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1. INTRODUCTION

An introduction to informatics for comprehensive two-dimensional gas
chromatography (GC"GC) should begin with the strikingly beautiful and
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complex pictures of data visualization. Whether viewed as a pseudocolorized
two-dimensional image, as in Figure 1, or as a projection of a three-dimensional
surface, as in Figure 2, GC"GC visualizations impress even observers lacking
chromatographic expertise with their colorful and multitudinous features.
Chromatographers recognize, within these pictures, complex patterns embed-
ding a wealth of multidimensional chemical information. The richness of
GC"GC data is immediately apparent, but the size and complexity of GC"GC
data pose significant challenges for chemical analysis.

This chapter examines methods and information technologies for GC"GC
data acquisition, visualization, and analysis. The quantity and complexity of
GC"GC data make human analyses of GC"GC data difficult and time-
consuming and motivate the need for computer-assisted and automated
processing. GC"GC transforms chemical samples into raw data; information
technologies are required to transform GC"GC data into chemical information.

The typical data flow is a sequence of: acquiring and storing raw data,
processing data to correct artifacts, detecting and identifying chemical peaks, and
analyzing datasets to produce higher-level information (including quantification)
and reports. In applications for which the analysis is fairly well understood
and routine, information technologies may fully automate this process.

Figure 1 GC"GC data from a gasoline analysis visualized as a digital image. Only a portion
of the data is shown. (This and other figures were generated with GC Images software [1].
Data supplied by Zoex Corporation.)

Figure 2 GC"GC data visualized as a three-dimensional surface. A subregion of the data
from Figure 1 is shown.
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However, because GC"GC is so powerful, it frequently is used for analyses
that are not well understood or are not routine. In such cases, information
technologies must support semi-automated processing, visual interpretation, and
interactive analysis.

This chapter addresses the following fundamental tasks in transforming
GC"GC data into chemical information:

! Acquiring and formatting data for storage, access, and interchange.
! Visualizing multidimensional data.
! Processing data to remove acquisition artifacts and detect peaks.
! Identifying chemical constituents.
! Analyzing datasets for higher-level information and reporting.

2. DATA ACQUISITION

Although GC"GC is a true two-dimensional separation, the process serializes the
data — producing data values in a sequence. In GC"GC, the first column
progressively separates and presents eluates to the modulator, which iteratively
collects and introduces them into the second column, which then progressively
separates and presents eluates to the detector. As explained in detail in Chapter 2,
in the detector, the analog-to-digital (A/D) converter samples the chromato-
graphic signal at a specified frequency. In concept, this operation is similar to
how some optical systems create an image with as few as one detector by
progressively scanning the detector(s) across the two spatial dimensions, but, in
GC"GC, the two dimensions are the two retention times. Then, the digitized data
and relevant metadata (information about the data) are stored in a file with a
defined format for subsequent access.

2.1 Modulation and sampling

The modulation frequency and the detector sampling frequency typically are
under user control. Setting these frequencies (subject to the limitations of the
hardware) involves trade-offs between resolution and other constraints. The
desire for high resolution suggests that the modulation and sampling rates
should be as rapid as possible. A Gaussian peak is not band-limited, so truly
sufficient sampling is not possible. Therefore, higher modulation and sampling
rates provide greater information capacity and increased resolution for detecting
co-eluted peaks. However, the modulation frequency must allow adequate
intervals for separations in the second column, and the sampling frequency
involves a trade-off in data size (i.e., higher sampling frequencies generate more
data) and diminishing returns in selectivity and precision. Full consideration of
these and other issues (such as duty cycle and noise) in setting the modulation
and sampling frequencies involves instrumental and application-specific
concerns that are beyond the scope of this chapter, but consideration of the
data suggests general guidelines.
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Experimental and theoretical studies [2] suggest that the modulation rate
should be at least one cycle per two times the primary peak standard deviation s1

(i.e., the standard deviation of the peak width from the first column separation),
which translates to at least four modulation cycles over 8s1 (the effective width of
peaks from the first-column separation). The considerations for GC"GC detector
frequencies are similar to those for traditional one-dimensional chromatography,
for which a rate of at least one sample per peak standard deviation is reco-
mmended [3,4], that is, eight samples over 8s2 (the effective width of peaks from
the second-column separation). With these considerations, Murphy et al. [5]
recommend that method development begin with determining the shortest time
for adequate chromatographic separation in the second column and then a first-
dimension method be used that provides peak widths of at least four times the
modulation interval. With the wide variety of chemical mixtures and analytical
goals for GC"GC, a broad range of modulation and sampling frequencies are
used. Modulation cycles from 2 to 20 seconds (s) and sampling frequencies from
25 to 200 hertz (Hz) are not unusual. Again, however, the application should be
considered; slow modulation and sampling rates relative to peak width may be
sufficient for applications that require only quantification of well-separated
peaks, and fast modulation and sampling rates relative to peak width may be
required for applications that involve compounds that are difficult to separate.

A common problem in GC"GC data processing is inadequate sampling of the
first-column output; that is, the modulation period is too long with respect to the
first-column peak widths, or, put another way, the first-column chromatography
produces peaks too narrow for the modulation period. Of course, if
the modulation period is constrained by the time required for second-column
separations, then broadening the peak widths from the first column may require
longer runs (thereby increasing cost). Inadequate sampling of the second-column
output is less commonly problematic because most detectors used for GC"GC
are fast and most laboratories typically use detector sampling rates that exceed
what is required for the analysis (and so generate more data than may be
necessary). However, as explained in Chapter 2, some types of detectors — for
example, quadrupole mass spectrometer (qMS), atomic emission detector (AED),
and electron capture detector (ECD) — may be challenged by the acquisition
speeds required for GC"GC.

2.2 Digitization and coding

GC"GC systems use an A/D converter to map the intensity of the chromato-
graphic signal to a digital number (DN). Among the many types of detectors
used with GC"GC, the major distinction is between detectors that produce a
single number at each time sample of the chromatogram, such as a flame-
ionization detector (FID) and a sulfur chemiluminescence detector (SCD), and
multichannel detectors that produce multiple values (typically, over a spectral
range) for each time sample, such as a mass spectrometer (MS). In either case,
each DN is represented with a limited number of bits indicating a value in a
limited range with limited precision.
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Because GC"GC can produce large datasets, GC"GC systems often employ
data compression in their file formats. Sampling at 200Hz, a detector for single
values with a 48-bit dynamic range (as supported by Agilent’s IQ data file format
[6]) produces data at the rate of 4.3 megabytes/hour (MB/h). Most programming
languages must perform arithmetic on 48-bit values with 64-bit long integers or
64-bit double-precision floating-point numbers. Mass spectrometers can produce
data at sub-1GHz (e.g., one 8-bit spectral intensity per nanosecond), a data rate
of greater than 1 gigabyte/sec (GB/s). In order to more efficiently store data,
GC"GC systems may compress the data. For example, because data values are
correlated with neighboring values in the sequence, Agilent’s IQ data file format
implements a second-order backward differential coding that compresses values
from a 48-bit range to 2 bytes. Even more aggressive compression commonly is
used for MS data. For example, ORTEC’s FastFlight-2TM [7] can accumulate
successive spectra in hardware and output only the summed spectra for a much
smaller data rate. In a MS with GHz raw speed, summing 100 transient spectra in
100K channels generates 100 spectra per second (compared to 10,000 raw spectra
per second). The FastFlight2 also offers a lossless compression mode that uses
fewer bytes to represent smaller values and a lossy compression mode that
detects and encodes only the spectral peaks in the MS data — a process
sometimes called centroiding because each spectral peak is represented by a
single centroid indicating the center, intensity, and sometimes the peak width.

