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Abstract 

 
Identifying and separating subtly different biological 

samples is one of the most critical tasks in biological 
analysis. Time-of-flight secondary ion mass spectrometry 
(ToF-SIMS) is becoming a popular and important 
technique in the analysis of biological samples, because it 
can detect molecular information and characterize 
chemical composition. ToF-SIMS spectra of biological 
samples are enormously complex with large mass ranges 
and many peaks. As a result the classification and cluster 
analysis are challenging. This study presents a new 
classification algorithm, the most similar neighbor with a 
probability-based spectrum similarity measure (MSN-
PSSM), which uses all the information in the entire ToF-
SIMS spectra. MSN-PSSM is applied to automatically 
classify bacterial samples which are major causal agents 
of urinary tract infections. Experimental results show that 
MSN-PSSM is an accurate classification algorithm. It 
outperforms traditional techniques such as decision trees, 
principal component analysis (PCA) with discriminant 
function analysis (DFA), and soft independent modeling 
of class analogy (SIMCA). This study also applies a 
modern clustering algorithm, normalized spectral 
clustering, to automatically cluster the bacterial samples 
at the species level. Experimental results demonstrate that 
normalized spectral clustering is able to show accurate 
quantitative separations. It outperforms traditional 
techniques such as hierarchical clustering analysis, k-
means, and PCA with k-means. 
 
 
1. Introduction 
 

Classification and cluster analysis are widely used 
techniques for exploring data. Identification of similar 
functional groups provides first-stage guidance for data 
analysis. Classification and cluster analysis of biological 
samples are difficult because biological samples are 
complex and similar to one another. ToF-SIMS can detect 
molecular information and characterize the chemical 

composition of biological samples. Hence, ToF-SIMS is 
becoming a popular and important technique in the 
analysis of biological samples [1] [2] [3]. 

ToF-SIMS uses a pulsed primary ion beam (e.g. Au3
+) 

to remove molecules and fragment ions from the 
outermost surface of the sample as Figure 1 illustrates. 
The primary ion beam is carefully controlled to a 
sufficiently low intensity to ensure that the surface 
molecules are not completely broken into individual 
atoms. The fragment ions removed from the surface 
(secondary ions) are transferred into a “flight tube” and 
the mass/charge is determined by measuring the time 
(after the primary pulse) at which they reach the detector 
(time-of-flight) [4]. 

 
Figure 1. ToF-SIMS scheme  

 
ToF-SIMS spectra of biological samples are 

enormously complex with large mass ranges (m/z < 5000) 
and many structurally significant peaks combined with 
noise peaks (such as contaminants and small or non-
diagnostic fragment ions). This complex data contains 
information about sample composition, molecular 
orientation, surface order, chemical bonding, etc. The 
challenge is how to extract useful information from 
complex ToF-SIMS spectra for classification and cluster 
analysis. Moreover, the size of a large TOF-SIMS dataset 
can increase this challenge. 

2009 International Conference on Bioinformatics, Computational Biology, Genomics and Chemoinformatics (BCBGC-09)

78



Multivariate analysis (MVA) such as PCA has become 
the most popular technique in processing of ToF-SIMS 
data [5] [6]. PCA reduces the dimensionality of ToF-
SIMS data, and DFA has been used to identify and 
discriminate individual strains of bacteria [7] [8] and also 
prostate cancer cells [9]. Berman et al. [10] used SIMCA 
[11] to classify and characterize sugars, proteins, and 
mouse embryos. Although MVA is the most popular 
technique to process ToF-SIMS data, it is widely 
recognized that the effectiveness of MVA is dependent on 
appropriate data pretreatment, such as the selection of 
peaks from the spectra, scaling, centering, and non-linear 
transformations, and no rules have been established for 
data pretreatment before MVA.  

The decision trees algorithm [12] is one of the most 
popular classification algorithms in data mining and 
machine learning. It is a successful algorithm for the 
description, classification, and generalization of data in 
many diverse real-world applications [13]. Engrand et al. 
[14] successfully used decision trees to classify ToF-
SIMS data of mineral samples. However, there are few 
applications of decision trees in ToF-SIMS communities.  

