, USA, schapire@cs.princeton.edu

1

sscott
Technical Report TR-UNL-CSE-2006-0017, Department of Computer Science & Engineering, University of Nebraska

true label is yi. For convenience, we will assume that the classifier F is represented by a set of nonnegative
functions fj : X → R+ for j ∈ {1, . . . , n}, where fj(x) is the classifier’s confidence that x belongs in class
j, and F (x) = argmax1≤j≤n{fj(x)}. Each confidence function fj can be seen as a “base learner” (as in a
one-versus-rest strategy).

An obvious solution would be to simply rerun the base learning algorithm to reoptimize each confidence
function fj for the new cost function1. However, this process may be very expensive or even impossible.
Thus, the task before us is to reoptimize F without discarding the family of base learners. As an example,
consider the machine learning application of predicting where a company should drill for oil. In this example
the set of instances X consists of candidate drilling locations, each described by a set of attributes (e.g. fossil
history of the site, geographic features that quantify how well oil is trapped in an area, etc.). The set of
classes could be a discrete scale from 1 to n, where 1 indicates no oil would be found, and n indicates a
highly abundant supply. To learn its classifier F , the learning algorithm was given a set S ⊂ X × {1, . . . , n}
of instance-label pairs as well as a nonnegative, asymmetric cost function c, where c(j, k) measures the
cost of money and resources of thinking that an area of class j really was class k. (This function not only
indicates the cost of committing excessive resources to an area with too little oil, but also of committing
too few resources to an area with abundant oil.) Once the function F is learned and put into practice, it
may become the case that the cost function changes from c to c′, e.g. if new technologies in drilling and
shipping of oil emerge. If this happens, then the function F is no longer appropriate to use. One option
to remedy this is to discard F and train a new classifier F ′ on S under cost function c′. However this may
be very resource-consuming since many learning algorithms take extensive time and effort to train. (It may
also be impossible if the data S is unavailable, say due to proprietary restrictions.) In this case the best (or
perhaps only) choice is to reoptimize F based on a new (possibly smaller) data set. Such problems have been
studied extensively (Fieldsend & Everson, 2005; Ferri et al., 2003; Hand & Till, 2001; Lachiche & Flach,
2003; Mossman, 1999; O’Brien & Gray, 2005; Srinivasan, 1999).

For learning tasks with only n = 2 classes, this problem is equivalent to that of finding the optimal
operating point of a classifier given a ratio of true positive cost to false positive cost and has a straightforward
solution via Receiver Operating Characteristic (ROC) analysis (Lachiche & Flach, 2003). ROC analysis takes
a classifier F that outputs confidences in its predictions (i.e. a ranking classifier), and precisely describes the
tradeoffs between true positive and false positive errors. By ranking all examples x ∈ S by their confidences
h(x) from largest to smallest (denoted S = {x1, . . . , xm}), one achieves a set of n + 1 binary classifiers by
setting thresholds {θi = (h(xi) + h(xi+1))/2, 1 ≤ i < m} ∪ {h(x1) − ε, h(xm) + ε} for some constant ε > 0.
Given a relative cost c of true positive error to false positive error and a validation set S of labeled examples,
one can easily find the optimal threshold θ based on S and c (Lachiche & Flach, 2003). To do so, simply
rank the examples in S, try every threshold θi as described above, and select the θi minimizing the total
cost of all errors on S.

Though the binary case lends itself to straightforward optimization, working with multi-class problems
makes things more difficult. A natural idea is to think of an n-class ROC space having dimension n(n− 1).
A point in this space corresponds to a classifier, with each coordinate representing the misclassification rate
of one class into some other class2. According to Srinivasan (1999), the optimal classifier lies on the convex
hull of these points. Given this ROC polytope, a validation set, and an n × n cost matrix M with entries
c(y, ŷ) (the cost associated with misclassifying a class y example as class ŷ), Lachiche and Flach (2003) define
the optimization problem as finding a weight vector ~w ≥ ~0 to minimize (1).

No efficient algorithm is known to optimally solve this problem for n > 2, and Lachiche and Flach (2003)
speculate that the problem is computationally hard. We present a proof that the decision version of this
problem is in fact NP-complete. As a complementary positive result, we give an algorithm that finds an
optimal solution in polynomial time (w.r.t. the number of examples, m) when the number of classes n is
constant. We also present several new heuristics for this problem, including an integer linear programming
relaxation, a sum-of-linear fractional functions (SOLFF) formulation, and a quadratic programming formu-

1Equivalently, a change in the class distribution (the probability of seeing examples from each particular class) can be
handled by modeling such a change as a change in cost function.

2Assuming that cost is zero if the classification is correct, we need only n(n − 1) instead of n2 dimensions.

2

lation as well as a direct optimization of (1) with a genetic algorithm. Finally, we present a new custom
algorithm based on partitioning the set of all classes into two metaclasses. This algorithm is similar to
that of Lachiche and Flach (2003), but is more efficient. In our experiments, our algorithms yielded several
significant improvements both in minimizing classification error and minimizing cost.

The rest of this paper is as follows. In Section 2 we discuss related work. In Section 3 we prove the
decision version of this problem (which we call Reweight) is NP-complete and in Section 4 we present
an algorithm for producing an optimal solution that is efficient for a constant number of classes. Next,
in Section 5 we discuss our heuristic approaches to this problem. We then experimentally evaluate our
algorithms in Section 6 and conclude in Section 7.

2 Related Work

The success of binary ROC analysis gives hope that it may be possible to adapt similar ideas to multi-class
scenarios. However, research efforts (Srinivasan, 1999; Hand & Till, 2001; Ferri et al., 2003; Lachiche & Flach,
2003; Fieldsend & Everson, 2005) have shown that extending current techniques to multi-class problems is
not a trivial task. One key aspect to binary ROC analysis is that it is highly efficient to represent trade-offs
of misclassifying one class into the other via binary ROC curves. In addition, the “area under the curve”
(AUC) nicely characterizes the classifier’s ability to produce correct rankings without committing to any
particular operating point. Decisions can be postponed until a desired trade-off is required (e.g. finding the
lowest expected cost).

Now consider the problem of classification in an n-class scenario. A natural extension from the binary
case is to consider a multi-class ROC space as having dimension n(n− 1). A point in this space corresponds
to a classifier with each coordinate representing the misclassification rate of one class into some other class.
Following from Srinivasan (1999), the optimal classifier lies on the convex hull of these points.

