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ABSTRACT

This paper describes an efficient filter that implements re-
sampling and restoration of digital images in a single pass.
The approach is to derive optimal parameters for a piecewise-
cubic, reconstruction function based on a comprehensive
model of the imaging process that accounts for acquisition
blurring, sampling, noise, and reconstruction artifacts. For
many data products produced from remotely sensed images,
piecewise-cubic reconstruction is the standard algorithm for
resampling. For these products, restoration with the optimal
piecewise-cubic function requires virtually no additional pro-
cessing resources and can significantly improve radiometric
fidelity.

1. INTRODUCTION

This paper describes an efficient filter that resamples and re-
stores digital images in a single pass. Resampling involves
reconstruction, the process of determining image values at ar-
bitrary spatial locations from the discrete pixels. Reconstruc-
tion is required in many imaging applications and is particu-
larly important in remote sensing where images are resampled
to correct for geometric distortion and to register, rescale, or
otherwise remap. Restoration involves correcting for degra-
dations introduced during the imaging process to obtain more
accurate estimates of the scene radiance field. Restoration can
yield significant improvements in the accuracy of radiometric
measures by accounting for degradations introduced during
image acquisition, including

* blurring related to atmospheric transmission, optical
components, and the spatial integration of detectors;

e noise caused by the inherent variability of radiance
fields, quantization, and various instrument phenom-
ena; and

o artifacts related to aliasing of high spatial-frequency
scene components in the sampled image.

In addition to these acquisition degradations, resampling usu-
ally is implemented with reconstruction methods that use a
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local weighted average (e.g., nearest-neighbor or bilinear in-
terpolation) and, as such, involve additional blurring and sam-
pling. Display devices also reconstruct a continuous radiance
field by forming a display spot for each pixel — effectively
blurring the discrete values to form a continuous image.

Traditional restoration methods have focused on blurring
and noise, with the effects of sampling and reconstruction fre-
quently not considered. As Schreiber writes, the effects of
these processes “on the overall performance of systems is gen-
erally ignored in the literature, but is actually very large.[1,
p. vi]” Optimal approaches to restoration must be based on
a comprehensive system model that adequately accounts for
sampling and reconstruction as well as blurring and noise.

The filter developed in this paper is a piecewise cubic re-
construction function. The piecewise cubic function is widely
used in resampling to interpolate discrete pixel values, an
operation commonly called cubic convolution or, in its one-
parameter form, parametric cubic convolution (PCC). The
piecewise cubic is efficient because it uses low-order poly-
nomials and has a small region of spatial support. The piece-
wise cubic requires more computation than simpler nearest-
neighbor and linear interpolation functions, but performs
much better and can be parameterized for specific systems.
For many data products produced from remotely sensed im-
ages, piecewise cubic reconstruction is the standard algorithm
for resampling. For these products, restoration with the opti-
mal piecewise cubic function requires virtually no additional
processing resources and can significantly improve radiomet-
ric fidelity. '

2. IMAGING SYSTEM MODEL

This paper employs the model of the basic components of the
digital image acquisition process presented in [2]. By nature,
the model is a simplification of the more complex interactions
in real imaging systems, but the model captures the most fun-
damental effects of the acquisition process. The image acqui-
sition process has three phases: image formation, sampling,
and quantization. Mathematically, the process that produces
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the digital image p is modeled as:

pin] = /Ooh(n~a:)s(m) da + en] M

-0

where s is the scene radiance field, h is the image acquisition
point-spread function (PSF), and e is error or noise. Pixels are
indexed with integer coordinates [n]| and the continuous spa-
tial coordinates {z) are normalized to the sampling interval.
Function values are expressed on the digital number scale.
This is a fairly modest model, but it is adequate to demon-
strate the radiometric issues in resampling and to develop an
improved restoration and resampling technique.

Image acquisition can be expressed equivalently in the
spatial-frequency domain, where system functions are char-
acterized by their transfer functions and instead of convolu-
tion we have the pointwise product. The equivalent frequency
domain equation for p, the Fourier transform of the image, is:

Z h(v—uv)3
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plv) = (v—v)+eé(v) (2)

where spatial frequencies (v) are normalized to the sampling
frequency, § is spatial-frequency spectrum of the scene, his
the acquisition transfer function, and é is the spatial-frequency
spectrum of the noise.

Convolution of the digital image p and the reconstruction
PSF f is:

> fla—n)phl. 3)
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r(z) =

The corresponding frequency-domain equation for recon-
struction is

i) = f)p) 4

where f is the reconstruction transfer function.