Hierarchical clustering analysis (HCA) and k-means 
are the most popular and well-known clustering 
algorithms in machine learning and pattern recognition 
[15]. Although HCA and k-means are new techniques in 
ToF-SIMS communities, Thompson et al. [8] and Suzuki 
et al. [16] successfully used HCA to quantitatively 
determine the degree of similarity and dissimilarity 
among the TOF-SIMS spectra.   

This study presents MSN-PSSM, a new classification 
algorithm. MSN-PSSM is applied to automatically 
classify bacterial samples which are major causal agents 
of urinary tract infection (UTI). UTI is a serious health 
problem affecting millions of people each year [17]. 
There is a growing need to identify the causal agent prior 
to treatment. MSN-PSSM successfully classifies the 
bacterial samples at the strain level. This study also 
applies a modern clustering algorithm, normalized 
spectral clustering, to automatically cluster the bacterial 
samples at the species level.  

 
2. Bacterial datasets 

 
UTI bacterial species include Escherichia coli, 

Klebsiella oxytoca, Klebsiella pneumoniae, Proteus 
mirabilis, Enterococcus spp, and Citrobacter freundii. 
This study examines 19 strains of UTI bacteria belonging 
to these six species. The 19 strains are five strains of 
Escherichia coli (Eco), one strain of Klebsiella oxytoca 
(Kox), three strains of Klebsiella pneumoniae (Kpn), two 
strains of Citrobacter freundii (Cfr), four strains of 
Enterococcus spp (Esp), and four strains of Proteus 
mirabilis (Pmi). These strains were previously identified 

by conventional biochemical tests. Each strain has three 
biological replicates. 

Bacterial sample growth, ToF-SIMS instrumentation, 
and data acquisition parameters are described in detail by 
Fletcher [7]. Each ToF-SIMS spectrum is from 1 Da to 
1000 Da, and binned to 1 Da mass intervals from -0.5 to 
+0.5 of each nominal mass. Figure 2 (a) shows the ToF-
SIMS spectrum of an Escherichia coli sample from 1 Da 
to 1000 Da. Figure 2 (b) shows the spectrum from 1 Da to 
200 Da. Figure 2 (c) shows the spectrum from 200 Da to 
1000 Da. Figure 3 (a), 3 (b), and 3 (c) show the ToF-
SIMS spectrum of a Proteus mirabilis sample. These 
spectra have many peaks with varying intensities over 
mass range 1 to 1000. Many common peaks make visual 
inspection and manual identification of spectra an 
impossible task. Hence, it is necessary to develop 
automatic techniques to classify and cluster these 
complex ToF-SIMS spectra. Three ToF-SIMS spectra are 
generated from three fresh areas of each bacterial sample 
to make three machine replicates for each biological 
replicate. So, in total there are nine ToF-SIMS spectra for 
each of 19 strains of UTI bacteria belonging to six 
species.   

 
3. Classification and cluster analyses 
 
3.1. Pre-processing 
 

Figure 2 and Figure 3 show that the spectra are 
dominated by Na+ (m/z=23) and K+ (m/z=39) ions. 
Because this salt contamination is apparent and peaks in 
the low mass region have little discrimination ability, m/z 
from 1 to 50 are pruned from the ToF-SIMS spectra. Each 
ToF-SIMS spectrum is then normalized to the most 
intense peak (the base peak) in the spectrum.  

 
3.2. MSN-PSSM algorithm 
 

Given a query spectrum x0, p predefined class labels 
{c1, c2, ..., cp}, and a set of n labeled spectra {xi, yi}, 
where i=1, 2, ..., n, and yi∈{c1, c2, ..., cp} is the known 
class label of each spectrum, the task is to predict the 
class label of x0. MSN-PSSM algorithm searches for the 
most similar spectrum in {xi, yi}; i.e. the spectrum that has 
the highest probability-based spectrum similarity to x0, 
and then predicts the class label of x0 as the most similar 
spectrum’s class label. 