Previous investigations have all shared this basic framework (Mossman, 1999; Srinivasan, 1999; Hand &
Till, 2001; Ferri et al., 2003; Lachiche & Flach, 2003; Fieldsend & Everson, 2005; O’Brien & Gray, 2005).
They differ, however, in the metrics they manipulate and in the approach they use to solve multi-class
optimization problems. Mossman (1999) addressed the special case of three-class problems, focusing on
the statistical properties of the volume under the ROC surface. This motivated the later work of Ferri
et al. (2003), Lachiche and Flach (2003), and O’Brien and Gray (2005). Hand and Till (2001) extended
the definition of two-class AUC by averaging pairwise comparisons. They used this new metric in simple,
artificial data sets and achieved some success. Ferri et al. (2003) took a different approach in which they
strictly followed the definition of two-class AUC by using “Volume Under Surface” (VUS). They were able
to compute the bounds of this measure in a three-class problem by using Monte Carlo methods. However,
it is not known how well this measure performs in more complex problems.

Fieldsend and Everson (2005), Lachiche and Flach (2003) and O’Brien and Gray (2005) developed algo-
rithms to minimize the overall multi-class prediction accuracy and cost given some knowledge of a multi-class
classifier. In particular, Fieldsend and Everson approximate the ROC Convex Hull (ROCCH) using the idea
of “Pareto front.” Consider the following formulation: let Rj,k(θ) be the misclassification rate of predicting
examples from class j as class k. This is a function of some generalized parameter θ that depends on the
particular classifiers. For example, θ may be a combination of a weight vector ~w and hypothetical cost
matrix M . The goal is to find θ that minimizes Rj,k(θ) for all j, k with j 6= k. Consider two classifiers θ and
φ. Fieldsend and Everson say θ strictly dominates φ if all misclassification rates for θ are no worse than φ
and at least one rate is strictly better. The set of all feasible classifiers such that no one is dominated by
the other forms the Pareto front. Fieldsend and Everson present an evolutionary search algorithm to locate
the Pareto front. This method is particularly useful when misclassification costs are not necessarily known.

More closely related to our work are the results of Lachiche and Flach (2003) and O’Brien and Gray
(2005). Lachiche and Flach considered the case when the misclassification cost is known, and the goal is
to find the optimal decision criterion that fits the training set. Recall that this can be solved optimally for
the binary case. In particular, only one threshold θ is needed to make the decision for two-class problems.
Since there are only m + 1 possible thresholds for m examples, it is efficient enough to simply test all

3

possibilities and select the one that gives the minimum average error (or cost). However, the situation is
more complicated for multi-class problems. The main obstacle in the multi-class case is that the number of
possible classification assignments grows exponentially in the number of instances: Ω(nm).

Lachiche and Flach (2003) formulated the multi-class problem as follows. Suppose the multi-class learning
algorithm will output a positive, real-valued function f : {x1, . . . , xm} × {C1, . . . , Cn} → R+. Here, fj(xi)
gives the confidence that example xi belongs to class j. The decision criterion simply assigns example xi

to the class with maximum score. Reweighting the classes involves defining a nonnegative weight vector
~w = (w1, w2, . . . , wn), and predicting the class for an example x as

h(x) = argmax
1≤j≤n

{
wjfj(x)

}
.

Since ~w has only n− 1 degrees of freedom, so we can fix w1 = 1.
Lachiche and Flach (2003) used a hill climbing heuristic to find a good weight vector ~w. In particular,

they took advantage of the fact that the optimal threshold for the two-class problem can be found efficiently.
For each coordinate in the weight vector, they mapped the problem to a binary problem. The algorithm
starts by assigning w1 = 1 and all other weights 0. It then tries to decide the weight for one class at a time
as follows. Let S be the set of labeled examples and let j be the current class for which we want to assign a
“good” weight wj . Then the set of possible weights for wj is{

maxi∈{1,...,j−1} fi(x)
fj(x)

∣∣∣∣ x ∈ S

}
.

It is not difficult to see that at any stage there are at most O(|S|) possible weights that can influence
the prediction. Thus choosing the optimal weight in this setting can be easily achieved by checking all
possibilities. Overall, their algorithm runs in time Θ(nm log m). Though there is no guarantee that this
approach can find an optimal solution, they gave empirical results that it works well for optimizing 1BC, a
logic-based Bayes classifier (Lachiche & Flach, 1999).

Although only briefly mentioned by Lachiche and Flach (2003), this ROC thresholding technique is quite
extensible to cost-sensitive scenarios. O’Brien and Gray (2005) investigated the role of a cost matrix in
partitioning the estimated class probability space and as a replacement for the weights. Assuming that M
is a misclassification cost matrix, an optimal decision criterion would be

h(x) = argmax
1≤j≤n

 ∑
1≤k≤n

c(j, k) p̂k(x)

 .

If p̂k(x) is a good probability estimate of example x belonging to class k, this prediction results in the lowest
expected cost. However, if p̂k(x) is not an accurate probability estimate, then to ensure optimality, the cost
matrix M has to be altered accordingly. Thus the cost matrix M plays a similar role as the weight vector
of Lachiche and Flach (2003) in defining the decision boundary in estimated probability space. O’Brien and
Gray (2005) defined several standard operations to manipulate the cost matrix M and proposed the use of
a greedy algorithm to find the altered cost matrix (called a boundary matrix).

While the multi-class problem has been studied via heuristics, no one has yet answered the question as
to whether this problem is hard, and no one has found efficient algorithms to solve restricted cases of the
multi-class problem. Below we provide answers to both of these open questions as well as extend the current
literature of heuristics.

3 Hardness

We now prove our hardness result of this problem. For convenience, we use fij to denote fi(xj). We will
show hardness for the uniform cost case, i.e. c(j, k) = 1 when j 6= k and 0 otherwise. This of course implies
hardness for any nontrivial cost function.

4

Definition 1. Problem Reweight
Given: nonnegative real numbers fij (i = 1, . . . ,m, j = 1, . . . , n), integers yi ∈ {1, . . . , n}, and an integer K.
Question: does there exist a vector of nonnegative real numbers (w1, . . . , wn) such that∣∣∣∣{i : max

j 6=yi

{wjfij} ≥ wyifiyi

}∣∣∣∣ ≤ K ? (2)

In other words, the problem is to find a vector ~w = (w1, . . . , wn) that maximizes how often wjfij is maximized
(over j) by the correct label yi.

To prove the hardness of Reweight, we will reduce from the minimum satisfiability problem MinSat,
shown to be NP-complete by Kohli et al. (1994).

