
NasBASE 2015 00 (2015) 1–16

NasBASE
2015

First North American Search Based Software Engineering Symposium

SPLRevO: Optimizing Complex Feature Models in Search Based
Reverse Engineering of Software Product Lines

Thammasak Thianniwet and Myra B. Cohen

Department of Computer Science & Engineering
University of Nebraska-Lincoln

Lincoln, NE, 68588-0115 USA

Abstract

Recent work to reverse engineer feature models from a set of products leverages a genetic algorithm. This idea has been realized
as a framework called ETHOM, however, it suffers from two limitations. First, the existing fitness functions either do not penalize
models that contain products which are not in the original dataset, or create models which are missing too many valid products.
This results in models that greatly over or under-approximate the feature space. Second, the ETHOM framework only supports
models with simple cross-tree constraints in the form of binary excludes or requires, meaning that feature models with complex
cross-tree constraints may not be captured precisely. In this work, we present an improved fitness function that more effectively
guides the search to balance both additional and missing products. In addition, we have created a new framework, called SPLRevO,
containing a chromosome and additional mutation and crossover operators to support complex cross-tree constraints. In a study
spanning 99 feature models of various sizes, both with and without complex cross-tree constraints, we show that our new fitness
within the ETHOM framework improves the F-measure over the existing fitness functions from 7 to 50%. When the new fitness is
used within SPLRevO, we increase the F-measure over ETHOM by 20 to 63%.

Keywords: genetic algorithms, software product lines, reverse engineering

1. Introduction

Software product lines (SPLs) are families of related software products, composed of sets of common and variable
features, defined and managed by a feature model [1]. Feature models represent the set of all possible products within
an SPL, specifying how the common and variable features of the product can be combined [2–4]. A feature model
consists of two parts: (1) a feature diagram, the graphical notation for the core set of products in the feature model,
and (2) a (possibly empty) set of additional cross-tree constraints, which are constraints that describe dependencies
between elements of the feature model, but which cannot be easily expressed graphically [5]. Both the feature diagram
and the cross-tree constraints can be represented as a set of propositional formulas, therefore it is possible to determine
whether or not a particular product composed of a set of features is a valid member of the product family through
satisfiability analysis [6]. Feature models are used to guide product creation, product maintenance and can also be
used to enhance and guide product line testing [7–10].

Email address: {tthianni,myra}@cse.unl.edu (Thammasak Thianniwet and Myra B. Cohen)
1

T. Thianniwet and M.B. Cohen / NasBASE 2015 00 (2015) 1–16 2

Modifying an existing software product line, or designing a system test plan, without consideration of the feature
model may result in wasted effort due to the inclusion of invalid products [5]. However, feature models often do not
exist [11]. Manually creating feature models from existing software is time-consuming and requires significant effort
from a modeler. Therefore, recent work has moved towards automated feature model extraction from existing arti-
facts, such as source code, documents, feature names, and lists of the valid products [5, 11–17]. For instance, recent
work by She et al. proposes procedures for reverse engineering feature models from existing feature dependencies and
descriptions [5]. However, feature dependencies and their descriptions may not exist for some systems. Greevy also
proposes reverse engineering feature models by analyzing run-time behavior, structure, and the dependencies of fea-
tures [12]. This approach requires exhaustive analysis of the source code (which may be inaccessible) in combination
with dynamic analysis which can be time and memory intensive.

Recently, search-based approaches have been applied to this problem [13, 18, 19], ,and to the domain of software
product lines in general [20]. Lopez-Herrejon et al. proposed an evolutionary algorithm, Evolutionary algoriTHm for
Optimized feature Models (or ETHOM), for reverse engineering feature models from a set of known valid products
(an individual product is also called a feature set in that work) [13, 18]. The empirical evaluation shows promise and
an associated tool has been released [13]. Related to this idea is the use of genetic programming to synthesize feature
models [19]. An orthogonal approach, using a graph based heuristic algorithm to directly construct models from the
set of propositional formulas has also been proposed [5, 21]. This differs from the search based approach which uses
the formulas only to enumerate the valid set of products, but uses the actual set of products as the oracle for feature
model correctness. In practice, the set of equations may be harder to obtain than a set of valid products. Work by
Nadi et al. directly extracts equations from code [11], but even if we can extract the formula representing the model
automatically, the visual feature model is still necessary for human readability.

Despite the initial positive results using ETHOM, we have uncovered some potential limitations that prevent
scalability and robustness across a wide range of feature models and problems. First, the feature models derived by
ETHOM suffer from low F1-measures. The F1-measure indicates how close the evolved models are to the solution
balancing precision and recall. The ETHOM framework includes three fitness functions. The first, FFRelaxed may
result in feature models containing a large number of invalid products, while the second fitness FFStrict may go too
far in the opposite direction. It uses a penalty for invalid products, but weights this penalty very heavily resulting
in models that contain many missed products. The third fitness MinDiff improves upon the FFStrict fitness and
improves precision, however it too misses a large number of products.

Second, the ETHOM encoding of cross-tree constraints, supports only simple cross-tree constraints in which both
sides of the constraint equation consists of only a single feature, (i.e. "A requires B", or “B excludes C”). It cannot
hold constraints such as “A and B implies C” or “(A or B) implies (C or D)”, limiting the types of feature models that
can be engineered. We have found in our study that these types of constraints do exist and should be accounted for.

Last, the encoding of a feature diagram does not allow for multiple feature groups that have the same type of
relationship with the same parent. A feature group is a set of child features that have a combined-relationship (i.e.
OR-group, XOR-group, or MUTEX-group) with their parent feature. The encoding of a feature diagram in ETHOM
consists of two parts <PR, CN>, where PR denotes the type of relationship a feature has with its parent, and CN
denotes the number of children of the feature. The parent of a feature is implied by its order in the chromosome.
Because the encoding does not list the parent feature explicitly, multiple feature groups with the same parent are
merged into a single group. Figure 1 shows an example of how this can lead to a modified (incorrect) feature model.
The original product line consists of four different XOR-groups (denoted by the arcs between the dependency lines
(e.g. V6 or L4 and TWD or AWD). The customer can select either a V6 or L4 engine, TWD or AWD for its drive,
W19 or W20 as the wheel size and either a single or dual exhaust system. All of the relationships are merged into a
single group in the resulting diagram. Interestingly, the cross-tree constraints for feature L4 and V6 mean that these
features can never be in any product, because both of them imply additional features which are now in the same XOR
relationship. We have seen this type of relationship in two models from our study (in subjects also used in [13]).

In this paper, we have built upon the work of Lopez-Herrejon et al. [13, 18], and make several improvements to
their search-based approach to reverse engineering. We have designed a framework we call Software Product Line
Reverse Engineering Optimization – SPLRevO. First, we have created a new chromosome representation that allows
for more complex cross-tree constraints and that supports multiple group relationships of the same type. Second, we
have added new evolutionary operators for crossover and mutation to work on this new structure. Third, we have
developed a new fitness function, that penalizes models with invalid products and has higher F-measures than the

2

T. Thianniwet and M.B. Cohen / NasBASE 2015 00 (2015) 1–16 3

Venza!

V6! L4! W19!AWD!TWD!

Original Feature Model!

AT6! W20! SingleExhaust! DualExhaust!

L4 � SingleExhaust ;!
V6 � DualExhaust ;!

V6 � W20 ;!
L4 � W19 ;!

Encoding of Feature Model in ETHOM!

0! 1! 2! 3! 4! 5! 6! 7! 8!

TREE! Alt, 0! Alt, 0! Alt, 0! Alt, 0! M, 0! Alt, 0! Alt, 0! Alt, 0! Alt, 0!

CTC! R, 2, 8! R, 1, 9! R, 1, 9! R, 2, 6!

Venza!

V6! L4! W19!AWD!TWD!

Modified (incorrect) Feature Model!

AT6! W20! SingleExhaust! DualExhaust!

L4 � SingleExhaust ;!
V6 � DualExhaust ;!

V6 � W20 ;!
L4 � W19 ;!

Figure 1. An incorrect encoding for the Toyota Venza feature model

ETHOM fitness functions. Fourth, we show in an empirical study using 99 feature models of various sizes, both with
and without complex cross-tree constraints, that our new fitness within the ETHOM framework shows between a 7
and 50% improvement in F-measure over the native ETHOM fitness functions. In addition, when the new fitness is
used within SPLRevO, we increase the F- measure over ETHOM from 20 to 63% on average.

The contributions of this work are:

1. A new framework for reverse engineering feature models using a genetic algorithm that supports more complex
constraints, multiple feature groups and adds new evolutionary operators as well as incorporates a more accurate
fitness function.