2.3 File formats

Most GC"GC systems use a proprietary data file format, which affords vendors a
high degree of control (e.g., to implement data compression), but which poses a
barrier and inconvenience for sharing or processing data across systems.
Currently, there is no standard format for GC"GC data, but GC"GC data
can be shared using nonstandard text files or existing standards for gas
chromatography (GC) data. GC"GC data can be converted to text, for example,
ASCII-format comma-separated values (CSV), but the resulting files are non-
standard and are larger than binary or compressed data files. The ASTM has
issued Analytical Data Interchange (ANDI) standards for chromatography [8]
and MS [9]. These standards lack some requirements for GC"GC metadata (e.g.,
a metadata element for the modulation cycle) but can be used to communicate
raw data and other chromatographic metadata. These standards were developed
primarily for data interchange and lack some desirable features for more routine
use. Another limitation of the ANDI standards is that the network Common Data
Form (netCDF) [10], upon which the standards are built, was defined for 32-bit
computing systems, limiting their usability for data larger than 2 GB. The ASTM
has sanctioned an effort to develop a new format standard for analytical
chemistry data, the Analytical Information Markup Language (AnIML) [11,12],
utilizing the eXtensible Markup Language (XML) [13]. Standard formats for
analytical chemistry data facilitate data portability and interchange, but despite
such considerations proprietary GC formats have continued to dominate the
market.
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3. VISUALIZATION

Visualization is a powerful tool for qualitative analysis of GC"GC data (e.g., to
troubleshoot the chromatography). Various types of visualizations are useful:
two-dimensional images provide a comprehensive overview, three-dimensional
visualizations effectively illustrate quantitative relationships over a large
dynamic range, one-dimensional graphs are useful for overlaying multivariate
data, tabular views reveal the numeric values in the data, and graphical and text
annotations communicate additional information. This section explores some of
the methods and considerations in the various types of visualizations.

3.1 Image visualizations

3.1.1 Rasterization
A fundamental visualization of GC"GC data is as a two-dimensional image.
GC"GC data, which is acquired sequentially, can be reorganized as a raster — a
two-dimensional array, matrix, or grid of picture elements called pixels — in
which each pixel value is the intensity of the detector signal. As a two-
dimensional array of intensities, GC"GC data has many similarities with other
types of digital images and so many methods and techniques from the field of
digital image processing can be applied or adapted for GC"GC data
visualization and processing.

The standard approach for rasterization is to arrange the data values acquired
during a single modulation cycle as a column of pixels, so that the ordinate
(Y-axis, bottom-to-top) is the elapsed time for the second-column separation, and
then to arrange these pixel columns so that the abscissa (X-axis, left-to-right) is
the elapsed time for the first-column separation. This ordering presents the data
in the commonly used right-handed Cartesian coordinate system, with the first-
column retention time as the first index into the array. Other orderings are
possible but less commonly used. The problems of correctly synchronizing the
columns of data with the modulation cycle and of modulation cycles that are not
evenly divisible by the detector sampling-interval are examined in Section 4.1.

3.1.2 Colorization
For presentation as an image, the pixels are colorized; that is, the GC"GC values
are mapped to colors of the display device. Scalar values, such as single-valued
GC"GC data, can be colorized simply on an achromatic grayscale, familiar from
so-called black-and-white images. Scalar values can be extracted from multi-
spectral data in various ways, for example, by adding all intensities in each
spectrum to compute the total intensity count (TIC) of the data point or by taking
the value in a selected ‘‘channel’’ of the spectrum. A grayscale mapping typically
is defined by setting a lower bound, below which values are mapped to black; an
upper bound, above which values are mapped to white; and a function to map
values between the bounds to shades of gray, with brightness increasing with
value. Linear, logarithmic, and exponential mapping functions are useful for
different effects: linear mapping treats gradations at all intensity levels similarly;
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logarithmic mapping emphasizes gradations nearer the lower bound; and
exponential mapping emphasizes gradations nearer the upper bound. Although
grayscale colorization provides a straightforward ordering of values from small
to large that is intuitively meaningful, humans may be able to distinguish fewer
than 100 distinct grayscale gradations [14]. Therefore, grayscale images cannot
effectively communicate many differences among values over a large dynamic
range such as is common for GC"GC data.

Pseudocolorization takes advantage of the differing sensitivities in human
vision for different frequencies of light [14]. These differing sensitivities enable
‘‘color’’ perception, with greater selectivity than for grayscale. Because humans
have trichromatic vision based on three types of color receptors (cones), a
trichromatic color model is sufficient for image colorization. Various trichromatic
color models have been developed. RGB (with values for red, green and blue)
and HSV (with values for hue, saturation, and brightness value) are widely used
color models for digital imaging.

Pseudocolorization maps data values with three independent functions for
the three color components. The mapping functions for the color components
typically are not monotonically nondecreasing (as grayscale mapping functions
typically are), so discerning relative values in a pseudocolor image is not as
straightforward as with grayscale (for which brighter means larger). However, a
good pseudocolor scale can communicate a clear ordering of values. For example,
topographic and temperature images commonly use a pseudocolor scale some-
times called cold-to-hot, which has a mapping from small to large that progresses
through blue, cyan, green, yellow, and red, with intermediate colors. In Figure 1,
the color scale has the smaller values of the background colorized dark blue
and the larger values of the peaks colorized with the cold-to-hot scale to show
increasing values. This mapping is easily interpreted because it is familiar.
Pseudocolor images can present many distinguishable colors, but there is a trade-
off between having a pseudocolor scale with an ordinal progression that is simple
to understand and the number of gradations that can be discerned: an easily
understood scale visually differentiates a smaller number of gradations, and a
scale that visually differentiates a larger number of gradations makes the value
ordering more difficult to understand.

