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Abstract

Regression testing is an expensive part of the software
maintenance process. Effective regression testing tech-
niques select and order (or prioritize) test cases between
successive releases of a program. However, selection and
prioritization are dependent on the quality of the initial test
suite. An effective and cost efficient test generation tech-
nique is combinatorial interaction testing, CIT, which sys-
tematically samples all t-way combinations of input param-
eters. Research on CIT, to date, has focused on single ver-
sion software systems. There has been little work that em-
pirically assesses the use of CIT test generation as the ba-
sis for selection or prioritization. In this paper we exam-
ine the effectiveness of CIT across multiple versions of two
software subjects. Our results show that CIT performs well
in finding seeded faults when compared with an exhaustive
test set. We examine several CIT prioritization techniques
and compare them with a re-generation/prioritization tech-
nique. We find that prioritized and re-generated/prioritized
CIT test suites may find faults earlier than unordered CIT
test suites, although the re-generated/prioritized test suites
sometimes exhibit decreased fault detection.

1. Introduction

Regression testing is an expensive part of the software
process. As systems evolve, before new versions are re-
leased, software must be re-tested to ensure quality. One
concern in regression testing is the effectiveness of test
suites in finding new faults in successive program versions.
A second issue is the efficiency of running the test suites
given limited resources and time. Small test suites that re-
tain high fault detection ability are desirable. A focus of re-
gression testing research has been the reduction of test suite
size between versions. This can be accomplished through
test suite selection [15]. A further improvement, once tests

are selected, is to order or prioritize [16] test cases to in-
crease the likelihood of faults being discovered early in the
test process. Detecting faults early, means that work to re-
pair faults can begin sooner, and if resources are exhausted
before all tests complete, the consequences are less severe.

Although much of regression testing research has fo-
cused on test suite selection and prioritization, the original
test suite generated and used during the lifetime of evolv-
ing software is also important. The quality of this test suite
sets the upper bound for the quality of selected tests, and
impacts the ability to order test suites effectively in all suc-
cessive versions.

One specification based test generation technique is to
use the category partition method and the Test Specifica-
tion Language or TSL [14] to define program parameters
and environments and partition the resulting categories into
choices. The choices are combined to generate test cases.
Constraints are added to categories and choices to reduce
the test space since combining all choices of these cate-
gories results in a combinatorial explosion.

A related specification based technique for generating
test suites is combinatorial interaction testing [3, 5, 6, 12,
19] or CIT, although less is known about its use in regres-
sion testing. In CIT the program is divided into partitions as
in TSL. To reduce the final number of test cases, parameters
are tested together so that all t-way combinations appear at
least once. This technique has been shown to produce small
test suites, with high code coverage, that exhibit good fault
detection ability [5, 7, 19].

Although CIT has shown to be an effective test genera-
tion technique, it has mostly been examined in the context
of single version software systems. There has been little
research examining the effectiveness of CIT in regression
testing, applied across evolving versions of a software pro-
gram. Furthermore, there is no work that applies prioritiza-
tion techniques to such an environment. In [4] Bryce and
Colbourn present an algorithm to prioritize CIT test suites.
They do not, however, experiment on real software subjects,
nor do they address the key element of weighting the vari-



ous elements that drive prioritization. Additionally, it is our
observation that their prioritization technique is a combined
generation and prioritization technique, rather than pure pri-
oritization, since it does not re-order tests, but re-generates
them each time. We call this technique re-gen/prio. This is
similar to the work of Avritzer et al. [2] who also present an
ordered test generation technique.

This leaves us with several questions. We would like to
understand if CIT is effective when used in regression test-
ing for multiple versions of a program. We would also like
to understand if prioritization improves early fault detection
in CIT test suites, and finally, we would like to understand
how to prioritize CIT test suites.

