
Supporting Parallelism in Server-based Multiprocessor Systems

Lúıs Nogueira, Lúıs Miguel Pinho
CISTER Research Centre

School of Engineering (ISEP), Polytechnic Institute of Porto (IPP), Portugal
{luis,lpinho}@dei.isep.ipp.pt

Abstract

Developing an efficient server-based real-time
scheduling solution that supports dynamic task-level
parallelism is now relevant to even the desktop and
embedded domains and no longer only to the high
performance computing market niche. This paper
proposes a novel approach that combines the constant-
bandwidth server abstraction with a work-stealing
load balancing scheme which, while ensuring isolation
among tasks, enables a task to be executed on more
than one processor at a given time instant.

1 Introduction

The constant-bandwidth server abstraction has
proved very useful in designing, implementing, and rea-
soning about single core open real-time systems where
tasks can dynamically enter or leave the system at any
time [12]. Each task is assigned a fraction of the com-
putational resources and it is handled by an abstract
entity called server to achieve the goals of temporal
isolation and real-time execution [1].

However, modern open real-time systems increas-
ingly generate heavy workloads and it is rapidly be-
coming unreasonable to expect to implement them
as single core systems. In fact, a general shift from
unicore to multicore processors can be seen both
in the general purpose and embedded domains as
an energy-efficient way to boost applications’ perfor-
mance. Therefore, there have been significant efforts
to extend reservation-based real-time scheduling the-
ory to make it applicable to multiprocessor systems as
well [3, 13, 7, 10].

Nevertheless, all these works consider task models
where tasks use at most a single core at each time
instant. This restriction is natural for uniprocessor
scheduling since only one processor is available at any
time, even if we deal with parallel algorithms. However,
the need for parallel processing - simultaneous use of

several processors for an individual task - is steadily in-
creasing, even in the desktop and embedded domains
and no longer only on the comparably small high per-
formance computing market niche. Therefore, for fully
utilising the parallel abilities of multicore platforms, we
should be able to support tasks that may be executed
on different cores at the same time instant.

There are many computations that can be relatively
easily parallelised by using frameworks such as Cilk
[9], Intel’s Parallel Building Blocks [5], Java Fork-join
Framework [11], Microsoft’s Task Parallel Library [6],
or StackThreads/MP [15]. These frameworks encour-
age application developers to create many more paral-
lel jobs (hereafter called pjobs) than there are available
CPUs. The division of work among pjobs is often im-
perfect, and the system must provide an efficient run-
time that can efficiently map ready pjobs to processors,
thus dynamically balancing the workload.

One of the simplest, yet best-performing, dynamic
load-balancing algorithms for shared-memory architec-
tures is work-stealing [4]. Blumofe and Leiserson have
theoretically proven that the work-stealing algorithm
is optimal for scheduling fully-strict computations [4].
Under this assumption, an application running on P
processors achieves P -fold speedup in its parallel part,
using at most P times more space than when running
on one CPU. These results are also supported by ex-
periments [14].

This paper discusses the general guidelines of a novel
scheduling approach for parallel runtimes that will co-
exist with a wide range of other complex independently
developed applications, without any previous knowl-
edge about their real execution requirements, num-
ber of pjobs, and when those pjobs will be generated.
Schedulers in these type of open systems are there-
fore required to maintain a certain (quantifiable) level
of service for each application, with the exact guar-
antee depending upon the CPU reservation’s parame-
ters. The proposed approach combines a work-stealing
policy with multiprocessor constant-bandwidth servers

1



which, while ensuring isolation among tasks, allows a
task to be executed in more than one processor at a
given time. To the best of our knowledge, no research
has ever focused on this subject.

2 System model

We consider the scheduling of sporadic independent
tasks on m identical processors p1, p2, . . . , pm using
global EDF. With global EDF, each task ready to exe-
cute is placed in a system-wide queue, ordered by non-
decreasing absolute deadline, from which the first m
tasks are extracted to execute on the available proces-
sors.

A pool of worker threads is established. Assume that
there will be as many worker threads as there are CPUs
on a system. A special purpose accounting discipline is
used to manage tasks and execute them via the worker
threads.