Definition 2. Problem MinSat (Kohli et al., 1994)
Given: a set of disjunctions of pairs of literals

`11 ∨ `12

`21 ∨ `22
...

`m1 ∨ `m2 ,

where each `ij is a boolean variable xi or its negation ¬xi. We are also given an integer K.
Question: does there exist a setting of x1, . . . , xn such that the number of satisfied clauses (disjuncts) is at
most K?

Theorem 1. Reweight is NP-complete.

Proof. First, it is easy to see that Reweight is in NP. The certificate is simply the weight vector ~w.
This certificate is sized polynomially in the size of the input since its required precision is polynomially
proportional to the precision of the input (the number of bits to represent each fij). We now reduce from
MinSat. Note that a special case of the constraint

max
j 6=yi

{wjfij} ≥ wyifiyi

used in (2) is an inequality of the form
wj0fij0 ≥ wyifiyi (3)

for one particular j0 6= yi. This can be seen simply by setting all of the other fij ’s to zero, which gives

max{0, wj0fij0} ≥ wyifiyi . (4)

Since in our construction the wj ’s and fij ’s are nonnegative, these are equivalent. So, in what follows, we
give constraints of the form of (3), but these really are of the form of (4). Thus while for the sake of clarity
we map instances of MinSat to inequalities, it is straightforward to convert these to a collection of fij and
yi values in Reweight.

Given an instance of MinSat as above, we create an instance of Reweight. The new instance has
n′ = 2n + 1 weights: v0; w1, . . . , wn; and w′

1, . . . , w
′
n. The weight v0 is forced to be strictly positive, and is

used as a reference for all other weights. Roughly speaking, wi will correspond to boolean variable xi and
w′

i will correspond to its negation. More specifically, we will force wi to have a value close to 2v0 if xi is
true, and a value close to v0 otherwise; w′

i will be forced to take just the opposite values (close to v0 if xi

is true, close to 2v0 if xi is false). We will also construct constraints corresponding to the MinSat clauses
which are satisfied if and only if the MinSat clauses are satisfied.

To be more specific, we construct four classes of constraints. Each of these constraints actually gets
repeated several times in the construction of the reduced instance, meaning that if the constraint holds, then
it holds several times. In this way, the constraints can be assigned varying importance weights.

5

A. First, we force v0 to be strictly positive. To do so, we include the constraint:

v0 ≤ 0 .

(Recall that the goal is to minimize how many of these constraints are satisfied, which effectively means
that it will be forced to fail so that v0 > 0.) This constraint gets repeated rA times, as specified below.

B. Next, we force each wi and w′
i to have a value roughly between v0 and 2v0. To do so, we simply include

constraints:

wi ≤ 0.99v0

wi ≥ 2.01v0

w′
i ≤ 0.99v0

w′
i ≥ 2.01v0

for each i. Each of these is repeated rB times.

C. Next, we add constraints that will effectively force (for each i) exactly one of wi and w′
i to be close to

v0, and the other to be close to 2v0. These are the constraints:

wi ≤ 1.99w′
i

w′
i ≤ 1.99wi .

In the optimal solution, we will see that exactly one of these two constraints will hold. These constraints
each get repeated rC times.

D. Finally, we encode the actual clauses of the MinSat instance. A MinSat clause of the form xi ∨ xj

becomes the constraint
0.8w′

i ≤ wj .

A MinSat clause of the form ¬xi ∨ xj becomes the constraint

0.8wi ≤ wj .

A MinSat clause of the form xi ∨ ¬xj becomes the constraint

0.8w′
i ≤ w′

j .

And a MinSat clause of the form ¬xi ∨ ¬xj becomes the constraint

0.8wi ≤ w′
j .

Each of these is repeated only once.

The value K for the instance of Reweight that we constructed is denoted K ′ (reserving K for the
corresponding value of the original MinSat instance). We let:

rC = K + 1
K ′ = K + n rC

rB = K ′ + 1
rA = K ′ + 1 .

This completes the construction, which is clearly polynomial in all respects. We now need to argue that
the MinSat instance is “yes” if and only if the reduced Reweight instance is also “yes”.

6

Suppose then that x1, . . . , xn satisfies at most K of the MinSat clauses. In this case, we can easily
construct settings of the weights so that at most K ′ of the constructed constraints are satisfied.

Let v0 = 1 and let

wi =
{

1 if xi = 0
2 if xi = 1 ,

and let

w′
i =

{
1 if wi = 2
2 if wi = 1 .

Then none of the constraint of types A and B is satisfied. Exactly half of the constraints of type C are
satisfied, which means n rC constraints of type C are satisfied.

What about the constraints of type D? We claim that for each satisfied clause of the MinSat solution,
the corresponding type-D constraint is satisfied. If a clause of the form xi ∨ xj is satisfied, then xi = 1 or
xj = 1, which means that wi = 2 or wj = 2, which means w′

i = 1 or wj = 2, which means that 0.8w′
i ≤ wj .

Conversely, if xi ∨ xj is not satisfied, then xi = 0 and xj = 0, which means that wi = 1 and wj = 1, which
means w′

i = 2 and wj = 1, which means that 0.8w′
i 6≤ wj . (The arguments are the same when some of the

variables appear negated in the clause.)
Thus, because at most K of the clauses are satisfied, it follows that at most K of the type-D constraints

are satisfied. Therefore, the total number of satisfied constraints is at most K + n rC = K ′.
We now argue the other direction. Suppose that v0, w1, . . . , wn, w′

1, . . . , w
′
n satisfy at most K ′ of the

constructed constraints.
First of all, this means that

v0 > 0

since rA > K ′. Also, since rB > K ′, this means that

0.99v0 < wi < 2.01v0 (5)

and
0.99v0 < w′

i < 2.01v0 . (6)

Next, we claim that either
wi ≤ 1.99w′

i (7)

or
w′

i ≤ 1.99wi . (8)

Otherwise, if neither of these were true, then we would have

wi > 1.99w′
i > (1.99)2wi ,

which implies that wi < 0. However, we have already established that wi > 0.99v0 > 0.
Further, we claim that at most one of (7) or (8) can be satisfied. We already have established that at

least one constraint of each pair must be satisfied. If, in addition, both held for some pair, then the number
of satisfied type-C constraints would be at least

(n− 1)rC + 2rC = n rC + rC > K ′ .