Building upon the recent work of Visvanathan et al. 
[18], who present a new information-theoretic library 
search technique for comprehensive two-dimensional gas 
chromatography with mass spectrometry, this study 
presents a new probability-based spectrum similarity 
(PSS) measure considering intra-class variability of ToF-
SIMS spectra. The PSS between a query spectrum x0 and 
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(a) mass-to-charge ratio from 1 to 1000  

 
(b) mass-to-charge ratio from 1 to 200 

 
(c) mass-to-charge ratio from 200 to 1000 

Figure 2. ToF-SIMS spectrum of Escherichia coli 
 
one of the labeled spectra {xi, yi} is: 
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In equation (1), m is the mass-to-charge ratio (m/z), 
mmin is the minimum mass-to-charge ratio of the query 
spectrum and the labeled spectra, mmax is the maximum 

 
(a) mass-to-charge ratio from 1 to 1000 

 
(b) mass-to-charge ratio from 1 to 200 

 
(c) mass-to-charge ratio from 200 to 1000 
Figure 3. ToF-SIMS spectrum of Proteus 

mirabilis 
 

mass-to-charge ratio of the query spectrum and the 
labeled spectra, a0(m) is the intensity of spectrum x0 at 
mass-to-charge ratio m, ai(m) is the intensity of spectrum 
xi at mass-to-charge ratio m, ε represents the intra-class 
variability parameters, Nε,m,i is the intra-class variability 
model for xi’s class, Pm is the intensity probability 
distribution of all labeled spectra at mass-to-charge ratio 
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m, and Pm*Nε,m,i represents convolution of Pm and Nε,m,i. 
This similarity measure uses all information in the entire 
ToF-SIMS spectra without any dimensionality reduction 
of the data. 

Nε,m,i is a Gaussian distribution described by mean (μm) 
and standard deviation (     ):  
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       is estimated by b1·aavg(m)+b2, where aavg(m) is the 
intensity of the average spectrum of xi’s class at mass-to-
charge ratio m, and b1 and b2 are linear regression 
parameters. Figure 4 shows the standard deviations at 
each mass-to-charge ratio versus intensities of the average 
spectrum at each mass-to-charge ratio for Citrobacter 
freundii. It shows that standard deviations are roughly 
proportional to intensities. The intra-class variability at a 
certain mass-to-charge ratio is intensity dependent. Stars 
in Figure 5 show the intensity distribution of Citrobacter 
freundii at mass-to-charge ratio 351. The curve in Figure 
5 shows the Gaussian distribution with the mean and the 
standard deviation of Citrobacter freundii. Figure 5 
shows that the Gaussian distribution models the intra-
class variability. The intensity difference at mass-to-
charge ratio m between two spectra is used as an offset in 
the Gaussian distribution to measure the similarity 
between two spectra at mass-to-charge ratio m. When two 
intensities are the same, the probability that the two 
spectra being in the same class is the largest (and is 
upper-bounded by equation (2) with x=μm).  
 

 
Figure 4. Standard deviations versus intensities 

plotting of Citrobacter freundii   
 

Pm is the intensity probability distribution of all 
labeled spectra (at mass-to-charge ratio m):  

spectra labeled of #
intensity  with spectra of # ][ aaPm = .                        (3) 

Pm*Nε,m,i is Pm convolved with Nε,m,i. Pm is blurred by the 
intra-class variability (at mass-to-charge ratio m) of xi’s 

class. The probability of two spectra with a certain 
intensity (at mass-to-charge ratio m) being the same or 
similar is small, if that intensity (at mass-to-charge ratio 
m) occurs frequently in all labeled spectra. As the 
intensity probability increases, the similarity between two 
spectra decreases.   

  

 
Figure 5. Intra-class variability of Citrobacter 

freundii at mass-to-charge ratio 351        
 

3.3. Normalized spectral clustering algorithm 
 

Cluster analysis gives first-stage guidance for 
exploratory data analysis before establishing models for 
data. Spectral clustering is a modern clustering algorithm 
which uses eigenvectors of a similarity matrix derived 
from the data. It does not require any models for data. It 
does not make strong assumptions on the form of clusters. 
Unlike k-means, for which the resulting clusters form 
convex sets, spectral clustering can solve general 
problems such as intertwined spirals.  

Spectral clustering has been described in detail by 
Luxburg [19]. It has many applications in machine 
learning, exploratory data analysis, computer vision and 
speech processing [20]. Despite many empirical successes 
of spectral clustering, it is a new technique to the 
chemometrics and ToF-SIMS communities.  

In this study, normalized spectral clustering [21] is 
applied to automatically cluster the bacterial samples at 
the species level. In brief, given a set of n unlabeled 
spectra {xi}, where i=1, 2, ..., n, build a weighted fully 
connected graph G=(V, E) to represent the spectra such 
that vertices are spectra V={x1, x2, …, xn}, and weights of 
edges W=(wij)i,j=1,2,…,n are the similarity between spectra. 
The task is to find a partition of k clusters such that edges 
within a cluster have high weights and edges between 
different clusters have low weights.  