3. IMAGING SYSTEM ANALYSIS

There is a tradeoff in system design between errors related to
blurring and errors related to aliasing. We begin by expressing
quantitatively our goal to have the reconstructed image be as
accurate a measure of the scene as possible. Linfoot[4] used
the expected mean-square error between the scene s and the
reconstructed image r

§? = E{[Z|s(w)—r(x)|2 dm}
E{/_O:Olé(v) — 7 (v)]? dv} )

to define image fidelity.

The expression for expected mean-square error can be
written to make clearer the tradeoff between blurring and
aliasing in system design:

Y
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where ®; is the scene power spectrum and ®. is the noise
power spectrum. This analysis assumes that the noise is
signal-independent and that sidebands of the scene spectrum
that alias to the same frequency are uncorrelated.

@)1= k@) f @) do

dv (6)

The first term represents the error associated with blurring
the image by both the acquisition PSF / and the reconstruc-
tion PSF f. To minimize this term, h and f should be equal
to one at all frequencies (which would mean that the system
should not blur during acquisition nor during reconstruction).
The second term represents the error associated with the alias-
ing. To minimize this term, h and f should be equal to zero
at all frequencies (which would mean that the system would
eliminate aliasing by not passing any signal). So, there is a
clear tradeoff between blurring and aliasing. The final term is
associated with system noise. To minimize this term, f should
be equal to zero at all frequencies (which would mean that the
system would eliminate noise by not passing any signal).

4. THE OPTIMAL PIECEWISE CUBIC

The optimal piecewise cubic maximizes radiometric fidelity
(i.e., minimize the expected mean-square error in the resam-
pled values relative to the scene radiance field) based on the
end-to-end imaging system model presented in Section 2. The
spatial support of the piecewise cubic function is between £2.
A cubic polynomial is defined over each unit interval (with
knots at 0, £1, and £2), so there are 16 degrees of freedom in
the general form. To insure a continuous and smooth recon-
struction, the following conditions are required for the func-
tion derivative and value at each knot:

S e = z%“) "

for k = 0,21,+2. This leaves six degrees of freedom that
can be identified with the function slope and value at the in-
ternal knots:

ar = f'(k) ©))
Br = f(k) (10)
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for £k = 0 and £1. To insure reconstruction does not change
the mean, the integral of the cubic must be 1:

/Oof(z) dr = 1. (11

This constraint removes one of the degrees of freedom, which
can be identified with the function value at 0:

Bo=1—p-1- P (12)
Separating components by parameter, the cubic is

f(@)=fo(x) +afi(z+1) +aifi(z—1)+aofi(z)
+8_1f2(1/2—2)+ B fo(xz —1/2) (13)

with
0 ifjz] > 1
folz) = —922% - 322 +1 if-1<z<0
223 - 322 4+ 1 ifo<z<1
0 if 2] > 1
filz) = 23+ 222 + 2 if—-1<2<0
2} -2z + 2z if0<z<1
0 if [z| > 2
2z°% + 622 + 9z/2 if-2<z< -4
f2(a) = ! S GG
—4z° 4+ 3x if—-5<z<3
2z% — 622 + 92/2 if$ <z <3

With 8_; = 61 = 0 and o = 0, these equations are identical
to those in [3]. With 8_; = (; and ag = 0, these equations
are identical to those in [5].

The Fourier transform of this cubic is:

f(U) = f() (U) -+ a*lfl ('U) 6i27r1/ + alfl ('U _ 1) e—i27rv
+aofi () + Bo1fr (@) ™ + B fo (v) e (14)

with

; 3sin® (7v)  3sin (27v)

fo(v) = o I

3 . 1 cos (2nv)  3sin (27v)
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The derivation that yields the solution for the optimal
piecewise cubic can be expressed as a more general problem.
To this end, we generalize the filter as:

K
Fw)y = fo)+d> nfi(). (15)

k=1

For the piecewise cubic function in Equation PCC, there are
five parametric components (i.e., parameters a_j, Qp, &1,
B_1,and $;) and so K = 5.

Then, in order to minimize the expected mean-square er-
ror, substitute this expression into Equation 6, take the deriva-
tive with respect to filter parameters 7y, and set the result
equal to zero. For real-valued imaging systems, this yields
the system of linear equations:

évﬁﬁ ([Tewiwioma)-

o0
R([ (3= 00 h0) 0 &) a6
for ¥ = 1..K. This is a system of K linear equations with
K unknowns. Solving for the values of v yields the optimal
parameters.

5. CONCLUSION

This paper presents the development of an optimal piecewise
cubic filter for restoration and resampling. The derivation
minimizes the expected mean-square difference between the
scene radiance field and the resulting image based on an end-
to-end model of the imaging process. Our current work on
this filter involves the determination of the optimal values for
the planned Landsat 7 Enhanced Thematic Mapper (ETM+)
and simulation experiments for the Landsat 7 imaging system
using images from the Advanced Solid-State Array Spectro-
radiometer (ASAS).
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