Pseudocolorization offers better visualization than grayscale for gradations
across a wide dynamic range of values, but to be effective the mapping still must
allocate color variations to the value range according to the presence of
gradations. Specifying pseudocolorization interactively can be tedious and diffi-
cult, so automated determination of pseudocolor mapping is useful. Gradient-
Based Value Mapping (GBVM) [15] is an automated method for mapping
GC"GC data values onto a color scale, for example, the cold-to-hot scale. For a
given dataset, GBVM builds a value-mapping function that emphasizes grada-
tions in the data while maintaining ordinal relationships of the values. The first
step computes the gradient (local difference) at each pixel. Then, the pixels (with
computed gradients) are sorted by value, and the relative cumulative gradient
magnitude is computed for the sorted array. The GBVM function is the mapping
from pixel value to the relative cumulative gradient magnitude of the sorted
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array. GBVM is effective at showing local differences across a large dynamic
range.

Each resolved chemical compound in a sample increases the value in a small
cluster of pixels, which, if the colorization effectively shows local differences, are
seen as a localized spot with different colors than the surrounding background.
If the colorization is not effective over the full dynamic range, spots with small
values may not be visible or spots with large values may not show significant
relative differences.

3.1.3 Navigation
Standard operations for navigating digital images include panning, scrolling, and
rescaling. Rescaling requires resampling the data — creating a displayed image
with more pixels to zoom in or a displayed image with fewer pixels to zoom out.
(Visualization does not change the underlying data used for later processing.)
Enlarging an image by rescaling entails reconstruction, which is the task of
rebuilding the signal at resampling points between the data values. Popular
methods for digital image reconstruction include nearest-neighbor interpolation,
bilinear interpolation, and various methods using cubic polynomial functions for
interpolation or approximation [14]. Bilinear interpolation provides a good
compromise between quality and computational overhead. It is important to
remember that reconstruction estimates signal values and that large zoom factors
entail numerous estimates. Therefore, although nearest-neighbor interpolation
creates blocky images with less accurate reconstruction, the result makes clear the
modulation and sampling rates of the data. Similarly, nearest-neighbor inter-
polation will show changes in the aspect ratio imposed during rescaling (e.g., to
compensate for different sampling rates in the two dimensions, such as under-
sampling the first-column separation and oversampling the second-column
separation). Figure 3 compares bilinear and nearest-neighbor interpolation.
Bilinear interpolation shows a spot that more closely represents the continuous
peak produced by chromatography. Nearest-neighbor interpolation shows
rectangular pixels that make clear the discrete nature of the digitized signal.

3.1.4 Qualitative analysis
Visualization can quickly and clearly show important characteristics of GC"GC
data, including problems related to the chromatography. Three such examples
are considered briefly here. First, if the retention time of a compound in any
second-column separation exceeds the length of the modulation cycle, the
associated compound will elute during a subsequent modulation cycle and the
peak will appear as a spot that is wrapped around into a subsequent column of
pixels in the image. If the retention time is only slightly too long, the spot will
appear in the otherwise blank region at the bottom of the image corresponding
to the void time of the next second-column separation. This problem can be
recognized upon visual inspection, and the chromatographer can change the
acquisition settings, for example, lengthening the modulation cycle time or
accelerating the second-column separations with a temperature program or
shorter column. A second problem sometimes is seen in crescent-shaped trails
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that, from left-to-right, slope downward quickly at first and then level out.
These artifacts indicate a continuous presentation of eluates from the first column
into the second column, perhaps caused by incomplete bake-out (an unclean first
column) or by incomplete modulation (i.e., a thermal modulator that is not
heated sufficiently to fully release). A third problem seen in visualizations is peak
tailing in the second-column separations, which can be caused by various
chromatographic issues. Figure 1 illustrates small artifacts of crescent-shaped
‘‘bleed’’ and peak tailing. Data visualization enables quick inspection of the data
for these and other qualitative issues.

3.2 Other visualizations

3.2.1 Three-dimensional visualizations
Three-dimensional visualizations use many of the same techniques as two-
dimensional image visualizations, including rasterization, colorization, naviga-
tion, and reconstruction. A three-dimensional visualization is based on a surface,
with the surface elevation relative to the base plane given by each pixel’s value.
The elevation scale can utilize a mapping function (e.g., linear, logarithmic, or
exponential functions). Constructing and viewing an artificial surface utilizes
many of the techniques of computer graphics. The surface can be rendered in
various ways, for example, pseudocolorized at each pixel, colorized with a solid
color and illuminated to provide shading, or built as a wire frame. Then, the surface
is projected onto a two-dimensional viewing plane for display. A common projec-
tion is the perspective view from a single viewpoint. Additional navigation

Figure 3 A single GC"GC peak enlarged by bilinear interpolation (left) and nearest-neighbor
interpolation (right). Bilinear interpolation yields a truer (i.e., higher fidelity), more pleasing
spot; but nearest-neighbor interpolation more clearly shows the individual data points.

Data Acquisition, Visualization, and Analysis 85



operations enable the user to rotate the surface in space, in order to view the surface
from different perspectives. Figure 2 illustrates a three-dimensional perspective
view of a portion of the GC"GC data shown in Figure 1 with values shown as the
third dimension (i.e., elevation), with log scaling.

With the added dimension of height, three-dimensional visualizations are
better able to show quantitative relationships over a large dynamic range. How-
ever, in three-dimensional visualizations, points on the surface can be obscured,
and there is no correspondence between the dimensions of the data and the axes
of the display, so interactive operations such as point-and-click indexing are more
difficult and problematic than with a two-dimensional image. In that sense,
different visualizations are complementary, each with its own utilities.

3.2.2 One-dimensional visualizations
One-dimensional graphs are useful for various purposes, including showing slices
or integrations of GC"GC data in a graphical format that is familiar to traditional
chromatographers. For example, the values in different secondary chromatograms
(or rows along the first-column separation) can be rendered as a graph and
overlaid to show whether the profiles change over time and/or the results of peak
detection in one dimension. Similarly, values in different spectral ‘‘channels’’ of a
pixel column (or row) can be graphed and overlaid to show if the multispectral
profiles reveal the presence of co-eluted peaks, as illustrated in Figure 4.

3.2.3 Text and tabular visualizations
Some information is best communicated in a text format. For example, the values of
the two-dimensional data array can be shown directly as a table, in which each cell
displays a numeric pixel value. Visualization features available in spreadsheets
are useful for tabular text visualizations. For example, colorization of the text or
textboxes can be useful for highlighting different features of the data, such as peak
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membership, as shown in Figure 5. Statistical views of the data can be presented
simply in a table, and other spreadsheet functions, such as sorting and averaging,
are useful for quantitative analysis, which is the subject of the next section.