In this study, similarity between spectra xi and xj is 
determined by the Gaussian similarity function: 

mσ

mσ
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whereσ is a parameter which controls the scale of the 
similarity. To find the partition, first, compute the 
normalized graph Laplacian:   
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where D is a diagonal matrix with:  
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on the diagonal. Second, compute the eigenvectors u1, u2, 
…, uk corresponding to the k smallest eigenvalues of L. 
Third, construct matrix U which takes eigenvectors u1, u2, 
…, uk as columns. Then, normalize each row of U to have 
norm 1. Finally, take each row of U as a data point zi and 
use k-means algorithm to cluster them into k clusters. 

The most important strategy of this algorithm is to 
change the representation of the original spectra xi to zi. 
This change enhances the cluster properties in the spectra. 

 
4. Experimental results 
 
4.1. Classification analyses 
 

The 19 stains of UTI bacteria are examined as 19 
classes. The class labels are Cfr1, Cfr2, Eco1, Eco2, 
Eco3, Eco4, Eco5, Esp1, Esp2, Esp3, Esp4, Kox, Kpn1, 
Kpn2, Kpn3, Pmi1, Pmi2, Pmi3, and Pmi4. Each class 
has nine samples, and together there are 171 samples. 
This is a challenging multi-class classification task to 
demonstrate strain-level discrimination of the subtly 
different bacterial samples.  

These 171 samples are classified by four classification 
algorithms: decision trees, SIMCA, PCA with DFA, and 
MSN-PSSM. Leave-one-out cross-validation, which is 
commonly used in chemometrics, is adopted in this study. 
Overall classification accuracy and Fleiss’s kappa statistic 
[22] are used to quantitatively measure the performance 
of the different algorithms. Overall classification 
accuracy is defined as:  

dataset in the samples of #
correctly  classified samples of # Accuracy = .        (7) 

Fleiss’s kappa statistic is a chance-corrected measure of 
agreement between two sets of categorized data. It tests 
how agreement exceeds random chance levels. In this 
study, it is adopted to measure the agreement between 
samples’ true labels and samples’ classified labels from 
different algorithms. The kappa result ranges from -1 to 1 
(a negative kappa value occurs when agreement is weaker 
than expected by chance). Higher kappa values mean 
stronger agreement. A kappa value of 1 means perfect 

agreement. Interpretation of the kappa values is based on 
Landis’s categories [23], shown in Table 1. 

 
Table 1. Interpretation of the kappa values 

Kappa values Interpretation 
0.00 – 0.20 Slight agreement 
0.21 – 0.40 Fair agreement 
0.41 – 0.60 Moderate agreement 
0.61 – 0.80 Substantial agreement 
0.81 – 1.00 Almost perfect agreement 

 
C4.5, designed by Quinlan [24], is employed to build 

classification trees. The feature selection measure in each 
node is gain ratio. PCA with DFA is implemented in 
Matlab (the MathWorks Inc.). PCA considers the first 10 
principal components (PCs). Figure 6 shows that the first 
10 PCs cover 97% of the variance. DFA uses the linear 
discriminant function. SIMCA is implemented in Matlab.  

 
Figure 6. Variance explained by PCs 

 
Table 2 shows the overall classification accuracy and 

Fleiss’s kappa statistic of each classification algorithm. 
MSN-PSSM outperforms the other three algorithms with 
the highest overall classification accuracy. The samples’ 
classified labels generated by MSN-PSSM have 
substantial agreement with the samples’ true labels. The 
other three classification algorithms hold moderate 
agreement.  