So exactly one of each pair of type-C constraints is satisfied.
We next claim that for each i, exactly one of wi and w′

i is in the interval (0.99v0, 1.1v0) and the other is
in (1.9v0, 2.01v0). We know that either (7) or (8) is satisfied. Suppose w′

i > 1.99wi. If w′
i ≤ 1.9v0 then

wi <
w′

i

1.99
≤ 1.9v0

1.99
< 0.99v0 ,

a contradiction since we have already shown that wi > 0.99v0. Also, if wi ≥ 1.1v0, then

w′
i > 1.99wi ≥ 1.99 · 1.1v0 > 2.01v0 ,

7

again a contradiction since w′
i < 2.01v0. So in this case, wi < 1.1v0 and w′

i > 1.9v0. Moreover, because (5)
and (6) hold, we have in this case that wi ∈ (0.99v0, 1.1v0) and w′

i ∈ (1.9v0, 2.01v0). In this case, we assign
the boolean variable xi the value 0. By a similar argument, if wi > 1.99w′

i then w′
i ∈ (0.99v0, 1.1v0) and

wi ∈ (1.9v0, 2.01v0). In this case, we assign the boolean variable xi the value 1.
We have established that exactly n rC type-C constraints are satisfied, and none of the type-A and type-B

constraints is satisfied. Since at most K ′ constraints are satisfied altogether, this means that at most K
type-D constraints are satisfied. We complete the reduction by showing that a type-D constraint is satisfied
if and only if the corresponding MinSat clause is satisfied (according to the assignment constructed above),
which will mean that at most K of these are satisfied.

Suppose xi ∨ xj is satisfied. Then xi = 1 or xj = 1, which means either wi > 1.9v0 or wj > 1.9v0, which
means either w′

i < 1.1v0 or wj > 1.9v0. We claim, in either case, that the constraint 0.8w′
i ≤ wj is satisfied.

For if w′
i < 1.1v0, then because wj > 0.99v0, we have

0.8w′
i < 0.8 · 1.1v0 = 0.88v0 < 0.99v0 < wj .

And if wj > 1.9v0 then because w′
i < 2.01v0, we have

0.8w′
i < 0.8 · 2.01v0 = 1.608v0 < 1.9v0 < wj .

Conversely, if xi ∨ xj is not satisfied then xi = 0 and xj = 0, which means that wi < 1.1v0 and wj < 1.1v0,
which means that w′

i > 1.9v0 and wj < 1.1v0, which means that

0.8w′
i > 0.8 · 1.9v0 = 1.52v0 > 1.1v0 > wj ,

so the constraint 0.8w′
i ≤ wj is not satisfied.

4 Constant-Class Algorithm

We now present an algorithm that finds an optimal solution for a nonuniform cost function in polynomial
time when the number of classes n is constant. Our algorithm takes as input a set of nonnegative real
numbers fij for i = 1, . . . ,m and j = 1, . . . , n, integers (labels) yi ∈ {1, . . . , n}, and a nonnegative cost
function c : {1, . . . , n}2 → R+. Assuming n is a constant, in time polynomial in m it will output a vector of
weights (w1, . . . , wn) that minimizes (1).

Our algorithm is based on the observation that class j will be predicted for instance i if and only if
wj/wk > fik/fij for all k 6= j. Thus for a fixed (j, k) pair, there are only m values of fik/fij that can affect the
value of (1). We will call these values breakpoints. For each (j, k) pair, one can easily compute all breakpoints,
add in −∞ and +∞, sort them, and place them in an ordered set Bjk = (−∞, f1k/f1j , . . . , fmk/fmj ,+∞).

We use Bjk
` to denote the `th element in Bjk. So a candidate range of values of wj/wk is

(
Bjk

` , Bjk
`+1

]
.

We now define a configuration C as a set of pairs of breakpoints across all (j, k) pairs:

C =
⋃

j∈{1,...,n},k 6=j

{
Bjk

`jk
< wj/wk ≤ Bjk

1+`jk

}
,

for `jk ∈ {1, . . . ,m + 1}. We say that C is realizable if there exists a set of nonnegative weights that satisfies
all of its constraints. If no such set of weights exists, we say C is unrealizable.

The idea of our algorithm is simple. It enumerates each configuration C and then uses linear programming
to test if C is realizable3. If it is not, then we test the next configuration. If instead C is realizable, then the
weight vector returned by the linear programming algorithm is one of our candidate solutions to minimize

3To handle the strict inequalities, we simply convert each constraint a > b to a ≥ b + ε, constrain 1 ≥ ε ≥ 0, then maximize
ε subject to the new constraints (note that we use the same ε for each strict constraint). If a solution is returned with ε > 0
then we know the configuration is realizable. If no solution is found or if ε = 0, then it is not realizable.

8

(1). Our algorithm stores this weight vector with its cost and then checks the remaining configurations.
Once all configurations have been checked, the algorithm returns the one with minimum cost.

Consider an optimal solution ~w∗. Let C∗ be the configuration it satisfies. Any other positive weight
vector ~w that also satisfies C∗ must also be optimal since it induces the same collection of predictions and
hence has the same value of (1). Since our algorithm tries all configurations, it also tries C∗. Since C∗

is realizable, the algorithm finds a weight vector ~w satisfying it. Since ~w must be optimal, our algorithm
returns an optimal weight vector.

Each (j, k) pair has at most m + 2 breakpoints, which means that the number of (Bjk
` , Bjk

`+1) pairs for
class pair (j, k) is at most m + 1. So the number of configurations is at most

(m + 1)2(
n
2) = (m + 1)n2−n ,

which is polynomial for constant n. (We can also combine Bjk with Bkj before sorting, which would reduce
the number of configurations to (2m + 1)(

n
2).) Further, it takes polynomial time to test each configuration

for realizability via linear programming and it takes polynomial time to compute the cost of each candidate
solution. Therefore this algorithm takes polynomial time.

Theorem 2. There exists an algorithm to produce an optimal solution to (1) that runs in polynomial time
when the number of classes n is constant.

5 Heuristics

For even modest values of n the time complexity of the constant-class algorithm in the previous section is
not practical. For this reason, we present several alternative heuristics to solve the reoptimization problem.
Specifically, we present several new mathematical programming formulations. First, we reformulate the
objective function (1) as a relaxed integer linear program. We also give formulations as a sum of linear
fractional functions (SOLFF) as well as a quadratic program. Besides these formulations, we describe a
tree-based heuristic algorithm approach, MetaClass. Finally, (in Section 6) we present experimental results
from these formulations. We give evidence that, under nonuniform costs, the objective function landscape
for this problem is highly discontinuous and thus more amenable to global optimization methods such as
genetic algorithms and margin maximization methods.