3.2.4 Graphical overlays and annotations
Graphical overlays are useful for communicating metadata — additional
information about the data. For example, in Figure 6, semitransparent bubbles
are used to indicate detected peaks. This analysis is for ASTM D5580 Standard
Test Method for Determination of Benzene, Toluene, Ethylbenzene, p/m-Xylene,
o-Xylene, C9 and Heavier Aromatics, and Total Aromatics in Finished Gasoline
by Gas Chromatography [16], so bubbles are activated only for the peaks of
interest. The areas of the bubbles are proportional to the peaks’ total response,
and the colors indicate the chemical group membership of the peak. (Peak dete-
ction and identification are described later.) Lines connecting peaks show associa-
tions with internal standards for quantitative calibration. Graphical shapes,
such as polygons and polylines, are used to indicate chemical groups — in this

Figure 5 A tabular visualization of data values in two adjacent peaks with colorization to
show primary peak membership.
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Figure 6 A graphical overlay with semitransparent bubbles for detected peaks of interest, a polygon to indicate the C9+ aromatics, text labels,
and graphical chemical structures. A subregion of the data from Figure 1 is shown.
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example, the C9+ aromatics. Text labels and chemical structure graphics commu-
nicate additional information.

4. DATA PROCESSING

Data processing extracts higher-level information from the raw data for further
analysis. This section presents an overview of basic processing operations for
GC"GC data:

1. Phase correction — synchronize the columns of data points with the
modulation cycles.

2. Baseline correction — remove nonsignal baseline offsets in the data values.
3. Peak detection — detect signal peaks induced by separated compounds.

4.1 Phase correction

In rasterizing GC"GC data, it is typical that the starting data point of each
secondary chromatogram in the image corresponds to the time that the
modulator released its sample into the second chromatographic column. Then,
the vertical axis of the image properly reflects the retention time in the second
column. Typically, this is performed by the chromatographic system, but if the
data acquisition is out-of-phase with the start of the modulation time, phase
correction may be required.

Phase correction is the operation of shifting data in the image so that the data
point acquired at the start of each modulation cycle (i.e., the start of each second-
column separation) is the first pixel in each image column. (Other synchroniza-
tions, e.g., starting each column at the holdup time, are possible but less
commonly used.) In the data itself, there may be no markers for the start of the
modulation cycles, in which case corrective processing requires inference. (If
there are such markers, phase correction is simple.) If the modulation and
sampling frequencies are known accurately, then it is possible to accurately infer
the first data point corresponding to the modulator release in every modulation
cycle from the data point corresponding to the modulator release in just one
modulation cycle by iteratively adding (or subtracting) the product of the
modulation interval and the sampling rate.

For example, a modulation interval of 4 s and a sampling rate of 200Hz mean
the data point for the start of each modulation cycle follows 800 data points after
the data point at the start of the previous modulation cycle. Suppose, in this
example, the first data point of the first full modulation cycle is not the first pixel
in the first image column but is instead the 400th pixel (i.e., in the middle of the
first image column). Then, phase correction could be performed by dropping the
first 400 pixels of the first image column, corresponding to the data points before
the start of the first full modulation and shifting the data. So, given the
modulation and sampling frequencies, it is sufficient to know the second-column
retention time of any constituent compound and then to identify the peak pixel
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for that compound, in order to establish a known mapping between data points
and the modulation cycle. From that known point in the modulation cycle, the
starting data points for every modulation cycle can be inferred and shifted
accordingly.

If the required phase correction is not an integer, two options are possible:
(1) round the phase correction to the nearest integer pixel index and accept a
timing error of not more than one-half of the sample interval or (2) resample the
data so that the resample point is precisely at the start of the modulation cycle.
The first option typically is preferred because it maintains the original data,
without introducing resampling errors, and is computationally simpler.

A similar issue exists if the product of the modulation interval and the
sampling frequency is not an integer. In this situation, each pixel column may
have a different fractional offset relative to the modulation start time. Then, the
fractional phase correction varies among image columns, and so rounding may
result in image columns with heights that differ by one pixel. For visualization,
but not for subsequent analysis, this requires that a pixel be added to shorter
rows (or that a pixel be excised from longer rows), for example, in data for the
void time at the start of the separation.

4.2 Baseline correction

In gas chromatography, the signal peaks, induced by constituent compounds
in the sample, rise above a baseline level in the output. Under controlled condi-
tions, the baseline level consists primarily of the steady-state standing-current
baseline of the detector and column-bleed (which may cause a progressive rise
in temperature-programmed runs). Figure 7 illustrates a three-dimensional
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Figure 7 A GC"GC peak on a non-zero baseline.
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perspective plot of an isolated peak rising to a maximum value of over 23
picoamps. However, the baseline in the region of the peak is more than 14
picoamps, so the actual maximum peak height induced by the sample compound
is less than 10 picoamps. As this example makes clear, accurate quantification of
the analyte peaks requires subtraction of the baseline level from the signal.

There are two general approaches for estimating the baseline for correction:
(1) estimate the baseline around each peak separately and (2) estimate the
baseline across the data comprehensively. The first approach requires that a data
point value just outside a peak indicate the baseline level, but this is problematic
in regions of the data that are crowded with peaks because the values just outside
a peak may be acted upon by neighboring peaks. The second approach requires
multiple data point values indicating the baseline level with sufficient frequency
that the baseline can be reconstructed.

In GC"GC data, the baseline usually can be observed at many points, for
example, during the void time of each second-column separation, even if other
regions of the data are crowded with peaks. This is an important attribute of
GC"GC for accurate quantification because if the baseline cannot be estimated,
then peak integration is less accurate. Typically, the baseline does not change
significantly over the brief time of a few modulation cycles, so these observations
are sufficient to reconstruct the baseline in a comprehensive fashion.

In a simple model of the GC"GC process, each data point value produced by
the system is the sum of:

! A nonnegative baseline offset value that is present even when there is no
sample compound detected.

! The signal due to the presence of the detected sample compound(s).
! Random noise fluctuations (including digitization round-off).

Under typical controlled conditions, the baseline offset values change relatively
slowly over time, and the signal and noise fluctuate more rapidly over time.

Reichenbach et al. [17] described a method for extracting the GC"GC baseline
comprehensively. The first step identifies background regions (i.e., regions
without analyte peaks) by locating data points with the smallest values in each
second-column chromatogram (or other interval). Then, the local means of the
values from data points in the background regions are taken as first estimates of
the baseline, and the variances of the values are taken as first estimates of the
variance of the noise distribution (which also is present in the background). Then,
signal processing filters are used to reconstruct the baseline as a function of the
local estimates. Finally, the baseline estimate is subtracted from the signal.

Figure 8 shows two examples of baseline correction: with a blank sample (top)
and a diesel sample (bottom). On the left, images of the data before baseline
correction are shown with a narrow grayscale range of 1.0 picoamp from black to
white. As can be seen in both images, but especially the blank data, there is a
temperature-induced increase in the baseline from left to right such that the
baseline at the right is nearly 1.0 picoamp greater than the baseline at the left.
On the right, images of the data after baseline correction are shown with an even
narrower grayscale range of 0.1 picoamp from black to white centered about
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0.0 picoamp. As can be seen in the images after baseline correction, the baseline is
removed, and the remaining background values consist of near zero-mean noise
with variance less than 0.1 picoamp. The baseline correction is successful not only
for the blank run, but also for the diesel sample in which signal obscures much of
the baseline.

