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Abstract. The information content of remote sensing imagery depends upon
various factors such as spatial and radiometric resolutions, spatial scale of the
features to be imaged, radiometric contrast between diVerent target types, and
also the � nal application for which the imagery has been acquired. Various
textural measures are used to characterize the image information content, based
upon which diVerent image processing algorithms are employed to enhance this
quantity. Previous work in this area has resulted in three diVerent approaches
for quantifying image information content, primarily based on interpretability,
mutual information, and entropy. These approaches, although well re� ned, are
diYcult to apply to all types of remote sensing imagery. Our approach to quantify-
ing image information content is based upon classi� cation accuracy. We propose
an exponential model for information content based upon target–background
contrast, and target size relative to pixel size. The model is seen to be applicable
for relating information content to spatial resolution for real Landsat Thematic
Mapper (TM) as well as Shuttle Imaging Radar-C (SIR-C) images. An interesting
conclusion that emerges from this model is that although the TM image has
higher information content than the SIR-C image at smaller pixel sizes, the
opposite is true at larger pixel sizes. The transition occurs at a pixel size of about
720 m. This tells us that for applications that require high resolution (or smaller
pixel sizes), the TM sensor is more useful for terrain classi� cation, while for
applications involving lower resolutions (or larger pixel sizes), the SIR-C sensor
has an advantage. Thus, the model is useful in comparing diVerent sensor types
for diVerent applications.

1. Introduction
Remote sensing images are formed by recording the re� ected energy or radiance

from a target scene. In remote sensing terminology, an image refers to a two-
dimensional representation of the energy re� ected from or emitted by the scene.
Modern remote sensing sensors use digital systems to store and process the image
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Figure 1. Scene to image transformation.

data. A typical digital image shown in � gure 1 consists of a two-dimensional array
of pixels, each with a grey level, n. The pixel coordinates are labelled (j, g) on the
image for the coordinates (x,y) on the ground cell. If nb represents the number of
bits to represent the digital image, then n may take an integer value between 0 and
(2nb ­ 1).

Each pixel in the image represents the average re� ectance or emittance of the
target on the ground: darker areas representing lower values, while brighter areas
represent higher values. The brightness of each pixel depends on the size of the
scatterers within the pixel, properties of targets contained within the pixel, the wave
polarization, and the viewing angle, and the target’s chemical composition. Brightness
also depends on surface roughness relative to wavelength.

Remote sensing images acquired in various spectral bands are used to estimate
certain geophysical parameters or detect the presence or extent of geophysical phen-
omena. Examples include the estimation of soil moisture or delineation of the
ice–water boundary in polar regions using synthetic aperture radar (SAR) imagery.
In a majority of cases, the raw image acquired by the sensor is processed using
various operations such as � ltering, compression, enhancement, and others. In all of
these cases, the analyst is attempting to maximize the information content in the
image to ful� l the end objective. While this appears deceptively simple, there are a
variety of issues that need to be addressed in order that available information content
is maximized for a particular application. Remotely sensed images have information
of varying value. DiVerent methods of sensing and processing the data are needed
to extract the maximum amount of information from the image eVectively. Since
information of high value is not always the easiest or most eVectively obtained, an
analyst needs to identify categories of high information value against the kind of
information sensed and identi� ed.

The information content needs to be quanti� ed before an attempt to perform
operations to increase its value for a particular application. However, information
content is not easily quanti� able. Various methodologies have been proposed to
characterize the information content of remotely sensed data (Dowman and
Peacegood 1989, Kalmykov et al. 1989, Oliver 1991, Blacknell and Oliver 1993),
and relate it to several variables such as resolution (both radiometric as well as
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spatial ), scale of variability of the geophysical parameter of interest, image statistics,
etc. It is also important to recognize that the same image may contain diVerent
amounts of information depending on the application. To illustrate this point, con-
sider a digital image of a scene containing targets and features of diVerent sizes and
extents. Although the spatial resolution of the system may be poor, it may still be
useful in identifying those targets and features of interest as long as their sizes are
much larger than the sensor spatial resolution. We can then say that the information
content of the image for identifying targets and features is high. On the other hand,
it may be impossible to identify targets and features of sizes much smaller than the
sensor spatial resolution using the same image. In this case, we say that the informa-
tion content of the image for identifying targets and features of interest is low. Thus,
the same image contains high information content for delineating large-sized targets,
but low information content for identifying small-sized targets. Choosing an appro-
priate and meaningful spatial resolution for a particular application is therefore an
important task for the remote sensing analyst (Atkinson and Curran 1997).