5.1 Mathematical Programming Formulations

5.1.1 Relaxed Integer Linear Program

We start by reformulating (1) as follows:

minimize
~w,~I

m∑

j=1

m∑
k=1

c(j, k)
∑

xi∈Cj

Ii,k

 , (9)

where Cj ⊆ S is the set of instances of class j, c(j, k) is the cost of misclassifying an example from class j
as k, and

Ii,k =
{

1 if wkfk(xi) ≥ w`f`(xi), ` 6= k
0 otherwise .

Recall that fk(xi) is the base learner’s confidence that example xi belongs to class k. Also, we assume
c(j, j) = 0 for all classes j. Formalizing this as a constrained optimization problem, we want to minimize (9)
subject to

Ii,jwjfj(xi) = Ii,j max1≤k≤m{wkfk(xi)} (10)∑m
j=1 Ii,j = 1 (11)

Ii,j ∈ {0, 1} (12)
wj ≥ 0 (13)

9

where each constraint holds for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}. Equation (10) allows only the class
that has the max value of wkfk(xi) to be indicated by ~I to be the predicted class of example xi and (11)
forces exactly one class to be predicted per example xi.

We can change the optimization problem in two ways to get an equivalent problem. First, we change
the “=” in (10) to “≥”. Second, we can relax (12) to be Ii,j ∈ [0, 1]. Note that (10) (even when amended
with “≥”) will only be satisfied if Ii,j = 0 for all Cj that don’t maximize the RHS of (10). Thus, so long as
we never have wkfk(xi) = wk′fk′(xi) for some k 6= k′, the relaxation is equivalent to the original problem.
Further, even if there is such a tie for classes k and k′, it will not be an issue if the corresponding entries in
the cost matrix are different, since an optimal solution will set Ii,k = 1 and Ii,k′ = 0 if c(j, k) < c(j, k′). The
potential problem of both wkfk(xi) = wk′fk′(xi) and c(j, k) = c(j, k′) is fixed by (after optimizing) checking
for any Ii,k 6∈ {0, 1} and arbitrarily choosing one to be 1 and the rest 0. Note that since there is a tie in this
case, the prediction can go either way and the weight vector ~w returned is still valid.

Everything except (10) is linear. We now reformulate it. First, for each i ∈ {1, . . . , n}, we substitute γi

for max1≤k≤m{wkfk(xi)}:

Ii,jwjfj(xi) ≥ γi Ii,j (14)
wkfk(xi) ≤ γi , (15)

for all i ∈ {1, . . . , n} and j, k ∈ {1, . . . ,m} where each γi is a new variable. Obviously (15) is a linear con-
straint, but (14) is not even quasiconvex (Boyd & Vandenberghe, 2004). The complexity of this optimization
problem motivates us to reformulate it a bit further.

Let us assume that fk(xi) ∈ (0, 1] (e.g. if fk(·) are probability estimates from näıve Bayes or logistic
regression). Now we can optimize (9) subject to:

γi − wjfj(xi) + Ii,j ≤ 1 (16)
γi ≥ wjfj(xi) (17)∑m

j=1 Ii,j = 1 (18)
Ii,j ∈ {0, 1} (19)

wj ≥ 0 (20)

for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.
So long4 as wjfj(xi) ∈ (0, 1] and Ii,j ∈ {0, 1} for all i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}, this is another

equivalent optimization problem, this time a {0, 1} integer linear program. Unfortunately, we cannot relax
(19) to Ii,j ∈ [0, 1] as we did before to get an equivalent problem. But we still use the relaxation as a linear
programming heuristic. To help avoid overfitting, we also add a linear regularization term to (9):

minimize
~w,~I

m∑

j=1

m∑
k=1

c(j, k)
∑

xi∈Cj

Ii,k + η‖~w −~1‖1

 (21)

where ‖ · ‖1 is the 1-norm, ~1 is the all-1s vector, and η is a parameter. This regularizer penalizes large
deviations from the original classifier.

5.1.2 Sum of Linear Fractional Functions Formulation

Another formulation comes from changing how predictions are made from deterministic to probabilistic. In
this prediction model, given a new example x to predict on, first compute wjfj(x) for each j ∈ {1, . . . ,m}.
Then predict class j for example x with probability

wjfj(x)∑m
k=1 wkfk(x)

.

4We can ensure this happens by bounding each wj appropriately.

10

Assuming a uniform distribution over the data set, the expected cost of this predictor is

m∑
j=1

m∑
k=1

c(j, k)
∑

xi∈Cj

ϕ(i, j) , (22)

where

ϕ(i, j) =
wjfj(xi)∑m
`=1 w`f`(xi)

subject to wj ≥ 0 for all j ∈ {1, . . . ,m}. We now have eliminated the variables Ii,j and their integer
constraints. However, we now have a nonlinear objective function in (22). Each individual term of the
summation of (22) is a linear fractional function, which is quasiconvex and quasiconcave, and thus it is
efficiently solvable optimally. However, the sum of linear fractional functions (SOLFF) problem is known
to be hard (Matsui, 1996) and existing algorithms for this problem are inappropriate in solving (22) (they
either restrict to few terms in the summation or to low-dimensional vectors). Instead, we apply a genetic
algorithm to directly optimize (22).

5.1.3 Quadratic Programming Formulation

Convex programming is a special case of nonlinear programming in which the objective function and the
inequality constraint functions are convex and the equality constraint functions are affine. The theory of
convex programming is well-established (Rockafellar, 1970; Stoer & Witzgall, 1996). For a convex program,
a local optimum is the global optimum and there are well-studied efficient algorithms to find such global
optimum.

We tried several quadratic programming methods based on the idea of “margin maximization” in support
vector machines. We found from our experiments that the ν-SVM-like formulation similar to that of Schölkopf
and Smola (2002) gave the strongest result:

minimize
~w,~b,~ζ,ρ

1
2‖~w‖2 + 1

m

∑m
i=1 ζi−νρ (23)

s.t. wjfj(xi) + bj ≤ wifyi(xi) + byi + ζi − ρ ∀i,∀j 6= yi (24)
~̀
w ≤ ~w ≤ ~uw (25)
~̀
b ≤ ~b ≤ ~ub (26)

~0 ≤ ~ζ (27)
0 ≤ ρ (28)

where ~w = (w1, . . . , wn) is our weight vector and ~b = (b1, . . . , bn) is a reweighting offset. The vector
~ζ = (ζ1, . . . , ζn) serves as set of slack variables and ρ as the margin with ν as a parameter. Furthermore,
~lw, ~uw are the lower and upper bounds of ~w and ~lb, ~ub are bounds for ~b, all tunable parameters. In order to
capture nonuniform costs we replace ζi with ciζi where ci = maxj=1,...,m{c(yi, j)}.