 
Table 2. Performance of classifiers 

Classifier Accuracy (%) Kappa 
Decision trees 45.61 0.43 

SIMCA 48.54 0.51 
PCA with DFA 59.65 0.57 

MSN-PSSM 73.68 0.72 
 
There are two advantages of MSN-PSSM which lead 

to this outperformance. First, MSN-PSSM models the 
intra-class variability in the similarity measure. This 
enhances the robustness of MSN-PSSM. The decision 
trees algorithm doesn’t consider intra-class variability. 
PCA with DFA captures the variability between all the 
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samples, but not the intra-class variability. Second, MSN-
PSSM uses all the information (all the peaks) in the entire 
ToF-SIMS spectra. The other three algorithms are based 
on reduction of the dimensionality which loses 
information. Table 3 shows how MSN-PSSM 
outperforms the other three algorithms in classification of 
the nine samples from one strain of Enterococcus spp. 
Sample 8 and 9 are classified correctly by all algorithms. 
MSN-PSSM classifies all samples from 1 to 7 correctly. 
The other three algorithms wrongly classify some samples 
from 1 to 7 to other strains of Enterococcus spp. The 
decision trees algorithm even classifies sample 7 to one 
strain of Klebsiella pneumoniae. Table 3 also shows 
bacterial samples from the same species are more similar 
and difficult to discriminate. Table 4 shows how MSN-
PSSM outperforms the other three algorithms in 
classification of the nine samples from one strain of 
Citrobacter freundii. Sample 9 is classified incorrectly by 
all algorithms. This sample might be either a difficult 
sample to classify or an outlier which is contaminated by 
some kind of noise. MSN-PSSM classifies all samples 
from 1 to 8 correctly, the other three algorithms 
incorrectly classify some samples from 1 to 8 to other 
strains.  

 
Table 3. Classification results for one strain of 

Enterococcus spp 
Sample 

ID 
Decision 

trees SIMCA PCA with 
DFA 

MSN-
PSSM

True 
label 

1 Esp3 Esp2 Esp3 Esp3 Esp3 
2 Esp2 Esp3 Esp2 Esp3 Esp3 
3 Esp3 Esp3 Esp2 Esp3 Esp3 
4 Esp2 Esp3 Esp2 Esp3 Esp3 
5 Esp3 Esp3 Esp4 Esp3 Esp3 
6 Esp3 Esp2 Esp4 Esp3 Esp3 
7 Kpn3 Esp3 Esp4 Esp3 Esp3 
8 Esp3 Esp3 Esp3 Esp3 Esp3 
9 Esp3 Esp3 Esp3 Esp3 Esp3 

Correct 6 7 3 9  
 

Table 4. Classification results for one strain of 
Citrobacter freundii 

Sample 
ID 

Decision 
trees SIMCA PCA with 

DFA 
MSN- 
PSSM

True 
label 

1 Cfr1 Kox Cfr1 Cfr1 Cfr1 
2 Cfr1 Kpn2 Esp1 Cfr1 Cfr1 
3 Pmi4 Pmi1 Cfr1 Cfr1 Cfr1 
4 Eco3 Cfr1 Eco4 Cfr1 Cfr1 
5 Eco4 Cfr1 Eco4 Cfr1 Cfr1 
6 Cfr2 Cfr1 Eco4 Cfr1 Cfr1 
7 Pmi3 Cfr1 Eco4 Cfr1 Cfr1 
8 Eco4 Cfr1 Eco4 Cfr1 Cfr1 
9 Eco1 Esp3 Kox Eco1 Cfr1 

Correct 2 5 2 8  

4.2. Cluster analyses 
 

Bacterial samples from the same species are more 
similar than samples from different species. Species-level 
cluster analyses are presented here to provide first-stage 
guidance to reveal biological differences between 
samples. The six species of UTI bacteria are examined as 
six clusters. The cluster labels are Cfr, Eco, Esp, Kox, 
Kpn, and Pmi. Cfr has 18 samples, Eco has 45 samples, 
Esp has 36 samples, Kox has nine samples, Kpn has 27 
samples, and Pmi has 36 samples. This is a challenging 
unbalanced multi-cluster clustering task to quantitatively 
demonstrate the separation of the bacterial species. 

The bacterial samples are clustered by four clustering 
algorithms: HCA, k-means, PCA with k-means, and 
normalized spectral clustering algorithm. Average cluster 
accuracy [25] is used to quantitatively measure the 
performance of the different algorithms. Given a set of n 
unlabeled spectra {xi}, where i=1, 2, ..., n, k predefined 
partitions {P1, P2, ..., Pk}, k clusters {C1, C2, ..., Ck} 
resulting from a specific clustering algorithm, and a 
optimal correspondence between {C1, C2, ..., Ck} and {P1, 
P2, ..., Pk}, average cluster accuracy is defined as:  

dataset in the samples of #
 assignedcorrectly  samples of # Accuracy = .         (8) 

A large value for this measure indicates a high level of 
agreement between the clusters and the predefined natural 
partitions.  