The concept of quanti� cation of information content in remote sensing images
has been addressed in three diVerent ways in the past. An experiment was performed
to study the eVect of spatial resolution on radar image interpretation, which postu-
lated that the interpretability or information content can be determined by the
‘spatial-grey-leve l (SGL) resolution volume’ (Moore 1979). Later, a statistical model
based on per-pixel basis was realized where an imaging radar was portrayed as a
noisy communication channel with multiplicative noise, and an information-theoret -
ical approach was used to quantify the information content (Frost and Shanmugam
1983). Another approach to the quanti� cation of the information content of optical
sensor data from the Landsat-4 Thematic Mapper (TM) and Multi-Spectral Scanner
(MSS) was made using the classical information theory developed by Shannon (Price
1984). In the later 1990s, information theoretic concepts were used to provide a
mathematical framework for characterizing the information content of coherent
images for both additive and multiplicative noise (Blacknell and Oliver 1993).
Shannon’s information theory was also used to compute the redundancy of L- and
C-band Shuttle Imaging Radar-C (SIR-C) imagery, thereby improving land cover
classi� cation results (Le Hégarat-Mascle et al. 1997 ).

The interpretability model is based on visual ability to identify diVerent targets
at degraded resolutions. It does not use the image data in any mathematical computa-
tions to identify the targets, or in the computation of information content. It also
does not account for the size of the target being considered, which is as important
as spatial resolution in identi� cation of the target. The mutual information model
measures the information about the target from the image. This model is more
applicable in the design of imaging systems for applications such as soil moisture
estimation where the recorded data should be as close to the target re� ectivity as
possible to get accurate estimates of soil moisture. The entropy model evaluates
information in terms of image gathering capability which are useful in eYcient data
compression and data transmission capabilities. Thus, in order to investigate the
eVect of spatial resolution and target size in the identi� cation of the targets, a
diVerent model is proposed.

Table 1 shows typical generic applications that make use of remote sensing
imagery, and lists speci� c examples in each generic category. One logical approach
for quanti� cation of information content may be based on classi� cation accuracy,
as classi� cation procedures are used to extract information about the scene from the
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Table 1. Typical applications using remote sensing imagery.

Generic applications Speci� c examples

Edge detection Ice–water edge in polar regions
Water–vegetation edge in wetlands

Classi� cation Vegetation types in mixed forest
Soil types in desert regions

Feature detection Landmines in inhomogeneous soil
Targets in cluttered background

Parameter estimation Soil moisture patterns
Vegetation biomass variability

remotely sensed data. In this paper, we propose a simple mathematical model to
relate information content in images based on classi� cation accuracy to the spatial
resolution. Such a formulation enables us to understand the type of mathematical
operations required on the imagery to improve the information content. The model
was tested on Landsat TM optical and SIR-C radar data.

2. Proposed information content model based on scene classi� cation
Classi� cation of images is performed to delineate areas in the image possessing

common features. This operation gives information about the scene in the image,
rather than just the numerical data. Image classi� cation produces a thematic map
of the region where the themes include vegetation, soil, water bodies, etc. A classi� ed
image consists of labels of a particular landcover or type of soil present in the image.
By labelling, the data has some informational value rather than just a set of digital
numbers. Multispectral images, which may contain spectral characteristics from
several bands with at least 8 bits/pixel per band, are reduced to a single band
informational image with less than 8 bits/pixel. Spatial resolution of the image and
scale of the target of interest are very important parameters in classi� cation of images
(Cao and Lam 1997). The spatial resolution determines the degree and type of
information that can be extracted from an image. For example, TM imagery, which
has a spatial resolution of 30 m, can be used to extract the types of crops, trees,
urban areas in Nebraska, whereas the Advanced Very High Resolution Radiometer
(AVHRR) imagery, which has a resolution of 1 km, cannot be used for this purpose,
but in turn can be used to provide global land cover.