2. An empirical study validating our new fitness both within the original ETHOM framework and within our new
framework to isolate improvements.

The rest of this paper is organized as follows. The next section provides background and related work. Section
3 presents SPLRevO. In Section 4 we present our empirical study. We discuss our results in Section 5 and end with
conclusions, and future work in Section 6.

2. Background and Related Work

A feature model is a graphical notation describing variability of a software product line consisting of both a
feature diagram and a (possibly empty) set of cross-tree constraints. A feature diagram is a tree structure consisting
of edges describing the relationships between parent and child features [2]. Every child and parent relationship has a
hierarchical edge indicating that the child requires the parent feature. Table 1 shows the most commonly used feature
relationships, their graphical notation, and edge dependency constraints. The additional cross-tree constraints that do
not have an associated graphical notation are added as a set of logical constraints. We show an example feature model
in Figure 2.

In this figure, feature a is a root feature with three children, b, c, and d. Feature b is an optional feature. It has
children e and f that are part of a MUTEX-group. When b is selected, either e or f or neither can be selected. Feature
c is a mandatory feature. It appears in every product. It has two XOR-groups, g and h, and i and j. This means either
g or h, and either i or j must be selected. Feature d is an optional feature. It has children k and l that are members of
an OR-group. When d is selected, one or more feature in the group can be selected. The cross-tree constraint (on the
right) states that d is always selected when both e and f are selected. Note that although we can describe the set of
products in a product line only as equations, this is not enough. More than one feature model may describe the same
set of equations, and the graphical view of a feature model is often required for human understandability.

2.1. Existing SPL Analysis Frameworks

ETHOM is the framework that is used for the search-based reverse engineering feature models [13]. ETHOM uses
a genetic algorithm. It takes a set of products (all feature sets) as an input. This can be an existing set (from a prior
version of the system or reverse engineered from code, or using a tool to analyze an existing feature model, described

3

T. Thianniwet and M.B. Cohen / NasBASE 2015 00 (2015) 1–16 4

Table 1. Notation for Relationships in a Feature Diagram
Relationships Graphical Notation Grammar Feature Edges Semantic

Optional (hierarchy)
C!

P!

C!

P!

P!

C1! C2!

P!

C1! C2!

P!

C1! C2!

[0..1]!

Relationships! Graphical Notation! Texual Notation! Feature Edges!
Optional (Hierarchy)! \includegraphics[width=1.0in]{figures/rel-opt.pdf}! P: C? ;! C -> P : H!
Mandatory! \includegraphics[width=1.0in]{figures/rel-man.pdf}! P: C ;! C -> P : H!

C -> P : M!
OR-group! \includegraphics[width=1.0in]{figures/rel-or.pdf}! P: (C_1 | C_2)+ ;! C_1 -> P : H!

C_2 -> P : H!
(C_1, C_2) -> P : OR!

XOR-group (alternative)! \includegraphics[width=1.0in]{figures/rel-xor.pdf}! P: (C_1 | C_2) ;! C_1 -> P : H!
C_2 -> P : H!
(C_1, C_2) -> P : XOR!

MUTEX-group! \includegraphics[width=1.0in]{figures/rel-mutex.pdf}! P: (C_1 | C_2)? ;! C_1 -> P : H!
C_2 -> P : H!

 ! ! ! (C_1, C_2) -> P : MUTEX!

P : C? ; C → P : H When P is selected, C can be se-
lected or deselected.

Mandatory

C!

P!

C!

P!

P!

C1! C2!

P!

C1! C2!

P!

C1! C2!

[0..1]!

Relationships! Graphical Notation! Texual Notation! Feature Edges!
Optional (Hierarchy)! \includegraphics[width=1.0in]{figures/rel-opt.pdf}! P: C? ;! C -> P : H!
Mandatory! \includegraphics[width=1.0in]{figures/rel-man.pdf}! P: C ;! C -> P : H!

C -> P : M!
OR-group! \includegraphics[width=1.0in]{figures/rel-or.pdf}! P: (C_1 | C_2)+ ;! C_1 -> P : H!

C_2 -> P : H!
(C_1, C_2) -> P : OR!

XOR-group (alternative)! \includegraphics[width=1.0in]{figures/rel-xor.pdf}! P: (C_1 | C_2) ;! C_1 -> P : H!
C_2 -> P : H!
(C_1, C_2) -> P : XOR!

MUTEX-group! \includegraphics[width=1.0in]{figures/rel-mutex.pdf}! P: (C_1 | C_2)? ;! C_1 -> P : H!
C_2 -> P : H!

 ! ! ! (C_1, C_2) -> P : MUTEX!

P : C ;
C → P : H
C → P : M When P is selected, C must be se-

lected.

OR-group

C!

P!

C!

P!

P!

C1! C2!

P!

C1! C2!

P!

C1! C2!

[0..1]!

Relationships! Graphical Notation! Texual Notation! Feature Edges!
Optional (Hierarchy)! \includegraphics[width=1.0in]{figures/rel-opt.pdf}! P: C? ;! C -> P : H!
Mandatory! \includegraphics[width=1.0in]{figures/rel-man.pdf}! P: C ;! C -> P : H!

C -> P : M!
OR-group! \includegraphics[width=1.0in]{figures/rel-or.pdf}! P: (C_1 | C_2)+ ;! C_1 -> P : H!

C_2 -> P : H!
(C_1, C_2) -> P : OR!

XOR-group (alternative)! \includegraphics[width=1.0in]{figures/rel-xor.pdf}! P: (C_1 | C_2) ;! C_1 -> P : H!
C_2 -> P : H!
(C_1, C_2) -> P : XOR!

MUTEX-group! \includegraphics[width=1.0in]{figures/rel-mutex.pdf}! P: (C_1 | C_2)? ;! C_1 -> P : H!
C_2 -> P : H!

 ! ! ! (C_1, C_2) -> P : MUTEX!

P : (C1|C2)+ ;
C1 → P : H
C2 → P : H
(C1,C2)→ P : OR

When P is selected, either C1 or C2

or both of them must be selected.

XOR-group (alternative)

C!

P!

C!

P!

P!

C1! C2!

P!

C1! C2!

P!

C1! C2!

[0..1]!

Relationships! Graphical Notation! Texual Notation! Feature Edges!
Optional (Hierarchy)! \includegraphics[width=1.0in]{figures/rel-opt.pdf}! P: C? ;! C -> P : H!
Mandatory! \includegraphics[width=1.0in]{figures/rel-man.pdf}! P: C ;! C -> P : H!

C -> P : M!
OR-group! \includegraphics[width=1.0in]{figures/rel-or.pdf}! P: (C_1 | C_2)+ ;! C_1 -> P : H!

C_2 -> P : H!
(C_1, C_2) -> P : OR!

XOR-group (alternative)! \includegraphics[width=1.0in]{figures/rel-xor.pdf}! P: (C_1 | C_2) ;! C_1 -> P : H!
C_2 -> P : H!
(C_1, C_2) -> P : XOR!

MUTEX-group! \includegraphics[width=1.0in]{figures/rel-mutex.pdf}! P: (C_1 | C_2)? ;! C_1 -> P : H!
C_2 -> P : H!

 ! ! ! (C_1, C_2) -> P : MUTEX!

P : (C1|C2) ;
C1 → P : H
C2 → P : H
(C1,C2)→ P : XOR

When P is selected, either C1 or C2

must be selected.

MUTEX-group

C!

P!

C!

P!

P!

C1! C2!

P!

C1! C2!

P!

C1! C2!

[0..1]!

Relationships! Graphical Notation! Texual Notation! Feature Edges!
Optional (Hierarchy)! \includegraphics[width=1.0in]{figures/rel-opt.pdf}! P: C? ;! C -> P : H!
Mandatory! \includegraphics[width=1.0in]{figures/rel-man.pdf}! P: C ;! C -> P : H!

C -> P : M!
OR-group! \includegraphics[width=1.0in]{figures/rel-or.pdf}! P: (C_1 | C_2)+ ;! C_1 -> P : H!

C_2 -> P : H!
(C_1, C_2) -> P : OR!

XOR-group (alternative)! \includegraphics[width=1.0in]{figures/rel-xor.pdf}! P: (C_1 | C_2) ;! C_1 -> P : H!
C_2 -> P : H!
(C_1, C_2) -> P : XOR!

MUTEX-group! \includegraphics[width=1.0in]{figures/rel-mutex.pdf}! P: (C_1 | C_2)? ;! C_1 -> P : H!
C_2 -> P : H!

