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ABSTRACT: In each sample run, comprehensive two-dimen-
sional gas chromatography with dual secondary columns and
detectors (GC × 2GC) provides complementary information in
two chromatograms generated by its two detectors. For example,
a flame ionization detector (FID) produces data that is especially
effective for quantification and a mass spectrometer (MS)
produces data that is especially useful for chemical-structure
elucidation and compound identification. The greater informa-
tion capacity of two detectors is most useful for difficult analyses,
such as metabolomics, but using the joint information offered by
the two complex two-dimensional chromatograms requires data
fusion. In the case that the second columns are equivalent but
flow conditions vary (e.g., related to the operative pressure of
their different detectors), data fusion can be accomplished by
aligning the chromatographic data and/or chromatographic features such as peaks and retention-time windows.
Chromatographic alignment requires a mapping from the retention times of one chromatogram to the retention times of the
other chromatogram. This paper considers general issues and experimental performance for global two-dimensional mapping
functions to align pairs of GC × 2GC chromatograms. Experimental results for GC × 2GC with FID and MS for metabolomic
analyses of human urine samples suggest that low-degree polynomial mapping functions out-perform affine transformation (as
measured by root-mean-square residuals for matched peaks) and achieve performance near a lower-bound benchmark of inherent
variability. Third-degree polynomials slightly out-performed second-degree polynomials in these results, but second-degree
polynomials performed nearly as well and may be preferred for parametric and computational simplicity as well as robustness.

This work demonstrates global transformation functions to
align the retention times of chromatograms acquired by

comprehensive two-dimensional gas chromatography with one
primary column and two parallel secondary columns (GC ×
2GC), with a flame ionization detector (FID) for one
secondary column and a mass spectrometer (MS) for the
other, i.e., GC × 2GC-FID/MS. GC × 2GC increases
separation efficiency and information capacity,1−4 but the two
resulting chromatograms may exhibit different retention-time
patterns. Then, a retention-times transformation function is
required to map between the data-points and/or features such
as peaks in the two chromatograms.
Seeley et al. proposed a GC × 2GC system with two

secondary columns with different selectivity characteristics,
each connected with a separate FID, to “increase the resolution
and qualitative information supplied by comprehensive two-
dimensional gas chromatographic analysis.”1 They demonstra-
ted results for mixtures of volatile organic compounds (VOCs)

and complex gaseous samples, including exhaled breath.2

Peroni et al.5,6 used multiple identical second columns to
achieve optimum carrier gas velocity but employed only a single
FID. Nicolotti, Bressanello, and Cordero similarly used
identical second columns for improved gas linear velocities in
both chromatographic dimensions but connected one column
to a FID and the other column to a MS with auxiliary flow/
pressure controller.3 In a study of metabolic profiling and
fingerprinting with mice urine samples, they concluded that
“working in close-to-optimal 2D linear velocities and a doubled
secondary column loading capacity, showed positive effects on
overall system orthogonality, resolution, and fingerprinting
accuracy.”4 The benefits of using both FID and MS in a single
run include complementary data, with improved quantification
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compared to MS alone and improved compound identification
compared to FID alone, and the ability to cross-validate results.
GC × 2GC-FID/MS systems produce two complementary

chromatograms for each sample run. The greater information
capacity of two detectors is especially useful for difficult
analyses, such as metabolomics, but using the joint information
offered by the two chromatograms requires data fusion. In the
case that the second columns are equivalent but flow conditions
vary (e.g., related to the detectors’ different operative
pressures), data fusion can be accomplished by aligning the
chromatographic data and/or chromatographic features such as
peaks and retention-time windows. In a GC × 2GC-FID/MS
system without auxiliary flow/pressure control at the outlet of
the secondary column for the MS, there are differences between
the two-dimensional (2D) retention-times patterns of the two
detectors.3 Outlet pressure control adds carrier volumetric flow
to reduce these differences, but alignment still is required. The
coherence of 2D patterns produced by FID/MS parallel
detection was handled by affine transformation implemented
in template matching4 for analysis of the mice urine
metabolome but with manual intervention to cross-align FID
and MS template patterns. More effective alignment could
reduce or eliminate the need for manual intervention.
A fundamental distinction among alignment methods is

whether the underlying model is global or local, i.e., whether
the geometric differences between chromatograms are charac-
terized by a single function for the entire chromatogram or by a
combination of many functions for different regions of the
chromatogram. A brief review of local methods used to align
GC × GC data is included in the Supporting Information.7−15