Numerous textural measures are used to characterize the local and global variabil-
ity in a remotely sensed image. These measures include the mean, the standard
deviation with respect to windows of various sizes, gradients in diVerent directions,
and correlations between textural parameters at diVerent locations (Haralick et al.
1973, Tamura et al. 1978, Tomita and Tsuji 1990, Potopav et al. 1991, Shen and
Srivastava 1996). Radar image simulations were performed at C-band frequency at
an incidence angle of 30° in order to understand the eVect of spatial resolution and
spatial extent of the object on the image information content (Narayanan et al.
1997), and the salient results are brie� y described to develop the framework for
subsequent sections of the paper. The local statistics of the image was used to identify
targets of various spatial extents in cluttered background. The local mean (Lee 1980)
was used in classifying a pixel as belonging to either the target or the background
using a distance measure based on mean radar re� ectances. The targets were chosen
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to represent both small as well as large diVerences between their mean radar
re� ectances and that of the clutter. Spatial resolution was degraded by convolving
a local mean � lter with equal weights of diVerent window sizes for the images, and
the average value of local mean for each target was computed using the averaging
aggregation method (Bian and Butler 1999). As the size of the window increased,
more of the background pixels were mixed with the target pixels and the mean
re� ectance of the target approached the background. The rate of advance depended
on the size of the target under consideration: the target mean attained the background
mean faster for the small-sized targets than for the large-sized targets. Typical images
were generated using the above guidelines to provide a clear understanding of the
eVect of spatial resolution. It was found that the contrast between the target and the
background had a major role in accurately classifying the target pixels. For the low
contrast case, the classi� cation accuracy was low, while for the high contrast case,
the classi� cation accuracy was high for the same spatial resolution. The information
content, I*, was calculated from the simulated images for each case using the
equation

I*=1 ­ Am* ­ mT
mB ­ mTB (1)

where m* is the mean re� ectance of the target area after using the local mean � lter,
m

T
is the mean re� ectance of the target, and the m

B
is the mean re� ectance of the

appropriate background. For high spatial resolution, m*# mT , and we have the
target pixels mostly correctly classi� ed; hence I*# 1. For coarser spatial resolution,
m # mB , hence the target pixels will mostly be classi� ed wrong, so we obtain I*# 0.
The information content therefore varies between one for high spatial resolution and
nearly zero for coarser spatial resolution.

As the spatial resolution improves and the pixel size, DR, reduces, the amount
of information to delineate the spatial extent of the target, R, increases. We obtain
high information when the pixel size approaches zero, while the information content
reduces to zero at pixel size of 2 , i.e. no information. The information content data
from the simulated images was plotted versus DR/R. It was found that it followed
an exponential decline. Hence, we modelled the information content, I, as a function
of pixel size, DR, and the target characteristic dimension, R, as

I=expC ­ kADR

R BnD (2)

where k and n are the best-� t parameters related to the interpretability of the image,
as well as the contrast between the target and the background. The above formulation
is intuitively satisfying, since the information content is unity for DR=0, and is zero
for DR=2 . Using simulations to provide data points, various best � t values can be
computed from the above equations. Rearranging and taking natural logarithm on
both sides, we get

ln(1/I )=kADR

R Bn
(3)

Again, taking the natural logarithm, we have

ln(ln(1/I ))=lnk+nlnADR

R B (4)
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Equation (4) is in the form of a linear equation Y =mX+C, where Y =ln( ln(1/I ))
and X=ln(DR/R). From this, the slope and intercept of equation (4) can be used to
� nd the values of k and n for each case. The slope m is equal to the parameter n,
while the intercept C is equal to lnk, from which k=exp(C ). Extension of the above
formulation to real data from the Landsat TM and SIR-C sensors are discussed in
the following sections.