 ! ! ! (C_1, C_2) -> P : MUTEX!
P : (C1|C2)? ;

C1 → P : H
C2 → P : H
(C1,C2)→ P : MUTEX

When P is selected, either C1 or C2

or none of them must be selected.

c!

a!

d!b!

g! h! i! j!e! f! k! l!

[0..1]! (e � f) � d ;!
Cross-tree Constraint!

Figure 2. A Feature Model

next). For experimentation, the full set of products can be obtained by providing a set of equations describing the
feature model to the FaMa Feature Model Analyzer framework [6, 22]. FaMa uses automated reasoners to answer
questions about the possible products within a software product line model, such as whether a particular product is
a member of the SPL or how many possible products an SPL contains. To generate the initial random population,
ETHOM uses a tool called BEnchmarking and TestTing on the analYses of feature models, (BeTTy) [14, 23]. BeTTy
takes as input the number of products and randomly generates a feature model. During evolution, at each generation,
FaMa is again used to evaluate whether the current model matches the set of products. For each product in the target
feature set it asks if the current model contains it.

The current version of FaMa (1.1.2) supports two types of feature models, standard (basic) and extended (at-
tributed) feature model – a feature model where features can have additional ranges of values associated with them.
The difference between standard and extended FaMa feature model is shown in Table 2. ETHOM only supports the
standard model, which limits the framework to simple cross-tree constraints: binary REQUIRES and EXCLUDES. It
does not support AND, OR, or NOT directly.

Table 2. FaMa basic and extended models
Features Standard Model Extended Model
File extension *.fm, *.fmf, *.xml *.afm
%Relationships Supports Mandatory, Optional, Supports Mandatory, Optional, Group Relationships with Cardinality

Group Relationships with Cardinality
%Constraints REQUIRES and EXCLUDES Arithmetic (+, -, *, /, mod)

Relational (>, >= , <, <=, ==, !=)
Logical (AND, OR, NOT, IMPLIES, IFF (if only if)) operators

%Attributes Not supported Defines feature attributes, with their type, domain, and default value

4

T. Thianniwet and M.B. Cohen / NasBASE 2015 00 (2015) 1–16 5

2.2. ETHOM Fitness Functions

ETHOM has three fitness functions, FFRelaxed, FFStrict [13] and MinDiff [18] shown in equations 1, 2 and 3.

FFRelaxed(sfs, fm) = |{fs : sfs | validFor(fs, fm)}| (1)

FFStrict(sfs, fm) =

FFRelaxed(sfs, fm), #products(fm) = |sfs|
0, otherwise

(2)

MinDiff (sfs, fm) = deficit(sfs, fm) + surplus(sfs, fm) (3)

In all of the equations sfs stands for the set of desired products, fs is an individual product in sfs, fm is a feature
model, validFor(fs, fm) is used to check whether fs can be described by the feature model fm and #products(fm) counts
the number of products in the given feature model. deficit(sfs, fm) is the number of missing products (i.e. the number
in sfs that are not contained in fm). surplus(sfs, fm) is the number of additional products. It counts the number of
products in fm that are not contained in sfs. The first fitness FFRelaxed maximizes the number of products in the
evolved feature model that are also in the desired set of products. It ignores invalid products, therefore it may allow
for models with many extra (invalid) products. The second fitness FFStrict maximizes the number of products, but
does not allow any invalid products. It uses FFRelaxed as its base, but whenever the number of products in the
desired feature set and the evolved model do not match, the fitness is set to zero. This penalty, does not provide
enough guidance, biasing towards too many missed products. The last fitness, MinDiff , minimizes both the missing
and additional products in the feature model, by adding their sums together.

3. SPLRevO

We now present the new chromosome, fitness function and evolutionary operators that form the basis of SPLRevO.

3.1. Chromosome

One aim of SPLRevO is to represent more complex constraints on the feature model. Complex constraints are
supported in the FaMa extended feature model so we leverage that to build our chromosome. We use the FaMa
extended feature model (without attributes) as the underlying representation. We can then use the FaMa analyzer to
answer questions about our model as during evolution1. Table 3 shows the operators for arbitrary constraints that we
support in comparison with those supported by the ETHOM chromosome.

Table 3. Supported operators for constraints in ETHOM and SPLRevO
Framework Supported Operators
ETHOM REQUIRES, EXCLUDES
SPLRevO REQUIRES, EXCLUDES, AND, OR, NOT, IMPLIES, IFF

The SPLRevO chromosome is split into two parts, the feature diagram, and the cross-tree constraints. The feature
diagram part of the chromosome contains one or more children, the parent, and a relationship. The relationship for
a single child can be a Hierarchy and Mandatory, MUTEX, OR, and XOR for a group of children. The cross-tree
constraints are represented by their expression tree. The encoding of the Toyota Venza feature model from Figure 2
is shown in Figure 3. Part (a) is the feature diagram and part (b) is the set of cross-tree constraints in tree form (they
are flattened into an array form in our implementation). In Figure 3, the feature diagram now explicitly encodes the
parent feature of each feature and feature group. Thus, we solve the problem of merging feature groups. In addition,
we encode the CTC in tree form which allows for arbitrary sized constraints with more than one operator. This solves
the ETHOM limitation of only allowing simple binary constraints.

1FaMa does not support some questions using the attributed model, but the technical limitation is due to the attributes. We instead query the
solver directly to support SPLRevO.

5

T. Thianniwet and M.B. Cohen / NasBASE 2015 00 (2015) 1–16 6

Venza!

V6! L4! W19!AWD!TWD!

Original Model!

AT6! W20! SingleExhaust! DualExhaust!

L4 � SingleExhaust ;!
V6 � DualExhaust ;!

V6 � W20 ;!
L4 � W19 ;!

Encoding of Feature Diagram of Toyota Venza Feature Model!

Children! Parent! Type!

R1! V6! Venza! Hierarchy!

R2! L4! Venza! Hierarchy!

R3! {V6, L4}! Venza! Xor!

R4! TWD! Venza! Hierarchy!

R5! AWD! Venza! Hierarchy!

R6! {TWD, AWD}! Venza! Xor!

R7! AT6! Venza! Hierarchy!

R8! AT6! Venza! Mandatory!

R9! W19! Venza! Hierarchy!

R10! W20! Venza! Hierarchy!

R11! {W19, W20}! Venza! Xor!

R12! SingleExhaust! Venza! Hierarchy!

R13! DualExhaust! Venza! Hierarchy!

R14! {SingleExhaust, DualExhaust}! Venza! Xor!

�!

L4! SingleExhaust!

CTC 1!
�!

V6! DualExhaust!

�!

V6! W20!

�!

L4! W19!

CTC 2!

CTC 3! CTC 4!

Encoding of Cross-tree Constraints of Toyota Venza Feature Model!

(a) Feature Diagram! (b) Cross-tree Constraints!

Figure 3. Encoding of Feature Model for Toyota Venza Feature Model: (a) diagram (b) CTCs

3.2. Fitness: FFValidity

We include a new fitness function FFValidity in SPLRevO. It is designed to maximize coverage of the desired
products while minimizing the number of undesired products. The MinDiff fitness adds the deficit to the surplus
products and then minimizes the fitness. Our fitness on the other hand, subtracts the additional products from the
matched products, and normalizes this by the number of desired products. It also uses a logarithmic scale to smooth
out the fitness curve. Our fitness, FFValidity, is shown in equations 4 and 5.

FFValidity(sfs, fm) =
(log2(#matched(sfs, fm) + 1) − 0.1 · log2(#additional(sfs, fm) + 1)) · 100

log2(|sfs| + 1)
(4)

#additional(sfs, fm) = #products(fm) − #matched(sfs, fm) (5)

In equation 4, #matched(sfs, fm) is the number of the desired products that are described by the generated feature
model fm. The calculation of #matched(sfs, fm) is equivalent to FFRelaxed(sfs, fm) but we call it matched which is
more meaningful to us. #additional(sfs, fm) is the number of invalid products that are described by fm. The term
log2(#additional(sfs, fm) + 1) is the penalty applied when fm describes extra products. We use log2 to reduce the effect
caused by the large number of products which is usually around 2#features. We heuristically weight the penalty at 10%
to lessen its impact on the matched products: log2(#matched(sfs, fm)+1). We also add 1 inside of our log2 formulas to
ensure that they go to zero. Finally, we normalize the value by 100

log2(|sfs|+1) . The final fitness has a range from 0 to 100;
100 is the correct model. The idea of this fitness is to drive the search towards more matched products, while only
slightly penalizing additional products. It gives higher priority to the number of matched products. Thus, the genetic
algorithm will first converge towards covering all of the products when possible, and gradually refine towards models
that contain fewer additional products.