Global functions may be able to capture systemic properties
and structure that underlie retention-time differences. On the
other hand, local functions may be able to capture retention-
time variations that are not related to systemic properties and
structure. Local functions typically offer greater representational
power than simple global functions, which allows them to
capture small-scale variations but also are more susceptible to
overfitting of confounding input differences (e.g., compositional
differences, artifacts, and noise) and so may be less robust than
global functions. Global functions with many parameters have
unlimited representational power but also have greater
susceptibility to overfitting. Finally, global functions with few
parameters are computationally simple. For these reasons, the
ideal solution is an alignment method based on a simple global
model with few parameters that is able to effectively capture
chromatographic differences. Of course, if the chromatographic
differences are too complex, a simple global function with few
parameters may prove ineffective for modeling those differ-
ences. In such circumstances, local functions may be required.
In an early study of global functions for modeling

chromatographic differences in GC × GC data, Ni et al.16

found that four-parameter separable shift-and-scale and six-
parameter bivariate affine (shift, scale, and shear) functions
were effective for modeling retention-time differences related to
oven temperature ramp rate and inlet gas pressure. They noted
that these functions, optimized for least-squares fit, would be
effective for pattern matching and normalizing retention times
to retention indices. Van Mispelaar17 parameterized a global
bivariate second-degree polynomial function (with 12 param-
eters) using the locations of six peaks (supplying the minimum
number of constraints for the second-degree polynomial), then
used bilinear interpolation to resample the data values.

The goal of this research is to evaluate the performance of
simple global alignment models for GC × 2GC in order to
determine their representational effectiveness. As described in
the Experimental Section, performance is quantified by the
root-mean-square error (RMSE) for retention times of matched
peaks in paired FID and MS chromatograms from a single GC
× 2GC run. The performance benchmark is the RMSE between
matched peaks for the same detector (i.e., FID with FID and
MS with MS) in consecutive replicate runs, with the
expectation that consecutive replicate runs exhibit negligible
sample and chromatographic differences. Then, small misalign-
ments for consecutive replicate runs can be deemed noise,
thereby providing a performance benchmark. If the perform-
ance of a simple global method to align FID and MS
chromatograms from GC × 2GC can approach the benchmark,
then the residual differences can be attributed to noise rather
than chromatographic misalignment. The experiments em-
ployed cross-validation to evaluate three simple global 2D
alignment methods: affine, second-degree polynomial, and
third-degree polynomial transformations.

■ EXPERIMENTAL SECTION
Samples. The urine samples were gathered for the Italian

Diabetes Exercise Study 2 (IDES_2), which is assessing the
effect of a behavioral intervention strategy on the promotion
and maintenance of physical activity in adults with type 2
diabetes. IDES_2 is a randomized clinical trial that monitors
objective measurable changes in sedentary time and physical
activity over a 3-year period after behavioral intervention as
compared with usual care. The study also monitors physical
fitness, modifiable cardiovascular risk factors (HbA1c, lipids,
blood pressure, C-reactive protein), and health related quality
of life. The samples analyzed by GC × 2GC are for the first and
fourth quartile of physical activity objectively measured at the
baseline. Sample preparation followed a standard derivatization
protocol of oximation/silylation.18 Derivatization reagents, O-
methylhydroxylamine hydrochloride (MOX) and N-methyl-N-
(trimethylsilyl)trifluoroacetamide (MSTFA), and HPLC-grade
solvents, methanol, pyridine, n-hexane, and dichloromethane,
were supplied by Sigma-Aldrich (Milan, Italy).
Calibration standards of pyruvic acid, lactic acid, malonic

acid, succinic acid, malic acid, 2-ketoglutaric acid, hippuric acid,
L-alanine, L-valine, glycine, L-threonine, L-tyrosine, creatinine,
phenylalanine, xylitol, ribitol, glycerol, fructose, galactose,
glucose, mannitol, and myo-inositol; and the internal standard
(ISTD) 4-fluorophenylalanine were from Sigma-Aldrich
(Milan, Italy). Calibration solutions for quantitative determi-
nation of relevant analytes were prepared as in a previous
protocol4 at 2 mg/L, 10 mg/L, 50 mg/L, and 100 mg/L. The
ISTD for data normalization and quality control, 4-
fluorophenylalanine, was at 10 mg/L.