3. Site and image data description
3.1. Washita ’94 test site details

The images used were a part of a large scale hydrological � eld experiment
conducted over the Washita watershed near Chickasha, Oklahoma. During the
experiment, two SIR-C missions were planned for April and August of 1994. The
spring mission occurred from 11–17 April 1994 and fall mission from 2–6 October
1994. The Little Washita River watershed covers 235.6 square miles and is a tributary
of the Washita River in south-west Oklahoma. The watershed is in the northern part
of the Great Plains of the United States. Land use in this area can be grouped into
several categories: range, pasture, crop land, oil waste land, quarries, urban/highways,
and water. The actual data for the SIR-C and the TM were made available on a
CD-ROM. This CD-ROM was released by the US Department of Agriculture,
NASA and Princeton University to facilitate research by various investigators. A
detailed description of the dataset can be found in a USDA report (US Department
of Agriculture 1996) and on the CD-ROM. The SIR-C and TM data were provided
in uncompressed TIFF-byte image format. All the datasets were georeferenced to
the TM data.

3.2. T M dataset description
The Landsat TM data used were acquired by USDA ARS located in Durant,

Oklahoma. The full image was georegistered by the USDA ARS Hydrology Lab to
USDS topographic map and then the primary study area was extracted. The image
was acquired on 12 April 1994. The processed � les contain 934 lines by 1467 pixels
at a resolution of 30 m. Geolocation information is as follows: Output Georeferenced
Units UTM 14 S E000; Projection Universal Transverse Mercator Zone 14S; and
Earth Ellipsoid Clarke 1866 (NAD 27). Table 2 shows the image coordinates. The
visible and infrared images of the complete TM dataset for the Washita watershed
region acquired in April 1994 as well are shown in � gure 2.

3.3. SIR-C dataset description
The SIR-C images were simultaneously acquired at two microwave wave-

lengths: L-band (24 cm) and C-band (6 cm). Vertical and horizontal polarized tran-

Table 2. Coordinates of the TM image for the Washita Watershed in UTM projection.

Location Longitude Latitude

Upper left corner 562000 E 3875000 N
Upper right corner 606010 E 3875000 N
Image centre 584005 E 3860990 N
Lower left corner 562000 E 3846980 N
Lower right corner 606010 E 3846980 N
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(a) (b)

Figure 2. Visible and infrared images of the TM data. (a) True colour image using TM bands
3, 2 and 1 in RGB channels. (b) Colour infrared image using TM bands 4, 3 and 2 in
RGB channels.

smitted waves were received on two separate channels, so that four polarization
combinations, i.e. amplitudes and relative phase diVerences for the HH (Horizontally
transmitted, Horizontally received), VV, HV and VH, are obtained. Polarimetric
data provided more detailed information about the surface geometric structure,
vegetation cover, and subsurface discontinuities than image brightness or intensity
alone. The original SIR-C datasets processed as single look complex (slc) or multiple
look complex (mlc) data and calibrated by NASA JPL were assembled by the NASA
GSFC Hydrological Sciences Branch. A description of the datasets available from
April 1994 are listed in table 3.

NASA JPL software was modi� ed to output the data as a scaled backscattering
coeYcient. The radar backscatter coeYcients were extracted from the data using the
formulae:

C-band HH and VV: dB=(DN/(255/25))­ 25

C-band HV: dB=(DN/(255/25))­ 35

L-band HH and VV: dB=(DN/(255/35))­ 35

L-band HV: dB=(DN/(255/35))­ 45

These datasets were georeferenced for each day to the TM image using control
points. The primary study area was extracted from the original data and consisted
of 934 lines by 1467 pixels with a resolution of 30 m.

Table 3. SIR-C data speci� cations during the Washita ’94 experiment.