For systems producing multichannel data, such as GC"GC–MS, the baseline
can be estimated in each channel using the same method. Baseline correction
for centroided multispectral data is difficult because the centroiding process
removes many (or all) of the background values. Therefore, baseline correction
should be performed before or at the same time as spectral centroiding (but,
unfortunately, that is not always done).

4.3 Peak detection

Blob detection is the process of aggregating peaked clusters of pixels. The term
blob, from the digital image processing literature, means a cluster of pixels that
are brighter (or darker) than their surround. For GC"GC data, it is useful to
distinguish blobs from analyte peaks, because a detected blob might be formed
from several co-eluted analyte peaks, or a single analyte peak might be detected
incorrectly as several blobs (e.g., due to false minima introduced by noise). After
blob detection, peak detection may require unmixing blobs resulting from
co-elution and merging blobs resulting from incorrectly split peaks.

Two alternative approaches for GC"GC blob detection are: (1) use traditional
one-dimensional chromatographic peak detection along each second-column
chromatogram and then form two-dimensional blobs from the unions of adjacent
one-dimensional peaks [18,19] or (2) perform detection in both dimensions

Figure 8 Baseline correction for a blank sample (top) and diesel sample (bottom), before
baseline correction (left, with a grayscale range of 1.0 picoamp, 14.5 to 15.5) and after baseline
correction (right, with a grayscale range of 0.1 picoamp, from –0.5 to 0.5).
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simultaneously. The first approach, of relying on one-dimensional chromato-
graphic peak detection, builds on an accepted methodology but does not fully
utilize all available relevant information as it detects peaks in one dimension
without reference to the other dimension. The second approach requires a two-
dimensional algorithm but can use all available relevant information in each step
of the detection.

The drain algorithm for two-dimensional blob detection in GC"GC data [20]
is an inversion of the watershed algorithm [21]. The approach is a ‘‘greedy’’
dilation algorithm that proceeds by starting blobs at peak tops and iteratively
adding smaller pixels bordering the blobs until there are no more smaller,
positive-valued pixels in the surrounds. This process can be understood
conceptually by picturing the image as a relief map with larger values having
higher elevation (i.e., as a three-dimensional surface as in Figure 2). The surface is
placed under enough ‘‘water’’ to submerge the highest elevation; then, the water
is progressively ‘‘drained.’’ As the draining proceeds, peaks appear as ‘‘islands’’
and are distinguished with unique blob identification numbers. As more water
drains, islands (blobs) expand as lower-lying pixels around the ‘‘shore’’ are
exposed. When the water between two islands disappears, then a border between
blobs is set. When the water level reaches zero, the process is stopped (as
negative values are due to noise fluctuations below the baseline). In order to
prevent noise from being detected as spurious peaks, blobs that are too small —
either in number of data points, apex value, total blob intensity, and/or other
criteria — can be ignored.

The example in Figure 9 illustrates the drain algorithm. The intensity of the
data point is the base number (values up to 99), and the subscript indicates the
order (1–12) in which the data points are added to a blob (dark gray for Blob 1 or
light gray for Blob 2). In A, the data point with largest value, 99, starts Blob 1, and
then the data points ordered by values 95, 88, and 80 are added to Blob 1 because
they neighbor another data point previously assigned to Blob 1. In B, the data
point with value 77 starts a new blob, Blob 2, because it is the next largest value
and is not adjacent to a data point in any other blob. Then, the data point with
value 72 is added to Blob 2. In C, the data points with values 63 and then 61 are
added to Blob 2 and Blob 1, respectively, based on their adjacencies to previously
assigned data points. In D, the data points with values 42, 38, and 34 are
assigned, in order, to Blobs 1, 1, and 2. Where a data point is adjacent to more
than one previously assigned data points, the data point is assigned to the same
blob as its largest neighbor.

952 61 34 77 952 61 34 775 952 619 23 775 952 619 2412 775
991 71 38 72 991 71 38 726 991 717 38 726 991 717 3811 726
804 883 42 63 804 883 42 63 804 883 42 638 804 883 4210 638

Figure 9 Data points, with intensity shown as the base number, are assigned in order of their
intensity, with order shown as the subscript, to a blob (dark gray for Blob 1 or light gray for
Blob 2). Snapshots of the assignment process are shown from left to right.
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One type of error for any blob detection algorithm is oversegmentation —
detection of multiple blobs that should be detected as a single peak. This problem
can be caused by noise-induced false minima within a peak or other acquisition
artifacts. Various approaches can be used to reduce or eliminate oversegmenta-
tion. For example, smoothing can be implemented before detection as a convo-
lution with a two-dimensional Gaussian spot whose width is parameterized
according to the variance of the noise: a wider blurring function is appropriate
for more noise and a narrower blurring function is appropriate for less noise. Too
little blurring does little to correct incorrectly split peaks, whereas too much
blurring can cause the opposite problem of incorrectly merged peaks.

Undersegmentation, in which multiple analyte peaks are detected as one blob,
occurs if analyte peaks are so close in time that there are no minima between
them (or small minima are removed by smoothing). For example, a small
co-eluted peak may appear as a shoulder on the larger peak. Even if there are
minima between overlapping peaks, the watershed algorithm does not ‘‘unmix’’
the peaks; it simply delineates the minima between them. As described in
Chapter 5, numerical methods may be used to unmix co-eluting peaks. For
example, if each peak has a consistent shape with respect to every row and with
respect to every column of the data, then unmixing can be seen as the task of
inverting (or deconvolving) a separable, bilinear system for single-valued data or
tri-linear model for multichannel data. However, the inversion problem is ill
conditioned, and the peak shapes and data are subject to noise and other
variables, so the unmixing problem is difficult. MS data can be especially useful
for unmixing co-eluting peaks that have differing spectra. Even with MS data,
unmixing nearly coincident peaks may require external information (e.g., the
spectra of the coincident peaks).

Various chromatographic conditions can cause problems for peak detection
algorithms. For example, if the temperature for the second-column separation
changes rapidly relative to the modulation cycle, then the apexes of one-
dimensional peaks in consecutive second-column separations of a single
compound may be offset from one another. For a two-dimensional method such
as the drain algorithm, the two modulations may be detected as two separate
peaks if the shift is two or more samples. Similarly, a one-dimensional method
may fail to join the two one-dimensional peaks. Smoothing, described above,
may ameliorate this problem. Chromatographic solutions include more rapid
modulations, a slower temperature program, and/or a slower sampling rate. As
discussed in Section 2.1, long modulation cycles or slow sample rates relative to
(respectively) the first-column and second-column peak widths yield narrower
troughs between co-eluting (or nearly co-eluting) peaks, which can lead to
undersegmentation as the separate peaks become more difficult to discern. In this
case, chromatographic solutions include more rapid modulations, a slower
temperature program, and/or a faster sampling rate.