In this paper we address each of these issues. We have
conducted an empirical study on two software subjects,
each with multiple successive versions. We first examine
the effectiveness of CIT test suites compared with an ex-
haustive strategy. We then apply both prioritization and re-
gen/prio and compare their effectiveness on CIT test suites.
We examine several different ways to control the prioriti-
zation. We use methods that leverage code coverage from
prior releases, as well as one that is specification based. Our
results show that the CIT test suites may be an effective way
to reduce the test space and that prioritization improves the
ability to detect faults early in certain subjects.

The rest of this paper is organized as follows. Section
2 presents related work on regression testing and combina-
torial interaction testing, Section 3 discusses prior work on
prioritization algorithms for CIT and presents methods for
weighting the prioritization. Section 4 introduces our em-
pirical study. Section 5 presents our results and Section 6
concludes and presents future work.

2. Background

In this section we provide some background on regres-
sion testing and combinatorial interaction testing.

2.1. Test Case Selection and Prioritization

The test case selection problem can be stated as follows.
Given an initial version of a program P and a set of test
cases, T , select a subset of tests from T , T ′ to test a new
version of program P , P ′ [16]. The simplest method is
to re-test all. However, this suffers from the problem of
accumulating too many tests over time. Other techniques
include code coverage , dataflow, minimization, safe and
ad-hoc/random [10]. In this paper we do not address the
test case selection problem. Instead we generate CIT test
suites that are already small in size and use the re-test all
approach. Prioritization techniques [9, 13, 16, 17] comple-
ment the selection technique. In prioritization test cases are
ordered to improve the likelihood that faults will be detected

early in the testing process. Techniques for prioritization in-
clude statement coverage, function coverage and fault find-
ing exposure, among others [9, 13, 16, 17].

2.2. Test Case Specification Language

The Test Specification Language [14] is a specification
based method to define the combinations of program param-
eters that should be tested together. TSL partitions the sys-
tem inputs into parameters and environments which make
up the categories. For each of these, a set of choices is de-
fined based on equivalence classes of the input domain. Two
methods are used to reduce the large combinatorial space
caused by the combination of all input parameters. The first
method sets specific choices as single or error, meaning that
these options are tested alone. The second is to add prop-
erties to particular choices and define constraints that relate
other choices to these properties. This has the effect of sig-
nificantly reducing the final set of combinations. In TSL all
possible combinations, are generated given the set of speci-
fied constraints.

2.3. Combinatorial Interaction Testing

An alternate way to subset the test cases is combinatorial
interaction testing (CIT) [5]. It is still possible to use TSL
to define categories and choices, but CIT differs from TSL
in that it provides a systematic sampling of the input space.
Constraints are only used in CIT when they are enforced
by the underlying system. In CIT the categories are called
factors and each factor has a set of values (choices in TSL).
A CIT test suite samples the input space so that it includes
all t-way combinations of values between factors, where t
is called the strength of testing. For instance when t=2, we
call this pair-wise testing.

CIT samples are defined by mathematical objects called
covering arrays. A covering array, CA(N ; t, k, v), is an
N×k array on v symbols with the property that every N×t
sub-array contains all ordered subsets from v symbols of
size t at least once [6]. Quite often in software testing the
number of values for each factor is not the same. There-
fore, we use the following expanded definition (often called
a mixed level covering array) that uses a vector of vs for the
factors.

A mixed level covering array, CA(N ; t, k, (v1v2...vk)),
is an N ×k array on v symbols, where v =

∑k
i=1 vi, where

each column i (1 ≤ i ≤ k) contains only elements from a
set Si of size vi and the rows of each N × t sub-array cover
all t-tuples of values from the t columns at least once. We
use a shorthand notation to describe these arrays with su-
perscripts to indicate the number of factors with a particular
number of values. For example, a covering array with 5 fac-
tors, 3 of which are binary and 2 of which have four values



can be written as follows: CA(N ; 2, 3224). (we remove the
k since it is implicit). Covering arrays have been shown to
be effective test suites in a variety of studies [3, 5, 12, 19].