HCA, k-means, PCA with k-means, and normalized 
spectral clustering are implemented in Matlab. All 
algorithms use Euclidean distance as the distance 
measure. HCA uses the complete linkage. PCA uses the 
first 10 principal components. 

Table 5 shows the average cluster accuracy and the 
confusion matrix of each clustering algorithm. 
Normalized spectral clustering outperforms the other 
three algorithms with the highest average accuracy. 

Table 5 also shows that PCA is not able to improve the 
performance of k-means by reducing the dimensionality, 
and normalized spectral clustering is able to enhance the 
cluster-properties in the spectra by changing the 
representation of the original spectra. To show this in 
more detail, Figure 7 presents the 2D plot of the 36 
Proteus mirabilis samples and the 36 Enterococcus spp 
samples in the first two eigenvector (eigenvectors 
corresponding to the first two smallest eigenvalues) space 
of normalized spectral clustering. Figure 7 shows clearly 
two clusters without any overlap after changing the 
representation of data, and this makes k-means be able to 
detect clusters accurately. 

Figure 8 presents the 3D plot of the same samples in 
the first three principal components space. The X axis 
represents the first principal component, the Y axis the 
second principal component, and the Z axis the third 
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principal component. Figure 9 shows the corresponding 
2D plot in three views. Figure 8 and 9 show that the 
Proteus mirabilis samples in the principal component 
space form a concave set which k-means can not cluster 
correctly. PCA is not able to enhance the cluster-
properties to improve the performance of k-means. 
Sample 25 and 27 of Proteus mirabilis are incorrectly 
clustered together with Enterococcus spp samples in k-
means and PCA with k-means algorithms. 

 
Table 5. Performance of clustering algorithms 

Clustering 
algorithms 

Accuracy 
(%) Confusion matrix 

HCA 38.60 

 0    0    0    0   18   0 
 0    2    0    0   20  23 
 0    0    8    0   12  16 
 0    0    0    0    1    8 
 0    0    0    0   27   0 
 1    0    0    1    5   29 

k-means 53.80 

18   0    0    0    0    0 
 2   21   0    2   14   6 
 0    6   14   2   10   4 
 0    5    0    0    1    3 
 4    1    0    8   14   0 
 2    8    0    0    1   25 

PCA with 
k-means 53.80 

18   0    0    0    0    0 
 2   20   1    0   15   7 
 2    4   17   0   10  3    
 0    6    1    0    0    2 
12   1    0    0   14   0 
 0    7    3    2    1   23 

Normalized 
spectral 

clustering 
61.99 

16   0    0    0    2    0 
 2   32   8    2    0    1 
 2    6   25   0    0    3 
 0    6    3    0    0    0 
 3    9    0    0   15   0 
 0   13   3    0    2   18 

 

 
Figure 7. 2D plot of Pmi and Esp samples in 

eigenvector space of spectral clustering 
 

 

 
Figure 8. 3D plot of Pmi and Esp samples in 

principal components space 

 
Figure 9. 2D plot of Pmi and Esp samples in 

principal components space 
 
5. Conclusions 

 
This study presents MSN-PSSM, a new classification 

algorithm. MSN-PSSM is applied to demonstrate strain-
level discriminants of information-rich ToF-SIMS spectra 
for bacterial samples which are known to be major causal 
agents of UTI. MSN-PSSM utilizes all the information in 
the complex ToF-SIMS spectra and considers intra-class 
variability to build similarity models. These two 
advantages allow MSN-PSSM to accurately classify the 
subtly different bacterial samples and outperform 
traditional classification algorithms such as decision trees, 
PCA with DFA, and SIMCA. MSN-PSSM provided the 
best classification result in leave-one-out cross validation 
experiments. Species-level separation is achieved with 
normalized spectral clustering to provide first-stage 
guidance about biological differences between bacterial 

25 

27 
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samples. Normalized spectral clustering enhances the 
cluster-properties in the ToF-SIMS spectra. Experimental 
results demonstrate that normalized spectral clustering 
successfully separates bacterial samples and outperforms 
popular clustering algorithms such as HCA, k-means, and 
PCA with k-means. 
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