Each task τi can generate a virtually infinite se-
quence of jobs. The arrival time ai,j of the jth job
of a task τi is only revealed at runtime and the exact
execution requirements ei,j can only be determined by
actually executing the job to completion until time fi,j .
All jobs generated by a task τi are dedicated to a p-
CSS server Si, an extension for the multicore case of
the Capacity Sharing and Stealing scheduler [12]. Each
server Si is characterised by a pair (Qi, Ti), where Qi

is the server’s maximum reserved capacity and Ti its
period. The ratio Ui = Qi

Ti
denotes the fraction of the

capacity of one processor that is assigned to the server.
At each instant, the following values are associated

with a server Si: its currently assigned deadline di
k, its

remaining execution capacity 0 ≤ ci
k ≤ Qi, the amount

of residual capacity ri
k ≤ ci

k that can be reclaimed by
other servers, and its currently assigned replenishment
time hi

k = di
k. If at time t, Si finishes the execution of

its currently served job without exhausting its reserved
execution capacity ci

k and it has no pending work, the
remaining amount ci

k > 0 sets the server’s residual ca-
pacity ri

k = ci
k that can be reclaimed by other servers

(ci
k is subsequently set to zero). By pending work we

refer to the case when there exists at least a served job
such that its release time is si,j ≤ t < fi,j .

During the course of its execution a job can
spawn, at any time, a set of parallel jobs
{pjobi,1, pjobi,2, . . . , pjobi,n}, sequential pieces of work
that can be executed on different processors at the
same time instant using the available execution capac-
ity of their corresponding task. For now, our work is
focused on systems where all pjobs are fully indepen-
dent, i.e., except for the m-cores there are no other
shared resources, no critical sections, nor precedence
constraints.

Contrary to regular jobs of a task, pjobs are not
pushed to the global EDF queue but instead main-
tained in a worker’s local work-stealing double-ended
queue (deque) to reduce contention on the global
queue. Any pjob in the work-stealing queue can be
shared with any other worker thread. A worker thread
first looks into its local queue. If there is no pjob to
pick, then it searches the global EDF queue. Still,
if there is no eligible job1 in the global EDF queue,
the worker will steal the earliest deadline eligible pjob
from the top of other busy worker’s deque. For a busy
worker, pjobs are pushed and popped from the bottom
of the deque and these operations are synchronisation-
free.

3 Multicore Capacity Sharing and
Stealing

In this paper, we consider a periodic task model in
which jobs may spawn a set of parallel jobs, indepen-
dent sequential pieces of code that may have different
execution costs but a common period. Multithreaded
jobs such as this arise naturally in many settings. For
example, in multimedia applications, multiple threads
may be useful for performing different functions on
common data (e.g., a frame of an MPEG video) at the
same rate. Our goal is to find an efficient scheduling
framework for these parallel runtimes while ensuring
temporal isolation among applications and guarantee-
ing a certain degree of service to each individual appli-
cation in open real-time systems.

Since our management of reserved capacities is
based on our previous work for uniprocessor systems
[12], we will start by describing the capacity shar-
ing and stealing approach of CSS. CSS extends CBS
[1] with a powerful strategy that supports the coex-
istence of guaranteed (isolated) and non-guaranteed
(non-isolated) bandwidth servers to efficiently han-
dle soft-tasks’ overloads by making additional capacity
available from two sources: (i) reclaiming unused re-
served capacity when jobs complete in less than their
budgeted execution time and (ii) stealing reserved ca-
pacity from inactive non-isolated servers used to sched-
ule best-effort jobs.

Whenever a job is being executed, the consumed
execution capacity must be decreased by the same
amount. By dynamically managing a pointer to the
server from which the capacity is going to be decreased,
the proposed dynamic accounting mechanism of CSS

1An eligible job ji,j is one in which its dedicated server Si is
able to execute ji,j by either consuming its own reserved capacity
ci
j > 0, reclaiming any available capacity ri

k with deadline di
j ≤

di
k, ri

k > 0, or stealing a non-isolated capacity cs
k with deadline

ds
k ≤ di

j , cs
k > 0

2



eliminates the need of extra queues or additional server
states, reducing its overhead. The server from which
the accounting is going to be performed is dynami-
cally determined at the time instant when a capacity
is needed. CSS uses the following rules to manage re-
served capacities:

• Rule A (residual capacity release): Whenever
a server Sj completes its kth job of its associated
task τj and it has no pending work, its remaining
reserved capacity cj

k > 0 is released as residual ca-
pacity rj

k = cj
k and cj

k is set to zero. The released
residual capacity rj

k can immediately be reclaimed
by eligible active servers until the currently as-
signed Sj ’s deadline dj

k. Sj is kept active with its
current deadline until its residual capacity rj

k is
exhausted by other servers.