In our experiments, ν was fixed to be 0.1. The lower and upper bounds on w, ~lw, ~uw, were set to 0 and
1 respectively. We also tried several parameters for the offset, but little difference was observed. Thus, our
experimental results use no offset (the lower and upper bounds on ~b were set to 0).

5.2 The MetaClass Heuristic Algorithm

We now present a new algorithm that we call MetaClass (Algorithm 1). This algorithm is similar to that
of Lachiche and Flach (2003) in that we reduce the multi-class problem to a series of two-class problems.
However, we take what can be considered a top-down approach while the algorithm of Lachiche and Flach
(2003) can be considered bottom-up. Moreover, MetaClass has a faster time complexity. The output of
the algorithm is a decision tree with each internal node labeled by two metaclasses and a threshold value.

11

Each leaf node is labeled by one of the classes in the original problem. At the root, the set of all classes is
divided into two metaclasses. The criterion for this split may be based on any statistical measure, but for
simplicity, experiments were performed by splitting classes so that each metaclass would have roughly the
same number of examples. For each metaclass, our algorithm defines confidence functions g1(xi) and g2(xi)
for each instance xi, which are simply the sum of the confidences of the classes in C1 and C2, respectively.
The ratio G(xi) = g1(xi)/g2(xi) is used to find a threshold θ. We find θ by sorting the instances according
to G(xi) and choose a threshold that minimizes error. (This threshold will be the average of G(xi) and
G(xi+1) for some instance xi.) We recursively perform this procedure on the two metaclasses until there is
only a single class, at which point a leaf is formed.

The situation for nonuniform costs is slightly more complicated since it is not clear which class among
those in metaclass an example is misclassified as. Recall that our cost function c(y, ŷ) represents the cost of
misclassifying an instance x of class y as class ŷ. However, in this case we need a cost function to quantify
the cost of misclassifying an example into a set of classes. Formally, we need a function c′ : C × 2C → R+.
There are numerous natural extensions from c to c′. For our experiments, c′ represents the average cost of
misclassifying instances into metaclasses in C1 and C2. More formally, if C′ ⊆ C, we define c′(y, C′) to be 0 if
y ∈ C′ (that is, x’s true label class is in the metaclass) and

1
|C′|

∑
j∈C′

c(y, j)

otherwise. The MetaClass algorithm is presented as Algorithm 1.

Input : A set of instances, S = {x1, . . . , xm}; a set of classes, C = {1, . . . , n};
a learned confidence function f : S × C → R+ and a tree node T

Output : A decision tree with associated weights.

Split C into two metaclasses C1, C2 such that each metaclass has about an equal1

number of classes.

foreach Instance xi ∈ S do2

g1(xi) =
P

j∈C1
fj(xi)3

g2(xi) =
P

j∈C2
fj(xi)4

G(xi) = g1(xi)/g2(xi)5

end6

Sort instances according to G7

Select a threshold θ that minimizes8

mX
i=1

c′(yi, Mθ(xi))

where

Mθ(xi) =

C1 if θ ≥ G(xi)
C2 otherwise

Label T with θ, C1, C29

Create two children of T : Tleft, Tright10

Split S into two sets, S1, S2 according to C1, C211

Recursively perform this procedure on S1, C1, Tleft and S2, C2, Tright until |C| = 112

Algorithm 1: MetaClass

Figure 1 gives an example of a tree built by the MetaClass algorithm on the UCI (Blake & Merz, 2005)
data set Nursery, a 5-class data set. At the root, the classes are divided into two metaclasses, each with about
the same number of examples represented in their respective classes. In this case, the threshold θ = 0.8169
favors the sum of confidences in metaclass C1 = {4, 3} as an optimal weight.

12

T0 : θ = 0.8169
C1 = {4, 3}
C2 = {1, 5, 2}

T1 : θ = 0.2897
C1 = {3}
C2 = {4}

predict 3

g1(x) = f3(x)

predict 4

g2(x) = f4(x)

g1(x) =
∑

j=3,4

fj(x)

T2 : θ = 144.31
C1 = {5}
C2 = {1, 2}

predict 5

g1(x) = f5(x)

T3 : θ = 9.322
C1 = {1}
C2 = {2}

predict 1

g1(x) = f1(x)

predict 2

g2(x) = f2(x)

g2(x) =
∑

j=1,2

fj(x)

g2(x) =
∑

j=1,2,5

fj(x)

Figure 1: Example run of MetaClass on Nursery, a 5-class problem.

Predictions for a new example x are made as follows. Starting at the root node, we traverse the tree
towards a leaf. At each node T we compute the sum of confidences of x with respect to each associated
metaclass. We traverse left or right down the tree depending on whether g1(x)/g2(x) ≥ θ. When a leaf is
reached, a final class prediction is made.

The number of nodes created by MetaClass is Θ(n), where n is the number of classes. Since the split into
two metaclasses ensures each has an equal number of classes, MetaClass results in a log (n)-depth tree. At
each level, the most complex step is sorting at most m instances according to the confidence ratio. Thus,
the overall time complexity is bounded by O(m log m log n). This represents a significant speedup to the
algorithm of Lachiche and Flach (2003), which requires Θ(nm log m) time. Classification is also efficient.
At each node we compute a sum over an exponentially shrinking number of classes. The overall number of
operations is thus

log (n)−1∑
i=0

n

2i
,

which is linear in the number of classes: Θ(n). This matches the time complexity of Lachiche and Flach’s
with respect to classification.

6 Experimental Results

The following experiments were performed on 25 standard UCI data sets (Blake & Merz, 2005), using
Weka’s näıve Bayes (Witten et al., 2005) as the baseline classifier and Matlab’s optimization functions for
reoptimization. We ran experiments evaluating improvements both in classification accuracy and under
nonuniform cost. We used 10-fold cross validation for error rate experiments (Table 1). For the cost
experiments of Table 2, 10-fold cross validations were performed on 10 different cost matrices for each data
set. Costs were integer values between 1 and 10 assigned uniformly at random. Costs on the diagonal were
set to zero. The average cost per test instance was reported for each experiment. Table 2 gives the average
cost over all 100 experiments per data set, per algorithm.