3.3. Crossover and Mutation

Given the more complex chromosome representation we needed to add additional crossover and mutation opera-
tors. We describe them here. For each pair of parents to be mated, we crossover the feature diagram and cross-tree
constraints separately, and generate two new offspring. Our new crossover operator on the feature diagram is able to
transfer relationships under a random feature f, considered as a root of the subtree of the diagram, from one parent to
another parent without distorting the relationships in the tree structure, which may happen in the ETHOM crossover.
We use a simple even-odd pairing of chromosomes from the top half of the population. Thus, the total number of
chromosomes after crossover is the same as the initial population. The algorithms used for crossover are shown as
algorithms 1 - 3.

6

T. Thianniwet and M.B. Cohen / NasBASE 2015 00 (2015) 1–16 7

Algorithm 1: crossover(P1,P2)
Result: Two new offspring
Input: Two parents, P1 and P2

1 f1 = random(features);
2 offspring1 = crossoverFD(P1,P2, f1);
3 f2 = random(features);
4 offspring2 = crossoverFD(P2,P1, f2);
5 crossoverCTC(offspring1, offspring2);

Algorithm 2: crossoverFD(P2,P1, f)
Result: A new offspring
Input: A source parent P1, a target parent P2, and a random feature f

1 Offspring = P2.clone();
2 enqueue(F, f);
3 while F , ∅ do
4 f ′ = dequeue(F);
5 for each hierarchical relationship P1.r from f ′ to each child P1.c on P1 do
6 enqueue(F,P1.c);
7 disconnect c from its parent p ; // Figure 4(2)
8 if c ∈ predecessor(f ′) then
9 disconnect c′, c′ ∈ child(c) and c′ ∈ predecessor(f ′) ; // Figure 4(3)

10 reconnect c′ to p using relationship P2.c→ p ; // Figure 4(4)

11 connect c to f ′ using relationship P1.r ; // Figure 4(5)

12 return Offspring

Algorithm 3: crossoverCTC(offspring1, offspring2)
Result: Exchanged cross-tree constraints in two offspring
Input: Two offspring, offspring1 and offspring2

1 M = Integer.random();
2 N = Integer.random();
3 ctcO1 = getCTC(offspring1,M);
4 ctcO2 = getCTC(offspring2,N);
5 offspring1.addAllConstraints(ctcO2);
6 offspring2.removeAllConstraints(ctcO2);
7 offspring2.addAllConstraints(ctcO1);
8 offspring1.removeAllConstraints(ctcO1);

In Algorithm 1, crossover(P1,P2) is the main procedure for crossover between two parent chromosomes, P1, and
P2. We select two random features (lines #1 and #3) and then clone the relationships under those features to the
respective parent, as shown in Algorithm 2. Then we exchange constraints between two new offspring. This is shown
as Algorithm 3. To perform crossover on the individual parent, (Algorithm 2) a new offspring is first created from
a copy of another parent P2. Then, the relationships under the feature f are transferred to the new offspring. We
iteratively transfer the relationships of all features in the subtree starting from its root feature, f . For each relationship
r from an active feature f ′ to c, under the feature f on the source parent, P1, form r on the offspring. In the offspring,
we disconnect the child c of the relationship r from its parent feature p. This step is to prepare c for connecting to a
new parent, f ′. However, If c is a predecessor of f ′, we cannot connect c to f ′ directly. This is because it will cause a
cycle in the tree, which is an invalid feature model. In this case, we have to perform two extra steps (lines #9 and #10).
If c is a predecessor of f ′, disconnect a child c′ from c. Then, reconnect c′ to the parent p using the same relationships
P2.c→ p. Otherwise, when c is not or no longer be a predecessor of f ′, connect c to f ′ using the relationship r. This
crossover operation is illustrated in Figure 4.

crossoverCTC(offspring1, offspring2) (Algorithm 2) is the core process of crossover for cross-tree constraints for
two new offspring originally created from P1 and P2. This process exchanges the first M and N constraints from the
two parents to the two new offspring, where M and N are random integers.

7

T. Thianniwet and M.B. Cohen / NasBASE 2015 00 (2015) 1–16 8

1!

p!

c!

s2! c’!

s1!

s3!

f!

s4! s5!

s6!

P1!

f!

c!

(c) ! f : H!
(c) ! f : M!

root!

s4!

�

�

�

P2!

root!

s7!
�

2"

p!

c!

s2! c’!

s1!

s3!

f´!

s4! s5!

s6!

�

Disconnect p, c :!
!
Remove:!
(c, s1, s6) ! p : XOR!
(c) ! p : H!
!
Add:!
(s1, s6) ! p : XOR!

Offspring!

root!

s7!
�

Selecting two parents!
P1 and P2!
!
Randomly pick a feature!
f!
!
Clone parent!
P2 to a new Offspring!

3"

p!

c!

s2! c’!

s1!

s3!

f´!

s4! s5!

s6!

�

Disconnect c, c’ :!
!
Remove:!
(c’) ! c : H!
(c’) ! c : M!

root!

s7!
�

Offspring!

4"

p!

c’!s1!

f´!

s4! s5!c!

s2! s3!

s6!

�

Connect p, c’ :!
!
Remove:!
(s1, s6) ! p : XOR!
!
Add:!
(c’) ! p : H!
(c’, s1, s6) ! p : XOR!

root!

s7!
�

Offspring!

5"

p!

c’!s1!

f´!

s4! s5!c!

s2! s3!

s6!

�

Connect f´, c :!
!
Add:!
(c) ! f´ : H!
(c) ! f´ : M!

root!

s7!
�

Offspring!

IF c � preds(f’)!

Figure 4. An example of crossover of the feature diagram between parent P1 and P2

3.4. Mutation

We have created ten new mutation operators, five for the feature diagram and five for the cross-tree constraint. Our
mutation avoids infeasible feature models, therefore we do not need a repair mechanism. We describe each next.
FD Complicate. Figure 5 shows an example of this operator. It adds more features to the children of an existing
group relationship, or makes a new group relationship. It randomly picks a feature f to be added as a new child to a
random relationship r. To avoid a cyclic graph, f must not be a predecessor of any feature in r. In the case that r is
a supporting hierarchical edge of a group relationship g, resume the operation on g instead of r. This avoids multiple
feature cardinality, where one feature relies on more than one group relationship. If r is a non-group relationship,
randomly change the type of r to OR, XOR, or MUTEX after adding the feature f . This operator can be applied to
any relationship in the feature diagram. An example of making the relationship F7 → F2: M more complicated by
adding a feature F4 is shown in Figure 5.

R1!

F1! F2!

F4! F6! F7! F8!

R2!

F3!

F5! F9!

R1!

F1! F2!

F6! F7! F8!

R2!

F3!F4!

F9!F5!

Figure 5. Feature Diagram Mutation: Complicate

R1!

F1! F2!

F4! F6! F7! F8!

R2!

F3!

F5! F9!

R1!

F1! F2!

F4! F6! F7! F8!

R2!

F3!

F5! F9!

Figure 6. Feature Diagram Mutation: Simplify

FD Simplify. This operator (Figure 6) makes the feature diagram simpler by removing a child feature f from an
existing group relationship r. If removing f from r results in only one child, the group relationship r can be removed.
This operator can be applied only to a group relationship in the feature diagram. The example of this operator that
removes F4 from a group relationship (F4, F6, F7)→ F1: XOR is shown in Figure 6. It first randomly picks a group
relationship, (F4, F6, F7) → F1: XOR, from the feature diagram. There is only one group relationship in this case.
Then, it randomly picks a child feature, F4, to be removed from the relationship.

8

T. Thianniwet and M.B. Cohen / NasBASE 2015 00 (2015) 1–16 9

FD Swap Features. This operator swaps two features in the feature diagram. It allows exchange of the relationships
of the two features. An example of this operator on F2 and F4 is shown in Figure 7.

R1!

F1! F2!

F4! F6! F7! F8!

R2!

F3!

F5! F9!

R1!

F1! F4!

F2! F6! F7! F8!

R2!

F3!

F5! F9!

Figure 7. Feature Diagram Mutation: Swap Features

R1!

F1! F2!

F4! F6! F7! F8!

R2!

F3!

F5! F9!

R1!

F1! F2!

F4! F6! F7! F8!

R2!

F3!

F5! F9!