• Rule B (residual capacity reclaim): The next
active server Si scheduled for execution points to
the earliest deadline server Sedf from the set of el-
igible active servers Ar for capacity reclaiming. Si

consumes the pointed residual capacity redf
k , run-

ning with the deadline dr
k of the pointed server

Sedf . Whenever redf
k is exhausted and there is

pending work, Si disconnects from Sedf and se-
lects the next available server S′edf (if any).

• Rule C (dedicated capacity consumption):
If all eligible residual capacities are exhausted and
the current kth job of server Si is not yet com-
pleted, Si consumes its own reserved capacity ci

k

either until the job’s completion or ci
k’s exhaus-

tion (whatever comes first). If ci
k is exhausted and

there is still pending work to do, Si is kept active
with its current deadline di

k.

• Rule D (inactive non-isolated capacity
steal): A server Si with pending work and no
available execution capacity (ci

k = 0) connects to
the earliest deadline server Sedf from the set of
eligible inactive non-isolated server Is. Si steals
the pointed inactive capacity cedf

k , running with its
current deadline di

k. Whenever cedf
k is exhausted

and the job has not yet been completed, the next
non-isolated capacity cedf ′

k is used (if any).

We are currently investigating how these rules can
be extended for multicore platforms. Due to well-
known multiprocessor scheduling anomalies [2], the ex-
tension is not trivial and adopting the same rules as the
uniprocessor case would lead to deadline violations in
spite of the fact that the considered task set is schedu-
lable by using a global EDF scheduler. A possible ap-

proach for reclaiming residual capacities has been pro-
posed in M-CASH [13] (residual capacities are equally
distributed across all processors, including idle ones)
but no work is known for handling capacity stealing in
the multicore case.

4 Work stealing in the presence of jobs’
priorities

Work-stealing schedulers are increasing in popular-
ity as scheduling algorithms for dynamic task paral-
lelism. A work-stealing scheduler employs a fixed num-
ber of threads called workers. Each of those workers
has a local deque to store tasks. Whenever a worker
has no local tasks to execute it will try to steal a task
from the top of other busy worker’s deque. Thus, it
must choose which processor will be stolen and which
task will be taken. These choices lead to variations of
the work-stealing algorithm and are the main issue of
this section.

Blumofe and Leiserson [4] demonstrate that a ran-
dom choice of the stolen processor is fair. Furthermore,
random choices present the advantage that the choice
of the target does not require more information than
the total number of processors in the executive plat-
form. Then, the thread steals a task from the back of
the run-queue of the randomly chosen thread. The rea-
sons for accessing the run queues at different ends are
several [9]: (i) it reduces contention by having steal-
ing threads operate on the opposite end of the queue
than the thread they are stealing from; (ii) it works
better for parallelised divide-and-conquer algorithms
which typically generate large chunks of work early, so
the older stolen task is likely to further provide more
work to the stealing thread; and (iii) stealing a task also
migrates its future workload, which helps to increase
locality. All queue manipulations run in constant-time
(O(1)), independently of the number of tasks in the
queues.

However, the algorithm does not take tasks’ dead-
lines into account when stealing a task from another
worker. Also, a task must voluntarily yield or block
before another task can be scheduled on the same CPU
or otherwise it will run to completion. Thus, the need
to support tasks’ deadlines and CPU reservations fun-
damentally distinguishes the problem at hand in this
paper from other work-stealing choices previously pro-
posed in the literature.

Our proposal is to apply work-stealing to enable
multithreaded jobs to be executed on more than one
processor. Recall that a job ji,k assigned to a partic-
ular worker thread by a global EDF policy, can spawn
a set of pjobs at any time during the course of its exe-
cution. Pjobs are not pushed to the global EDF queue

3



but instead pushed to the bottom of the worker’s local
deque. Pjobs are dedicated to same server Si of job
ji,k, ensuring isolation among tasks.

Then, while there are pending pjobs on the local
deque, the worker should purposefully select the bot-
tommost pjob, which is the pjob with the highest prob-
ability of still being in the cache. Hence, there are per-
formance improvements in processing local queues in a
LIFO order. Note that in this case the job is sequen-
tially executed as if there was no support for parallel
execution of pjobs. On the other hand, work steal-
ing allows an idle worker thread to perform some of
the pjobs in other overloaded processor’s queue. Thus,
whenever a worker thread has no pending pjobs in its
local deque and the first pjob on the global EDF queue
has a greater deadline than at least one of the eligi-
ble pjobs at the top of the other workers’ deques, the
worker thread should steal the earliest deadline eligi-
ble pjob from the topmost pjobs on the other workers’
deques.