Instrumentation. Separations were performed with an
Agilent 6890-5975C GC/MS fast quadrupole. The first-
dimension (1D) column was SE52 (30 m × 0.25 mm internal
diameter (1dc) × 0.25 μm film thickness (1df)) and the two
parallel second-dimension (2D) columns were OV1701 (1.4 m
× 0.10 mm 2dc × 0.10 μm 2df). Columns were from Mega
(Legnano, Milan, Italy). The carrier gas was helium with an
initial head pressure of 296 kPa (constant flow). The
modulation period was 5 s with pulse time 0.350 ms. The
FID acquisition frequency was 100 Hz and the MS performed
full scans (50−350 m/z) at 24 Hz. The oven programming was
50 °C (1 min) to 300 °C (10 min) at 4.0 °C/min. A
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microfluidic three-port splitter (SilFlow, SGE Analytical
Science, Ringwood, Victoria, Australia) split the flow from
the 1D column into the two parallel 2D columns where the first
0.60 m were wrapped together in the loop-type thermal
modulator (Zoex Corporation, Houston, TX). A deactivated,
restrictor capillary (0.17 m × 0.1 mm dc) was connected to the
outlet of the 2D column for the MS.
Data Preprocessing. Preprocessing was performed with

GC Image GCxGC Edition Software (R2.6 prerelease, GC
Image, LLC, Lincoln, NE). The preprocessing operations were
start-time adjustment, modulation-phase rotation, baseline
correction, and peak detection.19 For any two chromatograms,
corresponding peaks were paired by preliminary bidirectional
template matching and then interactive selection using a new
graphical user interface (GUI) for interactive template
matching and transformation.20 For the calibration samples,
25 peaks were paired. For the urine samples, 156 peaks were
paired. For each set of Np paired peaks, the retention times of
the peaks in the target chromatogram are denoted (xi,yi) and
the peaks in the reference chromatogram are denoted (x′i,y′i)
where i is the peak index from 1 to Np.
Evaluation Metric. The difference of retention times for

paired peaks in two chromatograms is two-dimensional, with a
difference in each chromatographic dimension. The RMSE is
computed as the square roots of the means of the squared
relative retention-times differences:
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The retention-time differences in each dimension also are
expressed relative to the average detected peak-width in that
dimension (wx,wy), based on the logic that the peak widths are
fundamental to chromatographic resolution. The relative
RMSE is
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Transformation Models. Experiments evaluated initial
misalignment (i.e., no transformation) and the performance of
three transformation models, each generalizing the previous
model with additional parameters. For each model, if the
number of peak-pairs overconstrains the model, the model
parameters are determined to minimize the RMSE for the peak-
pairs set.21

For notational completeness, the identity transformation,
which gives the initial misalignment, is defined as

=f x y x y( , ) ( , )0 (3)

The affine transformation is linear scaling and shearing plus
translation:

= + + + +f x y t s x h y t h x s y( , ) ( , )x x x y y y1 (4)

where (sx,sy) are the scale parameters, (hx,hy) are the shear
parameters, and (tx,ty) are the translation parameters. The affine
transform preserves parallel lines and distance ratios. A
minimum of three noncollinear two-dimensional peak-pairs
(one peak of each pair from each chromatogram) are required
to parameterize the affine transformation.