Date SIR-C motion Look angle (°) Polarizations Processing

11 April 1994 ascending 28.0 HH HV VV slc
12 April 1994 ascending 42.3 HH HV VV slc
14 April 1994 ascending 56.3 HH HV slc
14 April 1994 descending 48.3 HH HV slc
15 April 1994 ascending 60.2 HH HV VV mlc
15 April 1994 descending 42.4 HH HV VV slc
16 April 1994 descending 36.2 HH HV VV slc
17 April 1994 descending 30.9 HH HV VV slc
18 April 1994 descending 26.5 HH HV VV slc
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The JPL software produces a scaled output designed to maximize the contrast
in each band and polarization on each day individually. The output is a scaled DN
of amplitude and the program outputs the scale factor. Typical JPLSCALE images

are shown in � gure 3. Radar backscatter was computed from the data using the
following relations:

Amplitude=(DN )/ScaleFactor

Power=(Amplitude)2

dB=10log10
Power

(a) (b)

(c) (d)

(e) ( f )

Figure 3. C- and L-band JPLSCALE SIR-C April mission images with diVerent polariza-
tions. The polarized SIR-C images are as follows: (a) C-band HH, (b) L-band HH,
(c) C-band HV, (d ) L-band HV, (e) C-band VV, ( f ) L-band VV.
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4. Application of model to data from TM and SIR-C sensors
4.1. Procedure for inducing spatial degradation

The previous investigations from the simulated data were extended to actual data
acquired by two diVerent sensors, namely Landsat TM and SIR-C. The TM sensor
had greater swath, which is clearly evident from � gures 2 and 3 as compared with
the SIR-C data. Moreover, the SIR-C and the TM satellites had diVerent orbital
paths; hence the SIR-C image data were georeferenced and georegistered to the TM
data. The area common to both the TM and SIR-C images were extracted using a
mask of the SIR-C image. This mask was applied to the TM image to extract the
area common to both the images. The latitude and the longitude coordinates were
cross-checked for the common area. These images are shown in � gures 4 and 5.
Since the SIR-C images were contaminated with speckle, an adaptive Lee � lter of
size 3×3 was used to remove the speckle from the images. Lee � ltering is a standard
deviation based (sigma) � lter used to smooth speckled data whose intensity is related
to the image scene, but which have an additive and/or multiplicative component
(Lee 1986). It � lters the data based on statistics calculated within individual � lter
windows. Unlike a typical low-pass smoothing � lter, the Lee � lter and other similar
sigma � lters preserve image sharpness and detail while suppressing noise. The noise
model was chosen to be multiplicative of the form z=xv, where z is the observed

(a) (b)

Figure 4. Visible and infrared images showing the common area after applying the mask.
(a) True colour image using TM bands 3, 2 and 1 in RGB channels. (b) Infrared image
using TM bands 4, 3 and 2 in the RGB channels.

(a) (b)

Figure 5. C- and L-band colour composite images showing the common area after applying
the mask. (a) C-Band image using HH, HV and VV in the RGB channels. (b) L-Band
image using HH, HV and VV in the RGB channels.
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pixel, x is the noise-free image pixel, v is the noise with mean 1 and standard
deviation s

v
. In our study, a value of unity was assigned to the noise mean and

variance because it is a single look image, and the noise variance can be estimated
by 1/(number of looks). The algorithm is given by

x̂=x̄+k(z ­ x̄) (5)

k=
var(x)

x̄2s2
v
+var(x)

(6)

where x̂ is the estimated pixel, x̄ and var(x) are a priori mean and variance of noise-
free pixel, respectively. The a priori mean and variance can be estimated by

x̄=
z̄

v̄
and var(x)=

var(z)+x̄2
s2

v
+v̄2

­ x̄2 (7)

The spatial degradations were simulated by building a convolution � lter with equal
weights with the following sizes: 3×3, 5×5, 7×7, 9×9, 11×11 and 15×15. These
� lters performed spatial averaging for the entire images for all the six bands for the
TM images and for the three diVerent polarizations (HH, HV, VV) C- and L-band
images for the SIR-C data.