Figure 8. Feature Diagram Mutation: Change Parent

FD Change Parent. This operator changes the parent of a feature. To avoid a cyclic graph, a feature cannot change
its parent to its successor. An example that changes the parent of F6 from F1 to F2 is shown in Figure 8.
FD Change Type of Relationship. This operator changes the type of any relationship in the feature diagram. If it is
a hierarchical relationship and not related to any group relationship, add a mandatory relationship. If it is mandatory,
remove the relationship to make optional. If it is a group relationship, randomly change to the other group relationship.
An example of this operator that changes an XOR-group relationship to an OR-group relationship is shown in Figure
9.
CTC Expand. This operator makes a cross-tree constraint more complex by expanding a feature node in an expression
tree to a new expression subtree. This operation can be applied only to a feature node that is a leaf node of the
expression tree. Figure 10(a) shows an expression tree of a constraint (F5∧ F3)⇒ (¬F8∨ F9). Expanding a feature
node F8 to a new expression subtree is shown in Figure 10(b). A feature node F8 is expanded to F8〈op〉R, where
〈op〉 is one of the available logical operators (∧,∨,¬,⇒,⇔), where R is a random feature.
CTC Collapse. This operator makes a cross-tree constraint simpler by collapsing a leaf expression tree to a single
feature node. This operator can be applied only to an expression node where all its children are feature nodes. An
example of this operator that collapses an expression F5 ∧ F3 to a single feature node F3 is shown in Figure 12(c).
An expression node ∧, having two children feature nodes, F5 and F3, is collapsed to only F3. F3 is a random child
feature node of the original expression.
CTC Change. This operator changes information in a node in an expression tree. If the node is a feature node, its
information can be changed to another feature. Otherwise, if it is an expression node, its operator can be changed to
another operator. The example of an operator that changes a conjunctive operator to disjunctive operator is shown in
Figure 10(d). The expression node ∧ is randomly changed to another operator ∨.
The last two operators that we include are described, but not illustrated:
CTC Add New Constraint. This operator adds new constraint to the feature model. The new constraint is a binary
expression of two features and a random operator. We do not check whether the new constraint is already satisfied by
the feature diagram or it is a duplicate constraint.
CTC Remove Constraint. The last operator removes an existing constraint from the feature model.

3.5. Mutation Rates

Since the mutation operators make significant changes to a chromosome and the population, SPLRevO is config-
urable with respect to the mutations. Based on the overall mutation rate, we also provide a rate to use for individual

R1!

F1! F2!

F4! F6! F7! F8!

R2!

F3!

F5! F9!

R1!

F1! F2!

F4! F6! F7! F8!

R2!

F3!

F5! F9!

Figure 9. Feature Diagram Mutation: Change Type of Relationship

9

T. Thianniwet and M.B. Cohen / NasBASE 2015 00 (2015) 1–16 10

�!

�! �!

F5! F3! �! F9!

F8!

�!

�! �!

F5! F3! �! F9!

op!

F8! R!

�!

F3! �!

�! F9!

F8!

�!

�! �!

F5! F3! �! F9!

F8!

a) Original expression tree! b) Expanding F8! c) Collapsing F5 � F3! d) Changing � to �!

{�, �, �, !
 ⇒, ⇔} !

Figure 10. Cross-tree Constraint Mutation Operators

operators (we have found that if we use all operators equally, then some dominate others). We call this the applica-
ble rate or A-Rate for short. It is automatically and dynamically calculated during evolution, based on the current
population. The list of mutation operators and their applicable rates (A-Rate) are shown in Table 4.

Table 4. Mutation operators and dynamic applicable rate
Operator Mutation Point A-Rate

FD::Complicate Any relationship 1.0
FD::Simplify Any group-relationship |grp−relationships|/|all−relationships|

FD::SwapFeature Any relationship 1.0
FD::ChangeParent Any relationship 1.0
FD::ChangeRtype Any relationship 1.0
CTC::Expand Any leaf node |lea f−nodes|/|all−nodes|

CTC::Collapse Any non-root node which all its children are leaf nodes |collapsible−nodes|/|all−nodes|

CTC::Change Any non-root node |all−nodes|−1/|all−nodes|

CTC::Add Any chromosome in the population 1.0
CTC::Remove Any constraint in the population 1.0

3.6. Other GA Parameters
The SPLRevO initial population is generated randomly. These are models without CTCs. Then we randomly

mutate the population using the set of mutation operators to add some constraints. For selection we use rank selection.
We first order the chromosomes in the population by their fitness value. We keep the best half of the population for
crossover and the next generation, while discarding the later half. The stopping criteria is either a model that matches
the desired set of products (with no additional or missing products) or an iteration limit.

4. Empirical Study

In this section, we evaluate the three ETHOM fitness functions, along with FFValidity, on the ETHOM framework
and on the SPLRevO framework. We aim to answer the following research questions.
RQ1: How does FFValidity perform compared to the ETHOM fitness functions?
RQ2: What is the impact of the new chromosome representation and genetic operators in SPLRevO?

Table 5. Feature Models Used in Experiments
Model Total Models #Features-range Avg. #Features Avg. #Products

Small 21 10 10.0 22.1
Medium 55 11 - 19 14.0 102.9
Large 15 20 - 27 21.9 227.9
Complex 8 7 - 21 13.3 131.6
Total 99 10 - 27 14.3 107.0

10

T. Thianniwet and M.B. Cohen / NasBASE 2015 00 (2015) 1–16 11

4.1. Feature Models
We used 99 feature models for our experimentation. 91 of these models were used in the original ETHOM study,

although the authors only reported on 59 [13]. We used all models with 27 or fewer features. We chose this cutoff

so that the results are reasonable to complete during the timeframe. These models are originally from the SPLOT
feature model repository [24]. We separate these into three groups, small, medium, and large, based on the number
of features. We also include 8 models that have complex cross-tree constraints. First we used the Power Management
feature model from the work of She et al. [5]. We also included our example Toyota Venza model from Figure 2.
For the other six we randomly choose two models from each group (small, medium and large) and mutated them
randomly so that they contain complex constraints. We manually verified that they contained a complex constraint
pattern. Table 5 shows the details of our models including the number of features, and the average number of products.
A more in-depth description of the complex models is given in Table 6.

Table 6. Complex subjects
Model #Features #Products #CTC #CCTC Pattern of complexity

Power Management [5] 7 6 4 1 (A AND B) IMPLIES C
Toyota Venza M 10 4 4 0 Multiple groups (4 XOR-groups)
carpl M 10 21 0 0 Multiple groups (1 XOR-group, 1 MUTEX-group)
CTOS MODEL M 10 17 1 1 (A AND B) IMPLIES (C OR D)
CFDP Library M 13 549 1 1 (A AND B) IMPLIES C
Web Content Delivery M 15 66 5 1 A IMPLIES (B OR C)
Stacja Pogodowa M 20 336 1 1 (A IFF B) IMPLIES C
TrialADC M 22 54 5 1 (NOT A) IMPLIES B

4.2. Metrics Used
We evaluate the effectiveness of the fitness functions by comparing the desired set of products with the products

in the evolved feature model. We count the missing and additional products in each model and calculate the percent
of each. We also calculate the precision, recall, and the Fβ-measure as measures of effectiveness. The Fβ measure is
the weighted harmonic mean of precision and recall. In this paper, we use F1, where β = 1, that weights precision and
recall equally [25]. A high F1-measure is our primary goal since this indicates we have both high precision and high
recall. The calculations for our metrics are given in equations 6 - 10. In these equations sfs is the number of desired
products, fm is the evolved feature model (the one we are evaluating). We also record the execution time that each
experiment takes to measure efficiency.

precision(sfs, fm) =
#matched(sfs, fm)

#products(fm)
· 100 (6)

recall(sfs, fm) =
#matched(sfs, fm)

|sfs|
· 100 (7)

Fβ=1(sfs, fm) =
2 · precision(sfs, fm) · recall(sfs, fm)
precision(sfs, fm) + recall(sfs, fm)

(8)

%Missing(sfs, fm) =
|sfs| − #matched(sfs, fm)

|sfs|
· 100 (9)

%Additional(sfs, fm) =
#products(fm) − #matched(sfs, fm)

|sfs|
· 100 (10)

4.3. Method
We run all experiments 10 times and then present averages (and medians using boxplots). For all subjects, and

fitness functions we run them in both ETHOM and in SPLRevO. We run all experiments on the same computing cluster
with AMD Opteron(TM) CPUs running at 2300MHz. Each individual configuration was submitted to a separate node
with a maximum Java memory pool of 16GB. The genetic algorithm configurations that we used to run ETHOM and
SPLRevO in our studies are shown in Table 7.