3. Prioritization Techniques

Before we can assess the effectiveness of CIT test suites
in regression testing, we must first determine how to prior-
itize. We present background on a prioritization algorithm
next and follow this with a discussion of techniques that we
have developed to make this algorithm work in practice.

3.1. Re-generation

In [4] the authors describe an algorithm for re-generating
prioritized test suites. The test suites generated are a spe-
cial kind of a covering array called a biased covering array.
They begin by defining a set of interaction weights for each
value of each factor. For each factor the weight of com-
bining it with each other factor is computed as a total in-
teraction benefit. The factors are sorted in decreasing order
of interaction benefit and then filled as follows. First, the
individual interaction weights for each of the factor’s val-
ues is computed. (see [4] for more details). This selects
the value of the factor that has the greatest value interaction
benefit. After all factors have been fixed, a single test has
been added, and the benefits for factors are recomputed and
the process starts again. The algorithm is complete when
all pairs have been covered. The pseudo-code for this algo-
rithm is presented in Algorithm 1.

3.2. Assigning Weights

In the re-generation algorithm [4] methods for setting
weights are not presented, yet the weighting method may
play an important role in how well the algorithm performs.
For the purpose of our study we try three code cover-
age based weighting methods and one specification based
method. We describe each in turn.

3.2.1 Code Coverage Based Weightings

We begin by greedily ordering the current CIT test suite
using cumulative code coverage. The first test case is the
one that provides the highest branch coverage. We add tests
until we have reached the total branch coverage found in
the full test suite. In the first weighting scheme we count
the number of occurrences of each value in the newly or-
dered sample, and divide it by the number of test cases in
the sample, i.e. wi = counti

counttests
. Figure 1 shows an example

with three factors, F0, F1 and F2. There are three test cases
from the prior version that contribute to the total cumulative
branch coverage. The array on the bottom shows the count
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Figure 1. Example of Setting Weights

of the values. For instance, value 0 of F0 (0) occurs 3 times
in the test suite, while value 1, of F2 (7) occurs twice. The
weights for F0 will be 1, 0, 0, for F1 will be 0.33, 0.33, 0.33
and for F2 will be 0.33 and 0.66.

The second weighting scheme performs the same initial
weighting and then multiplies this by a factor weight. For
each factor, Fi, the weight equals wmaxi

wmax
where wmaxi

is
the maximum count of a value in Fi, and wmax equals the
maximum of all wmaxis. The weights of the factors in Fig-
ure 1 are 1, 0.33 and 0.66. The final weights for the values
in Figure 1 are 1, 0, 0 for F0, 0.332, 0.332, 0.332 for F1

and, 0.66 × 0.33, 0.662 for F2. This weighting is meant to
normalize factors that have a small number of values which
dominate the counts.

Our third weighting scheme tries to utilize more of the
information in the original test suite, since there may be
more than one test case with equal cumulative coverage at
each stage. For this weighting we use a parallel approach.
We begin with an expansion, followed by a collapse stage.
We start with the first four test cases that provide the high-
est cumulative coverage. (In our study subjects we found
this provides over 90% of the total branch coverage). We
then expand as follows. For each of the four tests we find
all other test cases in the CIT test suite that will provide
equivalent coverage. For instance if the first test case covers
45% of the branch coverage, we find all other test cases that
also provide this coverage. We then examine the next test
case. If this adds 15% more coverage we find all other test
cases with the same additional branch coverage, etc. We se-
lect tests without replacement (each can belong to a single
group). For each of the four groups we calculate weights
for each value, by counting its occurrence as was done in
the first weighting scheme, and dividing by the number of
test cases in that group. For the collapse stage, we first set
an importance, I to each of the four groups. The first group
contains all of the tests with the highest individual code cov-
erage. This is assigned I = 0.6. The next group is assigned
I = 0.2, while the last two groups are set to I = 0.1. The
weight of each value is multiplied by its importance I , and
the four weights are summed to obtain the individual weight
for that value. Figure 2 illustrates this process.
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Figure 2. Third Weighting Scheme