The second-degree polynomial adds three additional terms in
each dimension:
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A minimum of six peak-pairs are required to parameterize the
second-degree polynomial transformation.
The third-degree polynomial adds four additional terms in

each dimension:
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A minimum of ten peak-pairs are required to parameterize the
third-degree polynomial transformation.
For GC × 2GC data, these models could be simplified by

presuming that the first-column retention-times are identical
and so transforming only the second-column retention times.
However, for completeness, the experimental results shown
here use the general two-dimensional models.
Because each successive transformation model subsumes the

representational power of the lower-order models, performance
is monotonically nondecreasing with order; i.e., higher-order
polynomials always do at least as well as lower-order
polynomials for a given set of peak-pairs. With no limit on
the polynomial degree, arbitrarily large peak-pairs sets can be
transformed with no residual error. However, if a lower-order
polynomial successfully models the actual chromatographic
transformation, then additional parameters merely increase
overfitting and incur additional computation. So, for robustness
and computational efficiency, lower-degree polynomials are
preferred if they are representationally effective.

Evaluation Methodology. Given two chromatograms, a
set of corresponding peak-pairs is used to determine the
optimal transformation, so the RMSE of those points after the
transformation is a biased indicator of performance for other
points. In particular, the transformation is the best fit for the
specific peak-pairs, including noise inherent in their peak
locations. That the transformation fits the noise as well as the
relevant chromatographic differences is called overfitting.
Constraining the transform with many points tends to
attenuate overfitting, but it is important to assess the level of
overfitting, particularly for small peak-pairs sets.
Cross-validation can be used to provide an unbiased estimate

of the transformation performance. In cross-validation, a peak-
pairs set is partitioned into a training set, which is used to
determine the transform, and a testing set, which is used to
independently evaluate performance. To account for variability,
results over multiple rounds of cross-validation, each performed
using randomly generated partitions of the peak-pairs set, are
averaged. Gros et al.13 used leave-one-out cross-validation (i.e.,
training sets with all but one peak-pair), but the size of the
training set can be varied to assess performance relative to the
number of peak-pairs used to determine the transformation.
Performance measures for both the training and testing sets are
reported.
Each cross-validation result is computed across random

partitions, for each transformation method (including no
transformation), for both the training set and the testing set,
at each training set size from 3 peak-pairs (the minimum size
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for the affine transformation) to the total number of peak-pairs
(which does not allow for a testing set), and for both directions
of transformation (i.e., switching the target and reference
chromatograms). The cross-validation RMSE is computed as

∑ ∑ ∑ ∑
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where K is the number of iterations of random partitioning. For
the graphs shown in the Results and Discussion, K = 100 and
the RMSE values for the transformations in both directions of
the same cross-validation partition are averaged. Additional
statistics related to worst-case performance (maximum RMSE)
are included in the Supporting Information.
Performance Benchmarks. The goal is a transformation

between FID and MS chromatograms from the same GC ×
2GC run. The performance of each transformation model for
this task is compared to a benchmark computed as the RMSE
between matched peaks for the same detector (i.e., FID with
FID and MS with MS) in consecutive replicate runs.
Consecutive replicate runs have negligible sample and
chromatographic differences (regarded as noise), so any
transformation model for them should provide only negligible

reductions in RMSE. If the performance of a transformation
model to align FID and MS chromatogram pairs can approach
the benchmark of consecutive replicate runs, then the residual
differences can be attributed to noise rather than chromato-
graphic misalignment.

Aligning Chromatographic Features and Data. Trans-
formation models are sufficient to map retention-times of
peaks, windows, or other features from one chromatogram to
align with another chromatogram. However, mapping data
values in one chromatogram (or an entire chromatogram) to
align with another chromatogram requires additional steps of
resampling (and interpolation or approximation). The addi-
tional steps to align data values are not discussed here, but the
alignment RMSE of data points left out during cross-validation
is an indicator of retention-time mapping quality for data points
which are not in the training set.
The computation required for low-degree polynomial

mapping is small. For example, on a computer with an Intel
i7-4770 CPU with 4 cores at 3.4 GHz and 16 GB RAM and
Microsoft Windows 10 64-bit OS, Java bytecode execution
required about 0.018 ms for optimal fitting of a second-degree
polynomial to 156 matched peak-pairs (which is a fairly large
number of alignment peaks) and about 0.067 ms to apply the
second-degree polynomial to remap the retention times of 156
peaks (which is a rate of more than 2 M points per second).
Presumably, compiled code could be faster.