After blobs are detected (or even as they are detected), important statistical
features of the blobs can be computed. Most important for quantification, the
integration or sum of all of a peak’s intensity values is indicative of the relative
amount of the compound inducing the peak (subject to the responsivity of
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the detector to the compound). Geometrically, the integration under a two-
dimensional peak is a volume (with two retention-time dimensions and the
response dimension), analogous to the integration under a one-dimensional
chromatographic peak as an area (with one retention-time dimension and the
response dimension). Quantification that accounts for the detector responsivity is
described in Section 6.1.

Many other statistics can be computed. The number of data points (or pixels)
in the peak is a measure of its retention-time footprint or area, with two retention-
time dimensions. Symmetry can be measured as a ratio of the tailing and leading
half-widths in each dimension. Various measures with weighted and unweighted
moments indicate the center of the peak, center of gravity, variance in each
retention-time dimension, orientation, eccentricity, and so on. The GC Image
Users’ Guide [22] documents more than 70 GC"GC peak features. These features
are useful in identifying unusual and possibly problematic blobs, for example,
blobs resulting from co-eluting peaks or blobs resulting from split peaks, which
then can be subject to visual inspection and interactive correction.

As experienced chromatographers know, automated peak detection is
sometimes erroneous, especially for small peaks that are barely detectable amid
noise and co-eluted peaks that are nearly coincident. So, interactive tools are
useful, but even human experts may not be able to solve difficult peak detection
problems. As described in the next section, complex features can be computed as
the combination of elementary features for chemical identification.

5. CHEMICAL IDENTIFICATION

A common analytical goal is an assay with individual compounds or group
identities and quantitative concentrations of target constituents. (Compounds
belonging to the same chemical group are related to one another in some chemical
or physical way.) Accurate quantification involves not only the peak responses,
but also the responsivity of the detector because detectors may have differing
quantitative responses to the same concentrations of different compounds. There-
fore, analyte identification (described in this section) typically is performed before
quantification (described in the next section). With single-valued GC"GC data,
analyte identification must be based primarily on retention time. With multi-
channel data, such as from GC"GC–MS, multivariate methods can be used for
chemical identification.

5.1 Chemical identification by retention time

A common method for chemical identification in one-dimensional chromato-
graphy is to define retention-time windows for peaks of interest. Under
repeatable, reproducible, and tightly controlled chromatographic conditions, the
peaks for target compounds will fall reliably within fixed retention-time
windows. However, narrow windows may be required for peaks with nearby
neighboring peaks (to avoid false positives), and, with narrow windows, even
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slightly different chromatographic conditions may cause a peak to drift outside
its window. Here, ‘‘drift’’ is used to characterize a local variation that may be
related to more complex systemic variations as might be caused by differing
column conditions, temperatures, gas pressure, etc.

Some standard one-dimensional GC methods use reference peaks to help
recognize drift [23]. For more widely varying chromatographic conditions,
retention times for targets can be related using a linear retention index (LRI) [24],
in which retention times are referenced relative to the retention times of marker
compounds. A common LRI scheme uses the n-alkanes as marker points with
indices equal to 100 times the carbon number (following the Kováts index [24]);
then the indices for peaks between marker points are computed using piecewise
linear interpolation. If retention-time windows are defined relative to marker peaks
that can be located, then any linear retention-time transformation observed in the
marker peaks can be applied to the windows used for chemical identification.

Retention-time windows can be used in two dimensions, but the problems of
drift exist in both dimensions, with drift in the first dimension possibly inducing
drift in the second (related to the temperature program). In an intralaboratory
study of GC"GC retention times across separate column sets, chromatographs,
and days, Shellie et al. [25] demonstrated highly reproducible peak positions, but
with statistically significant drift over separate days and other chromatographic
conditions. Ni et al. [26] showed that peak pattern variations over widely varying
chromatographic conditions could be modeled well by affine transformations
(i.e., translation, scale, and shear). As illustrated in Chapter 3, several approaches
have been put forward for two-dimensional indexing [27–31], but none has yet
achieved wide acceptance and research continues. A robust approach for dealing
with two-dimensional retention-time transformations that can be tailored to
specific applications is to locate and identify target peaks relative to the positions
of many other peaks in the sample, not just a few standard markers. With this
approach, the transformation observed in the pattern of many peaks can be
applied to the windows for chemical identification.

Template matching is a powerful extension of the traditional approaches of
reference and marker peaks to identify compounds by recognizing peaks in
multidimensional separations subject to multidimensional retention-time trans-
formations. A template records the pattern of peaks expected for an analysis,
along with information for chemical identification, such as the compound name
and/or chemical group for peaks of interest. A template can be built from
prototypical data either automatically with all peaks meeting specified criteria
(e.g., the largest peaks) or interactively with selected peaks. Templates can be
constructed based on peak retention times in one chromatogram or based on
averaged peak retention times in several chromatograms. Then, given a template
and the set of peaks observed in a sample for analysis, peak pattern matching
finds a subset of peaks in the sample data that forms the same pattern as the
template. A template-matching algorithm establishes as many correspondences
as possible between peaks in the template and peaks in the sample data subject to
the allowed retention-time transformation (e.g., shifting or scaling the template)
and the allowed retention-time window [32–37]. After peak correspondences are
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established, the annotated information (such as compound name or group) from
peaks in the template is copied into corresponding peaks in the data.
Consequently, all the matched compounds in the template are identified in the
data.

Figure 10 illustrates a template constructed from the gasoline analysis in Figure 6.
The template from the gasoline analysis is overlaid and matched to the
chromatogram of a diesel analysis acquired four years later with a different
chromatograph and different columns. This template is a multitype template that
contains not only a pattern of expected peaks, shown with open circles, but also
other information for annotating and reporting on the data. Polygons define regions
in which peaks for chemical groups are expected. Text and chemical structure
objects are included to provide annotations for visualizations. Graphical lines are
used to visually highlight associations between compounds and the internal
standards used for calibration. (However, the internal standard, 2-hexanone, is not
present in the diesel sample.) The locations of the matched peaks in the diesel
chromatogram are shown with filled circles connected by lines to the nearby,
corresponding template peaks (shown with open circles). As can be seen, template
matching is an effective method for quickly identifying peaks and chemical groups.
Other objects in the template are geometrically transformed according to the
transformation of the matched peaks, as can be seen for the shifted polygon and its
label. Any errors in template matching can be corrected interactively.