4.2. Information content analysis
The analysis of the information content in real data was carried out on the basis

of classi� cation accuracy. It should be noted that this study deals with the character-
ization of information content using classi� cation accuracy, but not with the compar-
ison of classi� cation accuracy for diVerent sensors. The classi� cation accuracy is a
reasonable parameter to characterize the information content in an image, because
a thematic map contains information about diVerent classes in the scene. The
misclassi� cation of the pixel tells us that we are losing information about the scene.
The idea to use this measure comes from our simulation results. In the simulation
studies described in §2, the information content was calculated based on a distance
measure between the mean re� ectance between two classes: target and background.
It was inferred that when the target mean deviates towards the background mean
with increasing pixel size, it was misclassi� ed as background. The study on the
simulated data was similar to the evaluation of classi� cation accuracy at various
spatial degradations. Hence this measure was used for the SIR-C and TM data
which consists of many classes. Supervised classi� cation was performed using the
Maximum L ikelihood Classi� er (ML) (Schowengerdt 1997). Maximum Likelihood
classi� cation assumes that the statistics for each class in each band are normally
distributed and calculates the probability that a given pixel belongs to a speci� c
class. Each pixel is assigned to the class that has the highest probability (i.e. the
‘maximum likelihood’). The Maximum Likelihood is based on the Bayes Decision
Rule where a pixel is assigned to that class which has a posteriori probability greater
than that for all other classes.

Since there were no thematic maps for the region at resolution of 30 m, the
‘ground truth’ (ground data) image was obtained by classifying the region using both
the optical (TM) and microwave (SIR-C) data together as a 12-band image in order
to capture the maximum information about the scene. While this method cannot be
used as a substitute for the actual ground data, it was felt that this approach was
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justi� ed based upon recent results that showed considerable improvement in classi-
� cation accuracy using a combination of microwave and optical data (Metternicht
and Zinck 1998). The 12-band image consisted of bands 1–7, except for band 6
which is a thermal band at 120 m resolution, for the TM image, and three polariza-
tions (HH, HV, VV) for both L- and C-band SIR-C images. The visible and infrared
images of TM and colour composite SIR-C images were utilized to develop the
training sites for the six terrain classes to be discriminated by the classi� er. The six
diVerent classes identi� ed are shown in table 4.

The diVerent regions of interest were selected by observing the images and by
analysing the NS001 images. The NS001 is a multispectral scanner operating in the
Landsat spectral wavelength region aboard a NASA C-130 airplane � own over the
region. The statistics of each class were calculated by taking more than one region
of interest and at least 1000 data points for each class. After the statistics were
calculated, the classi� er was run on the whole image for both the TM and SIR-C
data. First, the ‘ground truth’ image in � gure 6 was obtained by using ML classi� er
using all the 12 bands of data. The statistics for the classes were obtained from
highest resolution images for all the 12 bands. The classi� cation was then performed
on all spatially degraded images of diVerent pixel sizes for both optical (TM) images
and radar (SIR-C) images separately by using all six bands. These are shown in
� gures 7–9. In classi� cation of the spatially degraded images, the statistics of the
highest resolution image, i.e. the image with pixel size of 1, were used as the base
spectral signature, and the statistics of the degraded images were compared with this
base signature in order to classify the images. The classi� cation accuracy was calcu-
lated by comparing the classi� ed image with the ground data image, and counting
the number of correctly classi� ed pixels in the whole image. The classi� cation
accuracy was calculated for both the TM as well as the SIR-C image at diVerent
resolutions. It is obvious that the classi� cation accuracy depends strongly upon the
number of classes: the more classes, the higher the chance of misclassi� cation, and
thus the lower the information content. However, this merely con� rms our assertion
that the information content is dependent on the end application, which in this case
is the classi� cation into the desired number of classes.

The information content model described in equation (2) was applied to the real
data. The same procedure was followed where the values of k and n were calculated
by curve � tting. Table 5 shows the k and n values for both sensor systems. In the
simulation results, the information content was calculated with respect to the size of
the target, i.e. all the 100 pixels were used for the 10×10 target image. Since the
classi� cation accuracy in the analysis of the real data was calculated on a per-pixel
basis, the parameter R was taken to be equal to 1. The curves plotted for both are

Table 4. Six diVerent classes identi� ed in the image data.

Class Type

Class 1 Soil
Class 2 Forest
Class 3 Water bodies
Class 4 Urban and highways
Class 5 Pasture
Class 6 Rangeland
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Figure 6. Ground data image obtained after classi� cation using both TM and SIR-C images
(12 bands).