13

Table 1: Error Rates. Näıve Bayes is our baseline classifier. L&F is our implementation of Lachiche & Flach
(2003). MC is MetaClass (Algorithm 1). LP, GA and QP are the Relaxed Integer Linear Programming,
Genetic Algorithms and Quadratic Programming formulations optimizing their respective objective func-
tions. Bold font denotes a significant difference to the baseline with at least 95% confidence according to
the Student’s t method. The overall best classifier among all algorithms is underlined.

Näıve LP GA GA QP
Data Set n Bayes L&F MC Eq. (21) Eq. (22) Eq. (1)
Audiology 24 0.3095 0.2784 0.4816 0.2869 0.2826 0.2872 0.2337
Bridges 2 (material) 3 0.1582 0.2427 0.2436 0.2709 0.1764 0.2136 0.2436
Bridges 2 (rel-l) 3 0.3164 0.3527 0.3336 0.3081 0.3355 0.3455 0.3073
Bridges 2 (span) 3 0.2227 0.3190 0.2245 0.2427 0.4018 n/a 0.2518
Bridges 2 (type) 6 0.4564 0.5418 0.4564 0.4654 0.4664 0.4655 0.4936
Bridges 2 (t-or-d) 2 0.1755 0.2327 0.1955 0.1754 0.1936 0.2500 0.1654
Car 4 0.1464 0.1197 0.1267 0.1336 0.1724 0.1209 0.1331
Post-Op 3 0.4949 0.4738 0.4881 0.4948 0.4990 0.4908 0.4853
Horse-colic (code) 3 0.3173 0.3202 0.3179 0.3172 0.2931 0.3120 0.3174
Horse-colic (surgical) 2 0.2089 0.1709 0.1710 0.2089 0.1791 0.1791 0.1980
Horse-colic (site) 63 0.7634 0.7716 0.7770 0.7634 0.7444 0.7661 0.7661
Horse-colic (subtype) 2 0.0027 0.0081 0.0027 0.0027 0.0027 0.0027 0.0027
Horse-colic (type) 8 0.0409 0.0488 0.0272 0.0409 0.0327 0.0354 0.0326
Credit 2 0.2490 0.2560 0.2570 0.2490 0.2720 0.2580 0.2530
Dermatology 6 0.0273 0.0218 0.0192 0.0273 0.0273 0.0165 0.0219
Ecoli 8 0.1516 0.1972 0.1608 0.1545 0.1640 0.1368 0.1637
Flags 8 0.3761 0.4063 0.4213 0.3707 0.3705 0.3808 0.3860
Glass 7 0.5236 0.3790 0.5472 0.5235 0.4260 0.4959 0.5008
Mushroom 2 0.0420 0.0179 0.0181 0.0374 0.0192 0.0178 0.0272
Nursery 5 0.0968 0.0851 0.0849 n/a n/a 0.0847 n/a
Image Segmentation 7 0.1974 0.1567 0.1485 0.1974 0.1260 0.1727 0.2000
Solar Flare (common) 8 0.2364 0.1726 0.1745 0.2364 0.1708 0.1980 0.2176
Solar Flare (moderate) 6 0.0732 0.0337 0.0356 0.0731 0.0338 0.0507 0.0497
Solar Flare (severe) 3 0.0282 0.0056 0.0085 0.0234 0.0047 0.0207 0.0141
Vote 2 0.0965 0.1081 0.1081 0.0964 0.0942 0.0965 0.1056
Win/Loss – 11/14 11/12 6/5 13/11 15/9 11/11
Significant Win/Loss – 8/3 8/2 3/1 7/3 8/3 5/2

In both tables, for each data set, n denotes the number of classes. The first column is the performance
of our baseline classifier. For comparison, we have included results of our implementation for the algorithm
of Lachiche and Flach (2003) on this baseline classifier. The results of the experiments on our heuristics
can be found in the last five columns of each table. Here, MC is the MetaClass algorithm (Algorithm 1).
LP is a linear programming algorithm (MOSEK ApS, 2005) on (21) with η = 10−6. The first GA is the
sum of linear fractional functions formulation (22) using a genetic algorithm. The second GA was a direct
optimization performed on (1). Both GA implementations were from Abramson (2005). Parameters for both
used the default Matlab settings with a population size of 20, a maximum of 200 generations and a crossover
fraction of 0.8. The algorithm terminates if no change is observed in 100 continuous rounds. In addition,
the mutation function of Abramson (2005) is guaranteed to only generate feasible solutions (in our case,
all weights must be nonnegative). Upon termination, a direct pattern search is performed using the best
solution from the GA. The final column is the quadratic program (QP) as in Section 5.1.3. Data for some
entries were not available and are denoted “n/a” (data sets were too large for Matlab). For all columns,
bold entries indicate a significant difference to the baseline with at least a 95% confidence according to a
Student’s t method. The overall best classifier for each data set is underlined.

14

Table 2: Nonuniform Costs. Näıve Bayes is our baseline classifier. L&F is our implementation of Lachiche
& Flach (2003). MC is the MetaClass (Algorithm 1). LP, GA and QP are the Relaxed Integer Linear
Programming, Genetic Algorithms and Quadratic Programming formulations optimizing their respective
objective functions. Bold font denotes a significant difference to the baseline with at least 95% confidence
according to the Student’s t method. The overall best classifier among all algorithms is underlined.