Figure 1. Two chromatograms from a GC × 2GC analysis of a calibration sample: (A) FID on the left and (B) MS on the right. Peaks in the 25
peak-pairs set are indicated with open circles. Lines connect each target peak to the ISTD, phenylalanine. Clockwise around the ISTD peak (from 12
o’clock in the MS chromatogram), the targets are L-tyrosine (1), Myo-inositol, L-tyrosine (2), galactose, D-mannitol, D-glucose, D-fructose, ribitol,
xylitol, glycerol, L-threonine, L-glycine, lactic acid, L-leucine, L-valine, L-alanine, L-proline, creatinine, pyruvic acid, malic acid, L-phenylalanine, malonic
acid, succinic acid, and 2-ketoglutaric acid.

Figure 2. Cross-validation RMSE results as a function of the training set size for alignment of consecutive, replicate calibration chromatograms from
the same detector. Columns from left to right are for 1D with the training set, for 1D with the testing set, for 2D with the training set, and for 2D with
the testing set. The top row is for the FID chromatograms of calibration runs no. 1 and no. 2, and the bottom row is for the MS chromatograms of
calibration runs no. 1 and no. 2.
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■ RESULTS AND DISCUSSION

Results for Calibration Chromatograms. The first
experiments presented here evaluated calibration runs with a
set of informative target metabolites to be quantified in the
human urine samples. Figure 1 shows images of the FID and
MS chromatograms from one of the calibration runs (with
concentration 100 mg/L). Open green circles indicate the
analyte peaks used for alignment experiments. Red lines
connect each analyte peak to the ISTD peak, which is indicated
with a black circle. Peak identities and retention times are
provided as Supporting Information.
The average peak widths, computed as the second-central

moments (i.e., standard deviations), were determined from
these peaks in six FID and MS chromatograms of three
consecutive replicate calibration runs. The average peak
standard-deviation widths were about 1σ = 0.060 min and 2σ
= 0.085 s. In 1D, the standard-deviation peak width was slightly
less than the modulation cycle, PM = 0.083 min, which has
implications for the alignment benchmark. The standard
deviation for randomly distributed positions over a single
modulation interval is 12−1/2 × PM, which is about 0.024 min
(or 0.4 × 1σ) for these data. This is the RMS noise level from
the sampling effect of modulation. In 2D, the average peak
width is about 8.5 times the sampling rate for the FID data and
twice the sampling rate for the MS data. The RMS noise level
from detector sampling is about 0.003 s (or 0.03 × 2σ) for the
FID data and 0.012 s (or 0.14 × 2σ) for the MS data.
The benchmarks for the calibration runs were evaluated for

consecutive replicate runs with respect to the same detector. As
can be seen in Figure 2, for consecutive replicate runs, there
was a small misalignment of peak-pairs (shown by the solid
black lines labeled “None ( f 0)”): for

1D, about 0.035 min or 0.6
× 1σ; and, for 2D, about 0.045 s or 0.5 × 2σ. In 1D, the
misalignment is only a little more than the stochastic
modulation-sampling noise level (0.024 min). With the results
in the Supporting Information, the 2D misalignment averaged
slightly more for MS than FID (0.045 s versus 0.039 s), which

is in line with the difference in detector sampling noise (a
difference of 0.009 s). When aligning FID and MS chromato-
grams from the same run, we would like to approach these
benchmarks: 0.035 min in 1D and 0.045 s in 2D.
The expectation that the misalignment in chromatograms

from the same detector for consecutive replicate runs is due to
noise is supported by the observation that the global
transformations produced no improvements in alignment of
the testing-set peaks. Figure 2 illustrates the performance of the
alignment methods for both the training and testing sets
(shown as colored, dashed lines). When the models are not
overconstrained (peak-pairs sets of size 3, 6, and 10,
respectively, for f1, f 2, and f 3), they are able to perfectly align
the peak-pairs in the training set. Those models are computed
to fit the retention-times noise in the training-set peaks as well
as any underlying transformation, so this perfect performance is
misleading, as evidenced by the performance for the testing-set
peaks. As more peak-pairs are included in the training set
(which reduces overfitting to noise), the performance for the
training set worsens, but the more meaningful performance for
the testing-set peaks improves. However, the performance gains
from using additional peak-pairs to optimize the model
diminish as the model is more and more constrained; and,
even with all but one of the peaks in the training set, none of
the models improves alignment for the testing set for
consecutive replicate runs.
Figure 3 illustrates the performance for aligning the two