5.2 Multivariate methods for chemical identification

Methods for identifying chemical compounds by multichannel data signatures
(such as searching a MS library for a matching multispectral signature) are
essentially the same for GC"GC as for GC, but GC"GC, with its superior sepa-
ration power, can significantly reduce co-elution and so improve the accuracy of
chemical identification. With multichannel detectors, different compounds have
different multivariate signatures (although signatures of similar compounds can
be quite similar). The signatures of unidentified peaks can be compared to the
known signatures of compounds of interest, with a mathematical computation of
difference or similarity between signatures, to find a match that identifies the
compound. The National Institute of Standards and Technology (NIST) distri-
butes a library of MS signatures for more than 163K compounds and a program
for searching the library [38]. This approach can be highly effective for chemical
identification, but there are many issues that can cause misidentifications, for
example, the unknown compound may not be documented in the library,
observed signatures are variable, co-elution mixes signatures. In the presence of
variability, co-elution, and noise, the search program may find the wrong match.
GC"GC can greatly reduce co-elutions, thereby producing purer signatures that
can be better identified.

Rule-based methods follow another approach for chemical identification with
multichannel data. Experienced analytical chemists often use rules to deduce
chemical identity [39,40]. In a computer-based system, rules express the reasons
or criteria for chemical identification. Welthagen et al. [41] used a rule-based

Data Acquisition, Visualization, and Analysis 97



4.750
4.500

4.250
4.000

3.750
3.500

3.250
3.000

2.750
2.500

2.250
2.

6.667 7.333 8.000 8.667 9.333 10.000 10.667 11.333 12.000 12.667 13.333 14.000 14.667 15.333 16.000 16.667 17.333 18.000 18.667 19.333 20.000 20.667 21.333 22.000 22.667 23.333 24.000 24.667 25.333 26.000 26.667 27.333 28.000

C9+aromatics

benzene

toluene

2-hexanone

O

ethylbenzene

o-xylene
1,2,4 trimethylbenzene

Figure 10 A template from a gasoline analysis is overlaid and matched to peaks in a diesel sample, thereby identifying the peaks and groups of
interest. A subregion of the data is shown with open circles, showing the expected peak positions in the template.

9
8

Step
hen

E.
R
eich

enb
ach



approach based on GC"GC retention times and MS signatures to classify
chemical groups in the analysis of airborne particulate matter. For example, the
rule for polar benzenes with or without alkyl groups in the GC"GC–MS data
was:

The MS intensity at mass-to-charge ratio (m/z) 77 is greater than 25% of
the intensity of the MS base peak (i.e., the largest MS intensity), and the
retention time in the second column is greater than 2 s.

The Computer Language for Identifying Chemicals (CLIC) [42] defines a
grammar for expressing rules for chemical identification based on multi-
dimensional retention times and spectral characteristics, including library search.
CLIC offers functions of multidimensional chromatographic retention times,
functions of MS characteristics (such as selected-ion intensity counts), functions
for MS library search, numbers for quantitative and relational evaluation, and
logical and arithmetic operators. The CLIC expression for the above rule for
identifying polar benzenes is:

ðRelativeð77Þ425Þ & ðRetentionð2Þ42Þ.

This rule can be applied to the spectra of all peaks to determine which are polar
benzenes. Even more complicated rules involving selected-ion intensity counts
can be derived using classifiers [43,44], and other features can be applied with
GC"GC [45].

Rule-based identification works well for multispectral constraints but is less
convenient for retention-time constraints (e.g., describing a many-sided polygon
to restrict the retention times for a group of peaks in a chemical class). Complex
retention-time rules can be more easily expressed graphically, for example, in
templates. Rule-based constraints and templates have complementary strengths
that can be combined for highly effective chemical identification (as described
next).

5.3 Smart Templates

Smart Templates [46] combine retention-time templates with rule-based chemical
constraints. Templates express retention-time patterns in a convenient graphical
form that is highly visual; CLIC expressions efficiently define rules with an
arsenal of functions, constants, and mathematical and logical operators. In
complex chromatographic regions, if template matching finds several peaks in
the data that are candidates to match a template peak, then a rule associated with
the template peak can eliminate incorrect matches. (In this case, the CLIC
expression can be applied only to the peaks that are potential matches.) Similarly,
if a spectral rule to identify peaks in a chemical group identifies peaks with too
widely ranging retention times, then a template polygon with the associated rule
can restrict group identification using both the rule and convenient graphical
retention-time constraints. The combination is a powerful methodology for
chemical identification.
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Ledford [47] developed a Smart Template for analysis of diesel aromatics
in experimental work on a standard analytical method under development
for evaluation by the ASTM. (Vogt et al. [45] developed a similar analysis.)
Figure 11 shows an example group analysis with Ledford’s Smart Template. The
Smart Template uses a retention-time polygon with CLIC expression on the
GC"GC–MS data for each chemical group, with distinctions for both chemical
classes and carbon number. The result is a descriptive group analysis.

6. QUANTIFICATION AND MULTI-DATASET ANALYSES

Several important analytical problems involve multiple datasets.

! Sample quantification: calibrate for quantification by measuring detector
responses to different levels of concentrations in multiple chromatograms.

! Sample comparison: characterize similarities and differences between datasets,
for example, to find anomalies such as might be responsible for a desirable or
undesirable trait.

! Sample classification: use many GC"GC datasets to characterize sample classes
based on within-class commonalities and between-class differences and then
classify a sample into one of the classes based on GC"GC analysis.

! Sample recognition: establish the identity of a sample’s source by pattern
recognition comparing a GC"GC dataset against many GC"GC datasets
stored in a library to find the best match. This is sometimes referred to as
chemical fingerprinting.

! Sample query: find a dataset(s) that have specified characteristics from among a
repository of many datasets. Other standard database operations, such as insert
and delete, are useful for maintaining and using repositories.

6.1 Quantification

After the detector responses for a peak have been integrated, accurate quanti-
fication requires consideration of the detector’s responsivity to the compound
inducing the peak. In this, calibration and quantification of GC"GC peak
responses are performed with the same approaches as for GC (including internal
calibration, external calibration, and response factors), but research surveys
document that the quantitative performance of GC"GC is superior to that for
one-dimensional GC [48–50]. In an early report of quantitative performance for
GC"GC, Gaines et al. [51] reported two- to fourfold improvements in limits-of-
detection for trace oxygenate and aromatic compounds with FID. Lee et al. [52]
observed a four- to fivefold increase in sensitivity for GC"GC with FID, which
was consistent with their model predicting both peak response enhancement of
roughly 20-fold from peak focusing and increased noise associated with faster
sampling rates. Other researchers reported detectability improvements of two-
to fivefold for GC"GC–MS [53] and GC"GC–ECD [54]. Of course, the greatest
benefit of GC"GC for quantification frequently is greater selectivity, which
allows quantification of compounds that otherwise would be co-eluted and
difficult to quantify accurately.
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As of 2008, despite more than a decade of research demonstrating the
increased selectivity and sensitivity of GC"GC, there are no standard GC"GC
methods. One reason may be that GC"GC can be applied to standard GC
methods to provide improved performance in a wide range of analyses, as
described in the applications-oriented chapters of this book. Another possible
reason is that prior to the availability of commercial GC"GC software in 2003,
quantitative analysis was laborious and time consuming. Perhaps another reason
is that GC"GC opens so many options for new method development that settling
on specifics is more difficult and has required a period of research and
development of technologies and methods for standardization.