Näıve LP GA GA QP
Data Set n Bayes L&F MC Eq. (21) Eq. (22) Eq. (1)
Audiology 24 1.7720 2.0928 2.7935 1.6386 1.7245 1.5194 1.6877
Bridges 2 (material) 3 0.8611 0.9753 1.3542 1.4725 1.0059 1.2181 1.3585
Bridges 2 (rel-l) 3 1.9355 1.9165 1.9441 1.9003 2.5553 1.9875 1.9163
Bridges 2 (span) 3 1.1872 1.3348 1.6153 1.2930 1.9934 1.4491 1.3508
Bridges 2 (type) 6 2.4585 2.5110 2.3160 2.6020 2.7605 2.5220 2.7270
Bridges 2 (t-or-d) 2 0.9655 0.9685 0.8946 0.9568 1.0794 0.9705 0.8096
Car 4 0.8484 1.0699 0.8898 0.8074 1.6665 0.6523 0.7558
Post-Op 3 2.9242 2.7495 3.0450 2.9993 3.6611 2.7057 2.8282
Horse-colic (code) 3 1.7915 1.7218 1.7243 1.7863 1.7950 1.6989 1.7726
Horse-colic (surgical) 2 1.3788 1.1150 1.0060 1.3890 1.6364 1.0629 1.1576
Horse-colic (site) 63 4.0892 3.9775 4.2372 4.1084 4.2647 4.0809 4.1560
Horse-colic (subtype) 2 0.0114 0.0114 0.5741 0.0114 0.0113 0.0114 n/a
Horse-colic (type) 8 0.2225 0.1395 0.1447 0.2172 0.1704 0.1970 0.1894
Credit 2 1.3203 1.1357 1.0444 1.3951 2.1906 1.0531 1.0805
Dermatology 6 0.1744 0.5532 0.1105 0.1564 0.1775 0.1147 0.1166
Ecoli 8 0.8105 1.3223 0.8514 0.8766 1.2116 0.7678 0.9218
Flags 8 2.1590 2.2796 2.2803 2.1408 2.3013 1.9888 2.1644
Glass 7 3.1308 2.1955 2.9330 3.1301 3.4910 2.6720 2.9601
Mushroom 2 0.1930 0.1017 0.0994 0.1784 0.1262 0.1031 0.1382
Nursery 5 0.5565 n/a 0.6651 n/a n/a 0.4634 n/a
Image Segmentation 7 1.0855 1.4075 0.8416 1.0855 1.0989 0.8952 n/a
Solar Flare (common) 8 1.3080 0.9506 4.1595 1.3199 1.1622 0.9844 1.2516
Solar Flare (moderate) 6 0.4644 0.2137 5.6085 0.4628 0.2749 0.2652 0.3030
Solar Flare (severe) 3 0.1682 0.0280 6.0877 0.1556 0.0800 0.1070 0.0838
Vote 2 0.4510 0.4096 0.3770 0.4510 0.5346 0.4577 0.4605
Win/Loss – 12/10 11/14 12/9 6/17 19/6 15/8
Significant Win/Loss – 8/5 5/6 1/4 4/11 13/2 7/2

We observe that no one technique consistently produced the best performance on the most data sets. For
this reason, the most relevant measure among these heuristics is the ratio of significant wins to significant
losses rather than merely total wins or losses.

As far as classification error is concerned, with the exception of the linear programming relaxation, all
algorithms were competitive with no clear overall winner in terms of significant wins and significant losses.
However, every algorithm successfully showed substantial improvement over the baseline classifier. This
confirms that the techniques presented serve as good reclassification methods in practice.

However, when we consider nonuniform costs, Table 2 indicates that the quadratic programming for-
mulation and the genetic algorithm optimization on (1) outperform all other methods. In some sense, this
reflects the inherent combinatorial nature of the problem, giving evidence that the objective function surface
is likely to be very rough with many local minimums (it is certainly discontinuous given the use of the
argmax function). This also may explain why other methods did not perform as well. The GA is searching
globally; in contrast all other methods (including Lachiche and Flach (2003)) search locally. Even the in-
teger linear programming relaxation, which in general has a good track record, came up short. Intuitively,
the quadratic programming formulation should also suffer for these reasons, but fares better due to the

15

advantages characteristic of margin maximization techniques.

7 Conclusions and Future Work

Reoptimizing an already-learned classifier f is an important problem in machine learning, particularly in
applications where the cost model or class distribution of a learning problem deviates from the conditions
under which a classifier f was trained. We answered the open problem concerning the hardness of this
reoptimization problem, and presented an algorithm that produces an optimal solution in polynomial time
when the number of classes is constant. We also presented multiple algorithms for the multi-class version of
this problem and empirically showed their competitiveness. Direct optimization by a genetic algorithm and
quadratic programming were particularly effective under nonuniform cost models.

Acknowledgments

The authors would like to thank Nicolas Lachiche for helpful correspondence. We also thank anonymous
reviewers for helpful suggestions and feedback. This work was supported in part by NSF grants CCR-0325463,
CCR-0092761 and CCF-0430991.

References

Abramson, M. A. (2005). Genetic algorithm and direct search toolbox. http://www.mathworks.com/.

Blake, C., & Merz, C. (2005). UCI repository of machine learning databases.
http://www.ics.uci.edu/ mlearn/MLRepository.html.

Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.

Ferri, C., Hernández-Orallo, J., & Salido, M. (2003). Volume under the ROC surface for multi-class problems.
European Conference on Artificial Intelligence (pp. 108–120).

Fieldsend, J., & Everson, R. (2005). Formulation and comparison of multi-class ROC surfaces. Proceedings
of the ICML Workshop on ROC Analysis in Machine Learning (pp. 41–48).

Hand, D., & Till, R. (2001). A simple generalisation of the area under the ROC curve for multiple class
classification problems. Machine Learning, 45, 171–186.

Kohli, R., Krishnamurti, R., & Mirchandani, P. (1994). The minimum satisfiability problem. SIAM Journal
of Discrete Mathematics, 7, 275–283.

Lachiche, N., & Flach, P. (1999). 1BC: A first-order bayesian classifier. Proceedings of the 9th International
Workshop on Inductive Logic Programming (pp. 92–103).

Lachiche, N., & Flach, P. (2003). Improving accuracy and cost of two-class and multi-class probabilistic
classifiers using ROC curves. Proceedings of the 20th International Conference on Machine Learning (pp.
416–423).

Matsui, T. (1996). NP-hardness of linear multiplicative programming and related problems. Journal of
Global Optimization, 9, 113–119.

MOSEK ApS (2005). The MOSEK optimization tools version 3.2. http://www.mosek.com/.

Mossman, D. (1999). Three-way ROCs. Medical Decision Making, 78–89.

16

O’Brien, D. B., & Gray, R. M. (2005). Improving classification performance by exploring the role of cost
matrices in partitioning the estimated class probability space. Proceedings of the ICML Workshop on ROC
Analysis in Machine Learning (pp. 79–86).

Rockafellar, R. (1970). Convex analysis (2nd ed.). Princeton University Press.

Schölkopf, B., & Smola, A. (2002). Learning with kernels (2nd ed.). MIT Press.

Srinivasan, A. (1999). Note on the location of optimal classifiers in n-dimensional ROC space (Technical
Report PRG-TR-2-99). Oxford University Computing Laboratory, Oxford.

Stoer, I. J., & Witzgall, C. (1996). Convexity and optimization in finite dimensions. Springer-Verlag.

Witten, I. H., et al. (2005). Weka machine learning toolbox. www.cs.waikato.ac.nz/ml/weka/.

17