11

T. Thianniwet and M.B. Cohen / NasBASE 2015 00 (2015) 1–16 12

Table 7. ETHOM and SPLRevO configuration
Parameter ETHOM SPLRevO

Fitness functions FFRelaxed, FFStrict, MinDiff, FFValidity FFRelaxed, FFStrict, MinDiff, FFValidity
Selection strategy Roulette-wheel Rank Selection
Crossover strategy One-point One-point
Crossover probability 0.7 1.0
Initial population size 100 100
Infeasible individuals Repairing Avoidance
Maximum generations 100 100
Maximum iterations 25 25
Mutation probability 0.01 0.01
Percentage of CTC 0.3 N/A

4.4. Threats to Validity

This study suffers from some threats to validity which we outline here. First, with respect to external threats (or
generalization), we used only models from the SPLOT repository and these have no more than 27 features, therefore
we cannot be sure that our algorithm will scale to very large feature models. However, these are the same subjects
used in the original work and they are meant to represent a broad range of real product lines. We have also added
some models with complex constraints to enrich the data set. As for internal threats to validity, we cannot be sure that
there are no errors in our analysis, however we have manually verified many of the experiments to confirm that they
are correct. With respect to the comparison of the fitness functions (RQ1), we isolated our function within the original
ETHOM framework to avoid external noise (such as different parameter tuning or efficiency of data structures). We
did the same within the SPLRevO framework. There may, however, be some effect from these differences in RQ2
where we cannot completely isolate the new representation and operators from other implementation differences.
Finally, with respect to construct validity, we may have chosen different metrics, however, the ones we use, additional
products, missing products and the F1-measure are all used in the prior studies.

5. Results

We now answer each of our research questions in turn. To answer RQ1 (quality of FFValidity) we turn to Table 8
and to Figures 11 to 16 . In Table 8, we show results both from the ETHOM and from the SPLRevO framework for
the average of 10 iterations on 99 feature models. For each framework, the best value within each category is shown
in bold font. Italic font shows a positive improvement on SPLRevO over ETHOM. The cells with borders are the best
values found across both frameworks. The boxplots in Figures 11 to 16 plot the individual results of 10 iterations on
99 feature models. Figures 11 to 14 show the F1-measure in each category (described in Table 5). Figure 15 and 16
show %Missing and %Additional for all feature models, respectively.

For the first RQ, we look primarily at the results from ETHOM (where we isolate the new fitness using the old
chromosome and genetic operators). In Table 8, we can see that with respect to missing products, FFValidity has the
lowest rate (no higher than 15.4 percent). The next best fitness with respect to missing products is the FFRelaxed
fitness function, but as we shall see this suffers from too many additional products. The FFStrict and the MinDiff
are missing as many as 95% and 73% respectively of the required products. If we turn to additional products we
see that the MinDiff fitness performs the best, however, FFValidity is better than FFRelaxed and FFStrict fitness
functions (except in the complex models). The FFRelaxed performs the worst as expected since it does not penalize
for this metric. When we turn to precision, we see that MinDiff again performs slightly better than FFValidity but
both of the other fitness functions are much worse. With respect to recall, we see that FFValidity is the best, followed
next by FFRelaxed. Finally, we turn to the F1-measure which is the combined measure. We see that with respect to
the F1-measure, FFValidity performs the best with an average between 37.7% (in complex) to 70.5% in the small
models. The next best fitness is MinDiff which is slightly below this. The trend seen when looking at the medians of
the boxplots (Figures 11 to 14) holds. We also look at the run time in minutes for each fitness. FFValidity is the most
costly algorithm time wise, but takes on average no more than 10 minutes longer to complete than the others (within
ETHOM).

12

T. Thianniwet and M.B. Cohen / NasBASE 2015 00 (2015) 1–16 13

We next ran the Mann-Whitney-Wilcoxon Test (in R) to determine if these results are significant. We compare the
F1-measure between FFValidity and each of the three existing ETHOM fitness functions, using a 0.05 significance
level. The null hypothesis that there is no significance improvement in the F1-measure of FFValidity over each of the
existing ETHOM fitness functions, FFRelaxed, FFStrict, and MinDiff. The result for this analysis is shown in Table
9. We show the p-value. We can conclude that FFValidity shows a significant improvement overall in the F1-measure
over FFRelaxed and FFStrict. However, when focusing on particular groups of models, we see that FFValidity does
not show a significant improvement for the small and complex models over MinDiff.

Table 8. The quality of fitness functions on SPLRevO and ETHOM separated by size and complexity of feature models
% Missing % Additional

Framework Fitness Small Medium Large Complex Average Small Medium Large Complex Average
ETHOM FFRelaxed 10.0 7.8 9.9 16.6 9.3 1396.8 8003.8 187667.0 25160.8 35210.4

FFStrict 63.7 80.5 95.0 85.3 79.5 453.6 604.1 48883.8 302.8 7862.9
MinDiff 38.7 50.5 55.4 73.1 50.6 8.0 7.2 11.3 9.4 8.2

FFValidity 8.7 7.1 9.4 15.4 8.5 115.1 334.8 3086.8 1558.2 804.1
SPLRevO FFRelaxed 0.0 0.1 0.3 0.4 0.1 2761.8 32361.5 3181742.8 86795.4 507660.4

FFStrict 64.7 80.8 95.1 85.4 80.0 858.4 5229.0 729394.5 8817.2 114313.9
MinDiff 56.4 82.5 99.5 82.8 79.6 2.4 0.7 0.0 1.0 1.0

FFValidity 0.7 1.0 6.1 1.4 1.7 52.3 114.9 3855.6 566.7 704.9
Precision (%) Recall (%)

Framework Fitness Small Medium Large Complex Average Small Medium Large Complex Average
ETHOM FFRelaxed 12.6 7.1 1.0 7.3 7.3 90.0 92.2 90.1 83.4 90.7

FFStrict 33.7 18.6 1.8 15.7 19.0 36.3 19.5 5.0 14.7 20.5
MinDiff 84.7 78.8 69.6 63.5 77.4 61.3 49.5 44.6 26.9 49.4

FFValidity 65.1 57.4 50.5 30.1 55.8 91.3 92.9 90.6 84.6 91.5
SPLRevO FFRelaxed 7.4 3.9 0.1 5.5 4.2 100.0 99.9 99.7 99.6 99.9

FFStrict 31.8 13.6 0.2 11.4 15.3 35.3 19.2 4.9 14.6 20.0
MinDiff 95.4 96.6 100.0 96.5 96.1 43.6 17.5 0.5 17.2 20.4

FFValidity 76.5 71.1 53.1 49.7 67.9 99.3 99.0 93.9 98.6 98.3
Time (min) F1-measure

Framework Fitness Small Medium Large Complex Average Small Medium Large Complex Average
ETHOM FFRelaxed 0.8 6.1 44.7 12.2 11.3 20.1 11.9 1.8 12.1 12.1

FFStrict 4.2 17.9 57.1 22.2 21.3 32.7 18.0 1.9 14.7 18.4
MinDiff 4.6 28.1 128.7 37.9 39.1 67.9 54.9 47.0 34.2 54.8

FFValidity 4.9 33.2 143.0 45.7 44.8 70.5 64.3 56.2 37.7 62.3
SPLRevO FFRelaxed 0.1 2.7 17.6 12.7 5.2 13.1 6.9 0.3 9.7 7.4

FFStrict 1.8 7.5 30.5 15.1 10.4 31.0 13.8 0.2 11.1 15.1
MinDiff 1.9 10.2 31.6 13.7 12.0 49.7 20.1 0.6 23.8 23.7

FFValidity 2.3 21.5 815.2 66.5 141.3 84.0 78.9 55.4 57.5 74.7

Table 9. p-value of statistical analysis for RQ1 : comparing F1-measure between FFValidity and three existing ETHOM fitness functions within
ETHOM using Mann-Whitney-Wilcoxon Test

Fitness Small Medium Large Complex Overall
FFRelaxed < 2.20E-16 < 2.20E-16 < 2.20E-16 1.26E-10 < 2.20E-16

FFStrict < 2.20E-16 < 2.20E-16 < 2.20E-16 1.55E-09 < 2.20E-16
MinDiff 0.2790 2.10E-06 0.0145 0.2128 1.02E-06

To answer RQ2 we examine the fitness functions within the SPLRevO framework. If we examine Table 8, we see
that two of the ETHOM fitness functions FFRelaxed and FFStrict do not perform as well as they did in ETHOM,
except with respect to time. MinDiff, on the other hand, which was the best of the ETHOM fitness functions improves
the most with respect to precision within SPLRevO, but seems to suffer with recall and the overall F1-measure.
FFRelaxed has the best recall (99.9%) as it covers almost all the desired products. It also runs the fastest requiring no

13

T. Thianniwet and M.B. Cohen / NasBASE 2015 00 (2015) 1–16 14

Table 10. p-value of statistical analysis for RQ2 : comparing F1-measure between ETHOM and SPLRevO on each fitness functions using Mann-
Whitney-Wilcoxon Test

Fitness Small Medium Large Complex Overall
FFRelaxed 3.11E-07 < 2.20E-16 < 2.20E-16 0.2955 < 2.20E-16

FFStrict 0.6072 < 2.20E-16 9.55E-05 0.0083 < 2.20E-16
MinDiff 2.57E-06 < 2.20E-16 < 2.20E-16 0.0005 < 2.20E-16

FFValidity 5.96E-06 2.28E-14 0.7443 3.07E-05 < 2.20E-16

more than 6 minutes. MinDiff is the best for precision (96.1%) as it limits the number of invalid products. FFValidity
is the second best in precision, recall, %Missing and %Additional, but it is the best for the overall F1-measure (74.7%).
An interesting phenomenon is that the best average value for each of the metrics is found within SPLRevO, as shown
in the distinct border in Table 8.