RemainingPairs = AllPairs
while RemainingPairs 6= ∅ do

Compute Interaction Weights for Factors
OrderFactors
for i = 1 to numFactors do

SelectHighestWeightUnfixedFactor
for j = 1 to numV alues do

Compute Interaction Weights for Factor Values
SelectValue with highest weight

Add Test Case

Algorithm 1: Re-gen/Prio Algorithm [4]

3.2.2 Specification Based Weightings

There may be instances where we do not have prior code
coverage. In these scenarios we want to weight our test
cases using the specifications. Since we define our test par-
titions using TSL we use this for weighting. Our initial
heuristic works as follows. For each category we examine
the possible choices. In the case of binary choices, where
one choice turns a feature on and one turns a feature off we
set the ON option to a weight of 0.9 and the OFF option to
0.1. Our intuition is that the ON option will cause more code
to be executed. In cases where we have multiple choices, we
use a greater number of features or higher complexity of the
choice as a proxy for higher code coverage. For instance in
the subject make, we have a partition that includes choices
to test no files, one file, two files, or five files. We set a
weight of 0.1 for the choice of no files, a weight of 0.2 for
the choice of one file, ..., and a weight of 0.4 for the choice
of five files. Similarly in the subject flex one parameter
controls table compression. We put higher weights on those
options that perform more complex compression tasks ( For
instance, we set a weight of 0.1 for -C, 0.2 for -Cr,..., and
0.5 for -Craem.) In initial experimentation we found that
this gives us the most consistent results in relation to the
prioritized exhaustive set of test cases used in our study.
Different heuristics may impact the quality of this method,
but we leave this for future work.

3.3. Pure Prioritization

We use two different methods to prioritize the CIT test
suites. The first method uses branch coverage from the prior
version. This is a standard prioritization technique [9]. For
program P we use cumulative branch coverage in the CIT
test suite, ordering until we reach 100% coverage of the CIT
test suite. The remaining tests are left in their original order.

The second method is to use the interaction weighting
method, but rather than re-generate we simply use it to order
the given tests based on their weights. We use the weighting
schemes described above and for each test case calculate
its interaction weight. We then sort the tests in decreasing
order of interaction weight.

4. Empirical Study

In this section we present an empirical study to investi-
gate the applicability of using CIT in regression testing. We
have designed experiments to answer the following three
research questions:
RQ1: Is CIT an effective test generation technique for re-
gression testing compared with an exhaustive test suite?
RQ2: Do prioritized and/or re-gen/prio CIT test suites
exhibit earlier fault detection when compared with non-
prioritized CIT test suites?
RQ3: Can we prioritize and/or re-gen/prio CIT test suites
without code-coverage information?

The rest of this section describes our objects of analysis,
our metrics and our methodology.

4.1. Objects of Analysis

We have used two C subjects, each with multiple succes-
sive versions. The subjects were obtained from the software
infrastructure repository (SIR) [8]. The first subject, flex
is a lexical analyzer. The other subject, make is used to
compile programs. Table 1 shows the uncommented lines
of code for each version of the program, the number of
functions and the number of changed or added functions
between versions. We used the SLOCCount tool [18] to
count the uncommented lines of code and the adiff utility
from the SIR repository [8] to determine changed methods.
These were manually verified for the purposes of seeding
new faults. Each subject came with a TSL test suite and be-
tween 5-20 hand seeded faults. Hand seeding allows us to
turn faults on and off during experimentation. The number
of seeded faults in each subject is also shown in Table 1.