(a) (b)

Figure 7. Classi� cation images for TM and SIR-C at pixel size=1. (a) TM classi� cation
image, (b) SIR-C classi� cation image.

(a)

(c) (d)

(b)

Figure 8. EVect of varying the pixel size on classi� cation for TM image. Pixel size=(a) 3,
(b) 7, (c) 11 and (d ) 15.
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(a)

(c) (d)

(b)

Figure 9. EVect of varying the pixel size on classi� cation for SIR-C image. Pixel size=(a) 3,
(b) 7, (c) 11 and (d ) 15.

Table 5. Best-� t model parameter values for real data.

Sensor type k n

TM 0.1127 0.3856
SIR-C 0.2996 0.0776

shown in � gure 10. The data points denote the actual classi� cation accuracy, while
the solid line is the curve from equation (2) using the values of k and n from table 5.
From the plots, it follows that our exponential information content model is indeed
applicable to TM and SIR-C data, and yields an appropriate relation between the
information content and the spatial resolution.

At this juncture, it is instructive to discuss the signi� cance of the k and n
parameters. The value of k denotes the maximum attainable information content of
the system at the best possible spatial resolution, i.e. at DR=1, which can be
considered to be the basleine information content for the sensor. Although, I=1 at
DR=0, this is a purely hypothetical case. At DR=1, I=e Õ k ; thus, the higher the
value of k, the lower the baseline information content provided by the sensor. In the
above example, the baseline information content for the TM sensor is 0.893, while
for the SIR-C sensor it is 0.741. Figure 11(a) shows a plot of the information content
as a function of pixel size for diVerent values of k, while holding n constant at 1. On
the other hand, the parameter n tells us how quickly the information is lost on
degrading the spatial resolution for a given k. The higher the value of n, the faster
is the drop or loss in information content as the pixel size increases. This relationship
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Figure 10. Plots for the model derived results and data points for TM and SIR-C sensors.
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(b)
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Figure 11. Plots for information content as function of pixel size with varying values of k
and n. (a) Varying value of k, n=1. (b) Varying value of n, k=0.5.
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is seen clearly in � gure 11(b), where information content is plotted as a function of
pixel size for diVerent values of n, while holding k constant at 0.5. In our example,
we note that the TM sensor loses information more rapidly than the SIR-C sensor,
since it has a higher value of n.

Another intersting fact can be deduced from the k and n values of the TM and
SIR-C sensors. By equating the information content of both sensors, we can determine
the pixel size at which the plots intersect by setting

expG ­ kTMADR

R BnTMH=expG ­ kSIR-CADR

R BnSIR-CH (8)

This occurs at DR/R=23.9# 24 (rounded to next highest integer). This tells us that
at a pixel size of 720 m (24×30 m), SIR-C has the same classi� cation accuracy as
that of the TM sensor. This is veri� ed by comparing the information content at a
pixel size of 24 for both TM and SIR-C data, which is 0.68. The information content
value for both the sensors are equal, as expected. The classi� ed images at a pixel
size of 24 are shown in � gure 12. From the above analysis, we conclude that this
approach can be used to perform trade-oV analysis between sensor systems at
diVerent resolutions.

5. Conclusions
The study described in this paper was concerned with the quanti� cation and

characterization of information content in remote sensing images from various

(a)

(b)

Figure 12. Classi� ed images at pixel size=24. (a) TM. (b) SIR-G.
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sensors. This work is also an attempt to establish the validity of this approach to
real sensors, such as the SIR-C/X-SAR and Landsat TM images. The information
content formulation using two diVerent approaches, namely image statistics and
classi� cation accuracy, were presented and analysed.

Our study shows that information content of an image is related to texture and
scene parameters, and it is possible to quantify this value based on the above
parameters and the end application of the image analysis. The technique can be used
to obtain the optimum resolution needed to yield a particular information content.
In the case of multitarget scenes, the classi� cation accuracy, used as a measure of
information content, � tted our empirical model quite well. Hence, this model is
useful for obtaining the optimum resolution for a particular accuracy for diVerent
sensors in both the optical and microwave spectral regimes. However, it must be
borne in mind that the information content thus derived is a function of the number
of classes.
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