chromatograms from a GC × 2GC-FID/MS calibration run. As
can be seen in the second of the four graphs, for 1D, none of
the models yields any improvement in the testing set, but this is
expected because both the FID and MS chromatograms were
generated for the same 1D separation. Note also that the 1D
misalignment is approximately equal to the stochastic
modulation sampling noise level (0.024 min). For 2D, as seen
in the right-most graph, all of the transformation models
significantly improved alignment from about 0.14 s (or 1.6 ×
2σ) before transformation to about 0.06 s (or 0.7 × 2σ) or less,
with the second-degree polynomial approaching the benchmark

Figure 3. Cross-validation RMSE results as a function of the training set size for alignment of GC × 2GC calibration chromatograms (from different
detectors). Columns from left to right are for 1D with the training set, for 1D with the testing set, for 2D with the training set, and for 2D with the
testing set. The rightmost graph demonstrates the effectiveness of the transformations.

Figure 4. Two chromatograms from GC × 2GC analysis of a urine sample: (A) FID on the left and (B) MS on the right. Peaks in the 156 peak-pairs
set are indicated with open circles.
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of 0.045 s. The performance of the third-degree polynomial is
slightly worse than the benchmark; however, the peak-pairs set
for the calibration data may not be large enough to provide
robust constraints and is somewhat limited in covering the
retention-times space, so more in-depth analyses are presented
next in the results for urine samples, for which a larger peak-
pairs set with wider retention-times ranges is used.
Results for Urine Sample Chromatograms. Figure 4

shows images of the FID and MS chromatograms from a GC ×
2GC analysis of a urine sample. Open green circles indicate the
analyte peaks used for the alignment experiments. This peak-
pairs set is more than 6 times larger than the calibration peak-
pairs set, with a wider retention-times distribution.
Figure 5 shows the alignment results for consecutive replicate

runs of one of the urine samples, which are used to establish

benchmarks. For 1D, the benchmark is about 0.03 min (or
about 0.5 × 1σ), and for 2D, the benchmark is about 0.03 s (or
about 0.35 × 2σ) for the MS (which has a lower sampling
frequency than the FID). These values are slightly less than the
benchmarks for the calibration peaks (but still above the level
of stochastic noise from sampling), a difference that seems
related to the larger, more intense peaks in the calibration
sample. As seen in the results for the calibration samples, none
of the transformation models produced any improvement in
alignment of consecutive replicate runs.
Figure 6 shows the alignment performance for the two

chromatograms from a GC × 2GC-FID/MS run of a urine
sample. For 1D, the misalignment of the FID and MS
chromatograms is at the benchmark (about 0.03 min or 0.5
× 1σ) without transformation and, as expected, none of the

Figure 5. Cross-validation RMSE results as a function of the training set size for alignment of consecutive, replicate urine sample chromatograms
from the same detector. Columns from left to right are for 1D with the training set, for 1D with the testing set, for 2D with the training set, and for 2D
with the testing set. The top row is for the FID chromatograms of sample 41, runs no. 1 and no. 2, and the bottom row is for the MS chromatograms
of sample 41, runs no. 1 and no. 2.

Figure 6. Cross-validation RMSE results as a function of the training set size for alignment of GC × 2GC urine sample chromatograms (from
different detectors). Columns from left to right are for 1D with the training set, for 1D with the testing set, for 2D with the training set, and for 2D
with the testing set. The rightmost graph demonstrates the effectiveness of the transformations.