To increase our ability to reason about the final results,
we seeded an additional 30 faults into each subject, using a
C mutation test case generator written by Andrews et al. [1].
Their research indicates that mutation faults produce similar



results in empirical studies as hand seeded faults. We gener-
ated all mutants for each program. To simulate a regression
environment, we identified the changed and added functions
between consecutive versions of the programs and selected
only mutants contained in those areas of the code We then
randomly selected the first 30 that successfully compiled.

To answer RQ1 we created new reduced TSL files that
were unconstrained. We retained the most widely used fea-
tures in each subject (based on the man pages) and ran some
experiments using the original set of hand-seeded faults.
Our objective was to obtain exhaustive suites that retain
close to the original fault detection ability. We note that in
a real test environment an unconstrained TSL would most
likely be prohibitive in size and would not be used.

Table 2 shows some comparative data between the TSL
suites. It shows the number of test cases, the number of
faults found and the percentage of branch and statement
coverage. The faults detected consist of the original hand
seeded faults and the total number of faults. Our tuning was
performed using the original hand seeded faults only; the
mutation faults were seeded after we developed the exhaus-
tive test suite. The new test suites have the same fault de-
tection for the original seeded faults, but slightly lower fault
detection for the new mutation faults. The code coverage of
the new test suite is slightly lower as well. We attribute this
partly to the removal of the error conditions that make up a
portion of the TSL test suite.

Subject uLoC Function # Changed Seeded
Count Functions Faults

flex
V0 7,972 138 NA NA
V1 8,426 147 40 49
V2 9,932 162 104 50
V3 9,965 162 24 47
V4 10,055 162 16 46
V5 10,060 162 13 39
make
V0 12,612 188 NA NA
V1 13,484 190 80 38
V2 14,014 206 88 36
V3 14,596 239 158 35
V4 17,155 270 145 35

Table 1. Test Subjects Studied

4.2. Independent Variables

Our independent variables are the various test suites that
we have generated and/or prioritized. The first data set is
the exhaustive set of data which we label full. This contains
all possible combinations of the parameters from the TSL
specification in the order it was generated.

Subject # Test Detected Detected Branch Stmt
Cases Tot. Faults Orig. Faults Cov Cov

flex V1
Orig. TSL 525 38 16 73.1% 72.9%
Full 4,608 33 16 60.5% 61.8%
make V1
Orig. TSL 796 11 4 41.4% 40.0%
Full 4,320 10 4 38.3% 38.5%

Table 2. Full Test Suite vs. Original TSL

CIT Specification Size Size Size Size
t=2 t=3 t=4 t=5

flex
CA(N ; t, 243116161) 96 288 NA NA
make
CA(N ; t, 312251322141) 20 60 180 540

Table 3. Size of CIT Test Suites

We generated 50 t-way covering arrays using simulated
annealing [6] with t set to 2 and 3 for flex, and 2, 3 and
4, and 5 for make. The sizes of these arrays are shown in
table 3. We label these as t = 2, etc. in our experiments.We
also generated 50 random arrays of the same size, labeled
rdt where t corresponds to the strength of a CIT test suite.

We include a prioritization “oracle” based on the full
branch coverage of the full test suites. Since this is a stan-
dard prioritization technique and the exhaustive test set has
the maximum possible information given our TSL speci-
fication, we use this to see how well other techniques per-
form. We call this p-full. For the CIT techniques we include
a code coverage prioritization baseline using branch cover-
age prioritization on a strength 2 and strength 3 covering
array. We call these bp-t=2 and bp-t=3.

For the experimental techniques, we use an individual
CIT test suite for program P and prioritize it based on
branch coverage as above. We then use the weighting
schemes and algorithms discussed in section 3 to either re-
gen/prio or prioritize for version P+1. We only show the
last weighting scheme in our results, since it gave us the
most consistent results. We call these p-t=n, r-t=n where
p stands for prioritized and r stands for re-gen/prio. The
value of n is the strength of the CIT test suite that was used.