We computed the number of complex constraints in our resulting models to understand if these would persist
during evolution. We found that both the complex propositional formula, plus the multiple group phenomenon is seen
in our data, although this is a small percentage of the models. For instance, we see on average no more than two
complex constraints per model and only two models have the multiple group relationship. But these are non-zero,
therefore we do believe they are necessary to support.

Given these results we can conclude that the combination of using FFValidity within the SPLRevO framework
provides the highest F1-measures for our models. Using our new operators and chromosome seems to also improve
the F1-measure. We do indeed have complex constraints in our models and see some grouped feature relationships
that are not supported by the ETHOM framework. However, we witnessed a decrease in efficiency (SPLRevO using
FFValidity); it requires more computation time. We plan to evaluate this tradeoff as future work.

We next ran the Mann-Whitney-Wilcoxon Test to compare the F1-measure of SPLRevO versus ETHOM on each
fitness function. Again we use a 0.05 significance level. The null hypothesis for RQ2 is that there is no significance
improvement in the F1-measure of SPLRevO over ETHOM. The result for this analysis is shown in Table 10. We
conclude that for the overall data, we can reject the null hypothesis for all four fitness functions, however SPLRevO
only makes a significance improvement over ETHOM for FFValidity, while the other fitness functions are instead
significantly worse. We can see some exceptions to the null hypothesis rejection, when we examine individual groups.

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●●●●●

●

●

●●●

●

●

●●

●

●
●

0
20

40
60

80
10

0

F
1

m
ea

su
re

ET.R
ela

xe
d

SR.R
ela

xe
d

ET.S
tri

ct

SR.S
tri

ct

ET.M
inD

iff

SR.M
inD

iff

ET.V
ali

dit
y

SR.V
ali

dit
y

ETHOM SPLRevO

Figure 11. F1-measure of Small Models

●

●●

●

●
●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●●

●●

●●

●

●●●●
●●

●●

●●

●●
●

●●

●

●●

●

●

●
●

●●

●

●
●●

●

●

●

●

●
●
●●

●

●
●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●●

●

●

●●

●●

●

●●

●

●

●

●●

●
●

●
●

●

●●●

●

●

●

●

●

●
●●

●

●●●●

●●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●●
●●●
●

●
●●

●
●

●

0
20

40
60

80
10

0

F
1

m
ea

su
re

ET.R
ela

xe
d

SR.R
ela

xe
d

ET.S
tri

ct

SR.S
tri

ct

ET.M
inD

iff

SR.M
inD

iff

ET.V
ali

dit
y

SR.V
ali

dit
y

ETHOM SPLRevO

Figure 12. F1-measure of Medium Models

14

T. Thianniwet and M.B. Cohen / NasBASE 2015 00 (2015) 1–16 15

●
●
●

●

●

●

●●●
●●

●

●

●●

●●●●●●●●●
●
●●●●●●
●
●●
●

●●

●
●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

0
20

40
60

80
10

0

F
1

m
ea

su
re

ET.R
ela

xe
d

SR.R
ela

xe
d

ET.S
tri

ct

SR.S
tri

ct

ET.M
inD

iff

SR.M
inD

iff

ET.V
ali

dit
y

SR.V
ali

dit
y

ETHOM SPLRevO

Figure 13. F1-measure of Large Models

●

●

●

●

●

●

●

●●

●●

●●

●

●

0
20

40
60

80
10

0

F
1

m
ea

su
re

ET.R
ela

xe
d

SR.R
ela

xe
d

ET.S
tri

ct

SR.S
tri

ct

ET.M
inD

iff

SR.M
inD

iff

ET.V
ali

dit
y

SR.V
ali

dit
y

ETHOM SPLRevO

Figure 14. F1-measure of Complex Models

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●●●●●

●●●

●●●

●

●●

●

●

●

●●●●

●●●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●●●●●

●

●

●

●●●

●

●

●

●

●●●●●●
●●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●●●

●

●●●●

●

●●●●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●●

●●●

●●

●●

●

●●

●●●

●

●

●

●●●

●●●●●●●

●

●

●

●

●

●
●

●

●●

●

●

●

●●●

●●

●

●●●●

●

●●●●●●●●●●●●●●

●

●
●

●●

●

●●●

●●●●

●●

●

●●

●

●●●●●●

●

●
●
●●●●●●●●●●

●

●●●

●●●● ●●●

●●

●

●

●

●

●

●

●●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●●

●

●

●
●

●

●

●

●●●●●

●

●●●●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●●●

●

●

●●●●●●●●

●

●

●

●●

●
●●

●●
●●

●●●●●

●

●●

●●

●●●
●

●●

●

●●

●

●

●

●

●●

●

●

●

●●●
●

●

●

●●●●

●●●

●

●

●●●●●

●

●●

●

●●

●

●

●●

●

●

●●

●●●●●●●

●

●

●●

●

●

●

●

●●

●

●●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●●●

●

●●●●

●●●

●

●●●

●●●●●●●●

●
●

●
●
●●●●
●
●●

●

●●●

●

●

●●●●●●●

●

●

●●●●●●

●
●

●●●

●

●

●●●

●

●

●●●

●●●●●●●●●

●●●●●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●●●●●●●●

●

●

●
●

●

●

●

●
●●●●●●●●●

●

●

0
20

40
60

80
10

0

M
is

si
ng

 p
ro

du
ct

s
(%

)

ET.R
ela

xe
d

SR.R
ela

xe
d

ET.S
tri

ct

SR.S
tri

ct

ET.M
inD

iff

SR.M
inD

iff

ET.V
ali

dit
y

SR.V
ali

dit
y

ETHOM SPLRevO

Figure 15. %Missing of All Models

●

●

●

●

●
●

●

●●

●●●●
●●
●
●
●●
●●
●
●●●

●
●

●

●

●●
●●

●

●

●●

●●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●
●

●●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●
●
●

●

●
●●

●

●●

●

●●

●

●

●●
●●●●●●●●
●
●

●
●

●●●

●

●

●●

●

●●

●●
●
●

●

●

●

●

●
●

●●
●●
●
●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●
●●
●●

●

●

●

●

●
●

●

●●
●

●
●
●
●●
●
●

●●●●●●
●

●●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●
●

●

●

●●
●
●

●

●

●

●

●
●

●●

●

●

●●
●

●●

●●●●●

●
●●

●●
●●

●

●

●

●

●●

●

●
●

●

●●

●

●●

●
●●

●

●●●

●

●●

●●●

●●
●

●

●
●
●

●

●●

●

●

●●●
●●
●

●

●●

●
●
●
●
●
●

●

●
●
●

●●

●●

●
●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●
●

●
●●●
●

●
●
●

●●

●

●●

●
●

●

●
●

●●●●

●

●
●●

●
●
●

●

●●

●●

●

●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●●

●
●

●

●●

●

●
●●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●●

●

●●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●●●●

●

●

●

●

●

●

●●

●●

●●

●
●●

●●

●

●

●●

●

●

●

●●
●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●●
●
●
●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●