Figure 7. Misalignment vectors (from FID to MS) for 156 peak pairs in chromatograms from GC × 2GC analysis of a urine sample. Columns from
left to right are for the four alignment transformations: none (f0), affine (f1), second-degree polynomial (f2), and third-degree polynomial (f3).
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models reduces misalignment. For 2D, the misalignment before
transformation is large, about 0.25 s or 2.9 × 2σ, about 8 times
the benchmark. All of the transformation models significantly
improve alignment.
As seen in the right-most graph in Figure 6, affine

transformation reduces misalignment by about two-thirds, to
0.08 s (or 0.9 × 2σ) but does not achieve the benchmark. Both
polynomial transformations reduce misalignment to about 0.03
s (or 0.35 × 2σ), which is the benchmark for consecutive
replicate sample runs. The second-degree polynomial does not
approach its peak performance until there are nearly 30 points
in the training set, although it outperforms affine trans-
formation with as few as 9 or 10 points. The third-degree
polynomial requires nearly 20 points in the training set to
outperform affine transformation and requires nearly 50 points
to outperform the second-degree polynomial. Even when the
third-degree polynomial overtakes the second-degree poly-
nomial, the performance gain is small. Therefore, the second-
degree polynomial may be preferred for robustness with a
smaller training set and simpler computation, with little loss in
performance.
Figure 7 shows the misalignment vectors between peak-pairs

in the GC × 2GC chromatograms before and after alignment.
The displacements before alignment increase both from bottom
to top and from left to right. The affine transformation
improves alignment for many peaks but has errors visible in the
upper left and lower right. Both the polynomial transformations
improve alignment across the retention-times space.
Figure 8 shows the transformation functions applied to a

uniform rectangular grid. With the affine transformation, the
parallel lines for constant 2D retention times remain parallel
after the transformation, so the nonlinear differences cannot be
corrected. The polynomial transformations can track the
nonlinear systemic differences and so outperform affine
transformation.

■ CONCLUSIONS AND FUTURE WORK

This research indicates that global, low-order polynomial
transformations are effective for aligning chromatograms from
GC × 2GC with duplicate secondary columns and that they
improve on the performance of affine transformation. Second-
degree polynomials performed nearly as well as third-degree
polynomials and may be preferred for their simplicity,
requirement of fewer landmark peak-pairs, and greater
robustness for small sets of landmark peak-pairs. In the
experiments here, although as few as six landmark peak-pairs
are mathematically sufficient for determining the optimal

second-degree polynomial, more than 4 times as many may
be required for near peak-performance for points not in the
training set. We expect that these conclusions also would hold
for GC × GC with dual parallel detectors (e.g., GC × GC-FID/
MS or other detector combinations) for which the 2D
chromatograms may have differing retention-times patterns
(e.g., due to differences in splitter performance, connecting
capillaries, operative pressures, and/or detectors). However, for
GC × 2GC with different stationary phases in the secondary
columns, simple retention-time transformation models could be
ill-suited (be they local or global). This research also makes
contributions in methodologies for evaluating alignment
performance: demonstrating the use of consecutive replicate
runs to establish alignment benchmarks related to inherent
noise and using cross-validation with variable-sized training sets
to assess performance as a function of the number of points
used for alignment.
Although it is not the subject of this work, alignment of GC

× GC chromatograms from different runs also is an important
problem. For example, GC × GC retention-times patterns
change as columns age and differ from one system to another.
Global low-order polynomial transformations can be applied to
the problem of aligning different GC × GC chromatograms,17

but their performance for different situations has not been
investigated deeply. We have begun experiments that use the
assessment methods described here to evaluate the perform-
ance of global, low-order polynomials for aligning GC × GC
chromatograms in varied situations, with comparisons to local
alignment methods.
The next version of GC Image Software will have facilities

(a) to compute the optimal parameters for a second-degree
polynomial model from matched points determined by
template matching, (b) to update a template based on a
second-degree polynomial function computed after template
matching, and (c) to transform a chromatogram according to a
set of matched points (e.g., those determined by template
matching or any other method) using a second-degree
polynomial function and a selected resampling method.
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Figure 8. Transformation of grid lines using the models derived for Figure 7 (FID to MS mapping for GC × 2GC analysis of a urine sample).
Columns from left to right are for the four alignment transformations: none (f0), affine (f1), second-degree polynomial (f2), and third-degree
polynomial (f3).
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