Finally, for the TSL based weighting, we developed a
single weighting scheme (as described in section 3) and ap-
plied this to each of the CIT test suites for the prioritization
or used it to re-generate a new CIT suite. The re-gen/prio
TSL CIT suite has only one prioritized test suite across ver-
sions, since all of the TSL CIT suites, use the same set of
tests across all versions; i.e. we did not change the TSL
specifications during testing. We call these test suites, r-tsl
and p-tsl for re-gen/prio and prioritization respectively.



4.3. Dependent Variables

In [9, 16] a metric that is commonly used for prioritiza-
tion is the Average Percentage of Faults Detected or APFD.
This metric measures the area under the curve when the per-
cent of faults found is plotted on the y-axis and the percent
of the test cases run on the x-axis. Figure 3 (left) shows this
type of graph which represents tests in Table 4. In this fault
matrix, there are 5 tests and 8 faults. The ordering of the
test cases is T3, T5, T2, T4, T1. The first test (or 20% of the
test cases) finds 3 faults. After 3 test cases or 40% of the
test cases, 5 faults have been found or 62.5 %. To calculate
the APFD the following formula is given in [9]:

APFD = 1− TF1 + TF2 + ... + TFm

m× n
+

1
2n

In this formula there are n test cases and m faults. TFi

stands for the number of the test case (when testing in pri-
oritization order) in which Fault i was found. For instance
in Figure 3, TF2, TF4 and TF7 all have a value of 1, while
TF5 and TF6 are 2.

One drawback of the above formula is that it uses the en-
tire area of the graph. It assumes that m and n do not change
since it usually only examines prioritization rather than re-
gen/prio where both test suite size and fault detection may
differ. In our experiments, it is possible that two variations
occur. First, we may not find all of the faults using a partic-
ular test suite and second, we may not run the same number
of tests. To handle the second problem we fix the number
of test cases to be the size of a t=2 covering array and only
examine the area up until that point in time (x-axis). This is
shown in the right part of Figure 3. We still need to adjust
for the missing faults.

In [17] Walcott et al. present a similar problem. Their
solution is to assign a penalty to the missed faults which al-
lows their APFD to become negative. We want our metric
to continue to reflect the actual area under the curve, which
cannot be negative, so we have re-derived the formula us-
ing the following geometry (we leave out the full deriva-
tion). The original APFD can be equated with the area of
the curve as follows: (see left side of Figure 3). The full
area is 1.0. To find the area outside of the curve we divide
it into horizontal rectangles. This is subtracted from the full
area (and is represented by the middle part of the equation).
However, the triangles still need to be added back in to rep-
resent the full area under the curve. This is the last part of
the equation, 1

2n . There are n triangles (one for each test
case) shaded in Figure 3. (we can have triangles with zero
area, as is seen in this Figure)

A new formula which we call the Normalized APFD is
the result (shown on the right side of Figure 3). We use
this to measure the effectiveness of prioritization since it
includes information on both fault finding and time of de-
tection.
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Figure 3. Example of APFD and NAPFD

NAPFD = p− TF1 + TF2 + ... + TFm

m× n
+

p

2n

where p = the number of faults detected by the prioritized
test suite divided by the number of faults detected in the
full test suite (y-axis). If a fault, i, is never detected we set
TFi = 0. The NAPFD in Figure 3 is 0.44.

T1 T2 T3 T4 T5

F1 x
F2 x x
F3 x
F4 x x
F5 x
F6 x
F7 x x
F8 x

Table 4. Test Order: T3, T5, T2, T4, T1

4.4. Study Methodology

For each set of experiments we run all tests on each sub-
ject without any faults as an oracle and then turn on each
fault individually. We collect branch coverage on the fault
free version using the Aristotle coverage tool [11]. We only
include faults in our results that occur between 0 and 50
% of the time in the exhaustive test suite. Our rationale is
that faults occurring more than 50 percent of the time will
be very easy to find and would be eliminated during unit
testing. (we note that Table 2, which compares the original
TSL suite, and the reduced exhaustive TSL suite, includes
all faults regardless of how often they are found). For data
using CIT test suites or random test suites, we take the aver-
age of 50 arrays to prevent biases due to chance. For all of
our re-gen/prio and prioritization experiments we use pro-
gram P to prioritize program P +1. For each of our subjects



we have a base version, V0, with no faults. We use this only
to generate the prioritization for V1.