●

●●
●

●
●
●
●

●

●

●

●

●●

●

●
●

●●

●
●

●●

●●
●

●

●

●
●

●
●
●

●●

●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●●

●

●●

●

●

●

●
●
●●●

●

●●●●
●●

●

●

●●

●●

●
●
●

●●
●
●●

●

●

●

●

●

●
●

●

●

●
●

●
●
●

●

●
●

●●
●
●
●

●

●

●
●
●
●
●●

●

●
●

●

●
●
●
●

●●
●●
●●

●●

●●●●
●●●
●●

●
●

●

●
●●

●
●

●

●
●

●●●
●●●●●●●●●

●●

●●●●●
●

●
●●

●●●

●

●
●●●●●●
●●

●
●

●
●
●●
●
●

●

●

●●

●

●●●
●
●●●●●

●
●
●
●

●●●
●●●
●
●●
●●

●

●●●●●●●●
●
●

●
●●●●●●

●

●

●

●●

●●

●●●●●●●●

●●●●●●

●
●

●●
●●●
●●●●●

●

●

●

●

●

●●●●
●
●

●

●

●

●
●

●
●●

●
●●
●
●

●●

●●●
●
●

●

●●

●●

●
●

●

●●●

●

●
●

●
●
●
●

●

●

●
●

●

●●
●
●
●●●●●●●
●●●

●

●

●
●●

●
●
●

●
●

●●●
●

●

●
●

●●

●

●

●

●

●
●

●●

●●

●●
●●

●

●
●

●

●

●

●
●●●
●●

●●●
●●●●●●●●

●●
●●

●

●
●
●

●

●

●

●●

●

●

●

●●

●

●
●

●●

●
●
●●●●●
●●

●

●

●
●●●
●●
●●

●

●●

●
●
●●

●
●
●

●

●

●

●

●

●
●●

●
●

●

●●

●

●

●●

●

●

●

●
●

●

●●

●

●●

●●●
●●
●●
●
●
●●

●

●
●

●
●●

●
●●
●

●

●●

●●
●

●

●

●

●

●●●

●

●

●

●
●

●●●

●●

●●

●
●●●●

●
●●●

1e
−

01
1e

+
01

1e
+

03
1e

+
05

1e
+

07

A
dd

iti
on

al
 P

ro
du

ct
s

(%
)

ET.R
ela

xe
d

SR.R
ela

xe
d

ET.S
tri

ct

SR.S
tri

ct

ET.M
inD

iff

SR.M
inD

iff

ET.V
ali

dit
y

SR.V
ali

dit
y

ETHOM SPLRevO

Figure 16. %Additional of All Models

6. Conclusions and Future Work

In this paper, we presented a new framework, SPLRevO for reverse engineering feature models. We proposed a
new fitness function called FFValidity and a new chromosome representation and evolutionary operators. We have
experimented with 99 subjects on both the ETHOM and SPLRevO framework on a wide range of model sizes and
cross-tree constraint complexity. The results show that FFRelaxed is the fastest fitness function but has the lowest
F1-measure. MinDiff has the highest precision, but suffers from more missed products than FFValidity which has
the highest F1-measures When the ETHOM fitness functions are run within SPLRevO, two of them perform slightly
worse, however the best overall results for each metric was found using SPLRevO. We also see that there are complex
constraints and relationships in the models examined, therefore we believe that this new framework is needed. In
future work we will perform additional experiments and evaluate the time/effectiveness tradeoff of these algorithms.
We will also look more at complex feature models to understand the occurrence of this phenomenon in real SPLs.

Acknowledgments

This research was supported in part by the National Science Foundation awards CCF-1161767 and CNS-1205472.

15

T. Thianniwet and M.B. Cohen / NasBASE 2015 00 (2015) 1–16 16

References

[1] P. Clements, L. M. Northrop, Software Product Lines: Practices and Patterns, Addison Wesley, 2001.
[2] D. Batory, Feature models, grammars, and propositional formulas, in: International Conference on Software Product Lines (SPLC), 2005,

pp. 7–20.
[3] K. Kang, S. Cohen, J. Hess, W. Novak, S. Peterson, Feature–oriented domain analysis (foda) feasibility study, Tech. Rep. CMU/SEI-90-TR-21

(nov 1990).
[4] K. Pohl, G. Böckle, F. van der Linden, Software Product Line Engineering, Springer, Berlin, 2005.
[5] S. She, R. Lotufo, T. Berger, A. Wąsowski, K. Czarnecki, Reverse engineering feature models, in: Proceedings of the 33rd International

Conference on Software Engineering (ICSE), 2011, pp. 461–470.
[6] D. Benavides, S. Segura, P. Trinidad, A. Ruiz-cortés, FaMa: Tooling a framework for the automated analysis of feature models, in: In

Proceeding of the First International Workshop on Variability Modelling of Softwareintensive Systems (VAMOS, 2007, pp. 129–134.
[7] C. H. P. Kim, D. S. Batory, S. Khurshid, Reducing combinatorics in testing product lines, in: International Conference on Aspect-Oriented

Software Development, 2011, pp. 57–68.
[8] S. Segura, R. Hierons, D. Benavides, A. Ruiz-CorteÌĄs, Automated test data generation on the analyses of feature models: A metamorphic

testing approach, in: Software Testing, Verification and Validation (ICST), 2010 Third International Conference on, 2010, pp. 35–44.
[9] I. Cabral, M. B. Cohen, G. Rothermel, Improving the testing and testability of software product lines, in: International Conference on

Software Product Lines, 2010, pp. 241–255.
[10] S. Reis, A. Metzger, , K. Pohl, Integration testing in software product line engineering: A model-based technique, in: Fundamental Ap-

proaches to Software Engineering, 2007, pp. 321–335.
[11] S. Nadi, T. Berger, C. Kästner, K. Czarnecki, Mining configuration constraints: Static analyses and empirical results, in: Proceedings of the

36th International Conference on Software Engineering (ICSE), 2014, pp. 140–151.
[12] O. Greevy, Enriching reverse engineering with feature analysis, Ph.D. thesis, Univeristy of Bern, Bern, Switzerland (April 2007).
[13] R. E. Lopez-Herrejon, J. A. Galindo, D. Benavides, S. Segura, A. Egyed, Reverse engineering feature models with evolutionary algorithms:

An exploratory study, in: Symposium on Search Based Software Engineering, Vol. 7515 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg, 2012, pp. 168–182.

[14] S. Segura, J. A. Galindo, D. Benavides, J. A. Parejo, A. Ruiz-Cortés, BeTTy: Benchmarking and testing on the automated analysis of feature
models, in: Proceedings of the Sixth International Workshop on Variability Modeling of Software-Intensive Systems, VaMoS ’12, 2012, pp.
63–71.

[15] C. Kästner, A. Dreiling, K. Ostermann, Variability mining: Consistent semiautomatic detection of product-line features, IEEE Transactions
on Software Engineering 40 (1) (2014) 67–82.

[16] M. Acher, A. Cleve, G. Perrouin, P. Heymans, C. Vanbeneden, P. Collet, P. Lahire, On extracting feature models from product descriptions,
in: Proceedings of the Sixth International Workshop on Variability Modeling of Software-Intensive Systems, VaMoS ’12, 2012, pp. 45–54.

[17] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang, P. Heymans, Feature model extraction from large collections of informal
product descriptions, in: Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013, 2013, pp.
290–300.

[18] R. E. Lopez-Herrejon, L. Linsbauer, J. A. Galindo, J. A. Parejo, D. Benavides, S. Segura, A. Egyed, An assessment of search-based techniques
for reverseengineering feature models, Journal of Systems and SoftwareAccepted: to appear.

[19] L. Linsbauer, R. Lopez-Herrejon, A. Egyed, Feature model synthesis with genetic programming, in: C. Le Goues, S. Yoo (Eds.), Search-Based
Software Engineering, Vol. 8636 of Lecture Notes in Computer Science, 2014, pp. 153–167.

[20] M. Harman, Y. Jia, J. Krinke, B. Langdon, J. Petke, Y. Zhang, Search based software engineering for software product line engineering: a
survey and directions for future work (keynote paper), in: 18th International Software Product Line Conference (SPLC 14), Florence, Italy,
2014, pp. 5–18.

[21] N. Andersen, K. Czarnecki, S. She, A. Wąsowski, Efficient synthesis of feature models, in: Proceedings of the 16th International Software
Product Line Conference - Volume 1, SPLC ’12, 2012, pp. 106–115.

[22] D. Benavides, S. Segura, P. Trinidad, A. Ruiz-cortés, FAMA, a framework for automated analyses of feature models,
http://http://www.isa.us.es/fama/ (2014).

[23] S. Segura, J. A. Galindo, D. Benavides, J. A. Parejo, A. Ruiz-Cortés, BeTTy:BEnchmarking and TestTing on the analYses of feature models,
http://http://www.isa.us.es/betty/ (2014).

[24] M. Mendonca, M. Branco, D. Cowan, S.P.L.O.T.: Software product lines online tool, http://www.splot-research.org/, Generative Software
Development Lab. Computer Systems Group, University of Waterloo (2014).

[25] C. D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval, Cambridge University Press, Cambridge, UK, 2008.
URL http://nlp.stanford.edu/IR-book/information-retrieval-book.html

16