We believe that this deadline-based work-stealing
policy will positively increase the speedup of parallel
applications without jeopardising the schedulability of
the other sequential jobs scheduled by global EDF. We
are currently investigating such claim.

5 Conclusions and future work

This paper discussed the increased need to support
dynamic task-level parallelism in open real-time sys-
tems and proposed the general guidelines of a novel
scheduling approach that combines a work-stealing
load balancing policy with a multicore reservation-
based approach.

Our current efforts are focused on a theoretical val-
idation of the proposed approach. It is our belief that
the ideas discussed here will improve the execution effi-
ciency of parallel tasks while continuing to achieve iso-
lation among tasks whose resource demands are only
know at runtime. We plan to evaluate the efficiency of
the approach in real-world scenarios by implementing
it on top of SCHED DEADLINE [8], a patch made for
the Linux kernel which implements an EDF scheduler
with a CPU reservation mechanism based on CBS.

Acknowledgements

This work was supported by FCT through the
CooperatES (PTDC/EIA/71624/2006) and SENODs
projects (CMU-PT/SIA/0045/2009), and by the Eu-
ropean Commission through the ARTIST2 NoE (IST-
2001-34820).

References

[1] L. Abeni and G. Buttazzo. Integrating multimedia ap-
plications in hard real-time systems. In Proceedings of
the 19th IEEE Real-Time Systems Symposium, page 4,
Madrid, Spain, December 1998.

[2] B. Andersson and J. Jonsson. Preemptive multipro-
cessor scheduling anomalies. In Proceedings of the
16th International Parallel and Distributed Processing
Symposium, page 271, April 2002.

[3] S. Baruah, J. Goossens, and G. Lipari. Implement-
ing constant-bandwidth servers upon multiprocessor
platforms. In Proceedings of the 8th IEEE Real-Time
and Embedded Technology and Applications Sympo-
sium, pages 154–163, September 2002.

[4] R. D. Blumofe and C. E. Leiserson. Scheduling mul-
tithreaded computations by work stealing. Journal of
the ACM, 46(5):720–748, September 1999.

[5] I. Corporation. Parallel building blocks. Available
at http://software.intel.com/en-us/articles/

intel-parallel-building-blocks/.
[6] M. Corporation. Task parallel library. Available

at http://msdn.microsoft.com/en-us/library/

dd460717.aspx.
[7] D. Faggioli, G. Lipari, and T. Cucinotta. The multi-

processor bandwidth inheritance protocol. In Proceed-
ings of the 22nd Euromicro Conference on Real-Time
Systems, pages 90–99, July 2010.

[8] D. Faggioli, M. Trimarchi, and F. Checconi. An im-
plementation of the earliest deadline first algorithm in
linux. In Proceedings of the 2009 ACM symposium on
Applied Computing, pages 1984–1989, March 2009.

[9] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the cilk-5 multithreaded language.
ACM SIGPLAN Notices, 33(5):212–223, 1998.

[10] S. Kato, R. Rajkumar, and Y. Ishikawa. Airs: Sup-
porting interactive real-time applications on multicore
platforms. In Proceedings of the 22nd Euromicro Con-
ference on Real-Time Systems, pages 47–56, July 2010.

[11] D. Lea. A java fork/join framework. In Proceedings
of the ACM 2000 conference on Java Grande, pages
36–43, 2000.

[12] L. Nogueira and L. M. Pinho. A capacity sharing and
stealing strategy for open real-time systems. Journal
of Systems Architure, 56(4-6):163–179, 2010.

[13] R. Pellizzoni and M. Caccamo. M-cash: A real-time
resource reclaiming algorithm for multiprocessor plat-
forms. Real-Time Systems, 40:117–147, 2008.

[14] B. Saha, A.-R. Adl-Tabatabai, A. Ghuloum, M. Ra-
jagopalan, R. L. Hudson, L. Petersen, V. Menon,
B. Murphy, T. Shpeisman, E. Sprangle, A. Rohillah,
D. Carmean, and J. Fang. Enabling scalability and
performance in a large scale cmp environment. ACM
SIGOPS Operating Systems Review, 41(3):73–86, June
2007.

[15] K. Taura, K. Tabata, and A. Yonezawa. Stack-
threads/mp: integrating futures into calling stan-
dards. ACM SIGPLAN Notices, 34(8):60–71, 1999.

4