6.2 Sample comparison, classification, and recognition

The first level of intersample comparison is qualitative visualization and tabular
comparison of sample constituents. Hollingsworth et al. [55] described various
approaches for such comparisons. The visualizations begin with registering
(aligning) the chromatograms to minimize the mean-square difference between
peak retention times and normalizing the intensities with respect to a standard
peak or set of peaks. Methods for visualization include flicker between images
(i.e., cycle from one image to another) and display combination images (subtra-
ction, ratio, addition) with grayscale or pseudocolorization. A method for ‘‘fuzzy
differences’’ adjusts the difference image for residual differences due to peak
shape and/or misregistration. Tables can be used to report quantitative diffe-
rences. Frysinger and Gaines [56] used flicker visualization to find differences
between regular and super gasoline for forensic analysis of fire debris. To track an
oil spill, Nelson et al. [57] used difference, ratio, and addition images to show
chemical changes over time. In Figure 12, the upper visualization shows the
arithmetic difference (after registration and normalization) for samples in May
and November 2003, and the lower visualization shows the color addition with
the May data in green and the November data in red. The color addition image
shows not only the magnitudes of the peaks (with intensity), but also the degree
of change — from near complete weathering (indicated by the color green) of the
n-alkane peaks along the bottom and the more volatile aromatics in the left half
of the image to almost no weathering (indicated by the color yellow) of the less
volatile aromatics. Their qualitative and quantitative analyses of peak intensity
differences showed the differing effects of evaporation, water washing, and
biodegradation on different compounds over time.

The classification of samples is another important analytical problem. For
example, the search for biomarkers in metabolomic and proteomic research has
the goal of finding sample characteristics indicative of a disease state or other
biological condition. When samples are reduced to peak sets, the GC"GC
classification problem is not significantly different from classification with GC, but
the selectivity of GC"GC can be critical for classification accuracy. Frysinger and
Gaines [40] demonstrated the utility of GC"GC for separating known biomarkers
in crude oil. Shellie et al. [58] analyzed derivatized tissue samples from two classes
of mice, obese and lean, and identified the 10 most likely biomarkers in the data
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using t-test values for the spectra of deconvolved peaks. To classify yeast samples
grown under either fermenting or respiring conditions, Mohler et al. [59,60] used
multivariate methods to identify chromatographic regions with significant
interclass differences prior to peak detection. In [59], principal component
analysis (PCA) was applied to normalized selected-ion chromatograms to identify
regions for peak detection with deconvolution. In [60], they identified chromato-
graphic regions of interest by totaling the mean-signal-weighted Fisher ratio at
each point in each spectral channel. Regions of interest were deconvolved, and the
detected peaks were evaluated by the t-test. Others have used analysis of variance
(ANOVA) methods to select chromatographic features for GC"GC classification
[61,62]. These methods are discussed in detail in Chapter 5.

Fingerprinting focuses the classification problem to recognize one of multiple
individuals (i.e., classes of size one). Gaines et al. [63] used GC"GC FID

Figure 12 Comparison of oil spill samples in a difference image (between samples in May and
November 2003) and a color addition image with the May sample in green and the November
sample in red [57].
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fingerprints to identify which of two potential sources was responsible for an oil
spill. They used fingerprint features from four chemical groups: naphthalenes,
anthracenes/phenanthrenes, alkenes and cycloalkenes, and aliphatics. In each
group, they utilized three minutiae (points of interest), each computed as the
response ratio of a specific analyte peak within the chemical group to a fourth peak
in the chemical group. The fingerprints provided convincing evidence for source
identification. Investigating the problem of classifying crude oils by their source
reservoir, van Mispelaar et al. [64] did not find any individual chemical markers
sufficient for classification, but successfully classified samples based on small diff-
erences in many peaks using principal-component discriminant analysis (PCDA).

6.3 Databases and information systems

Software for higher-level database and information queries for GC"GC datasets
would be highly useful but have not yet been fully developed. Database systems
could support content-based data and information retrieval, for example, list
the datasets for which the ratio of Chemical A to Chemical B is greater than x. Such
queries could support fingerprint identification [63] on large databases. Information
systems could support higher-level queries, for example, to support automated
classification based on statistically significant peak-to-peak variations between two
groups of datasets. Such queries could support the type of classification Shellie et al.
[58] used to chemically distinguish obese and lean mice from tissue samples. Such
systems would be useful not only for applications but for quality control, for
example, finding differences in datasets of standard runs over time.

7. CONCLUSION

Many of the initial challenges for GC"GC data acquisition, visualization, and
analysis have been surmounted, and solutions are available in commercial
GC"GC software. Available software supports the following basic operations:

! Reading data from file formats produced by chromatographic systems.
! Displaying data in various modes, for example, as two-dimensional images, as
projections of three-dimensional surfaces, as one-dimensional profiles, and
so on.

! Preprocessing data to remove acquisition artifacts, such as modulation phase
shift and signal baseline.

! Peak detection, including deconvolution/unmixing co-eluted peaks.
! Chemical identification using both retention-time and spectral data.
! Chemical quantification using the same approaches as for GC analysis.
! Multi-dataset analyses such as qualitative and quantitative comparisons.

Some problems require further research and development, notably:

! A standard file format for GC"GC data.
! More effective tools for chromatographic-spectral visualizations and multi-
dataset visualization.
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! Deconvolution/unmixing of difficult co-elutions.
! Multi-dataset analyses for classification and fingerprinting.
! Advanced queries for GC"GC databases.

These and other challenges are the subjects of ongoing research and development.
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62 M. Kallio, T. Hyötyläinen, M. Lehtonen, M. Jussila, K. Hartonen, M. Shimmo and M. Riekkola,

J. Chromatogr. A, 1019 (2003) 251.
63 R.B. Gaines, G.S. Frysinger, C.M. Reddy and R.K. Nelson, Identification. In: S.S.Z. Wang (Ed.), Oil

Spill Environmental Forensics: Fingerprinting and Source Identification, Academic Press, Burlington,
MA, 2007, p. 169.

64 V. van Mispelaar, A. Smilde, J. Blomberg and P. Schoenmakers, J. Chromatogr. A, 1096 (2005) 156.

106 Stephen E. Reichenbach