4.5. Threats to Validity

Empirical experiments suffer from threats to validity. We
have made attempts to reduce these, however, we outline
the major threats here. With respect to external validity (or
the threat of generalizing to other subjects) we acknowl-
edge that we have only examined two software subjects,
both of which were written in the C language. We have
tried to select two different subjects, of different sizes and
for each have used multiple versions of the program. But
results obtained from other subjects may not match these.
With respect to internal validity (or the threat that our ex-
periments themselves suffer from mistakes) we have tried
to manually cross-validate our analysis programs on small
examples and have manually validated random selections
from the real results. We have made every effort to ensure
that these are correct. As far as construct validity, (or the
threat that we may not have fairly conducted these studies)
we acknowledge that there may be other metrics which are
more pertinent to this study. We also note that we may have
developed different unconstrained TSL definitions.

5. Results

To answer RQ1 related to whether CIT is an effective
test generation technique, we examine the fault detection
ability of different strength CIT test suites. Figure 6 shows
the results of testing across all versions of both software
subjects. For flex (the top part of the figure) we show the
full test suite, followed by a t=2 CIT test suite, followed
by a random suite of the same size. We then show both
a t=3 and corresponding random size suite next. Both the
random and CIT test suites for t=2 miss some faults in the
first 3 versions, but all of the t=3 and corresponding random
suites detect all faults.

The behavior of make is slightly different. In this sub-
ject we find in V1 the t=2 arrays miss faults more regularly.
We see the same result with t=3. However, as the strength
of t is increased our fault detection improves. In this sub-
ject we see that the t=2 array has better fault detection than
a random test suite of the same size. We examined the fault
that was missed by some of the t=5 suites. This is a fault
that occurred rarely (less than 2% of the time) in the exhaus-
tive suite and is likely caused by a high level interaction.

Next we explore RQ2, which asks if prioritized or re-
gen/prio CIT test suites exhibit earlier fault detection. If we
examine Figure 4 we see the cumulative fault coverage of
flex for various techniques. We show the full test suite
prioritized as a benchmark, since we expect this is created
with the most information. We see that the prioritized t=2

test suite, based only on block coverage bp-t=2, exhibits
the next best coverage. (Results for bp-t=3 provide similar
results but are not shown.)

One interesting note is that the covering arrays for t=3
exhibits poor growth with a very long flat tail, although
when it is run to completion it consistently covers more
faults than t=2.

In make (Figure 5) we see similar results, although the
un-prioritized t=2 array seems to do slightly better than the
prioritized array using interaction weights p-t=2. This may
be due to the lack of the overall quality of code coverage
or may be due to the existence of higher order interaction
faults.
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We examine the data next using the NAPFD (Figures 7
and 8). In flex, in all but the last version we see that the
first three data points, the un-prioritized full test suite, a t=2
test suite and a t=3 test suite, perform worse than both the
prioritized and re-gen/prior test suites. The branch cover-
age based prioritization (p-full, bp-t=2, bp-t=3) seems to
perform the best overall. The re-gen/prio schemes using
interaction weights in general seem to find faults earlier,



Figure 6. Fault Detection: CIT vs. Random and Full

however, they sometimes have reduced fault detection abil-
ity (see Figure 4) which reduces the NAPFD. For instance
in V2 and V3, re-gen/prio test suites differ by three in the
number of faults they detect (data not shown) whereas the
prioritized test suites differ by one. In V1, fault detection of
the t=2 arrays differs by one while in the re-gen/prio arrays
there is a difference of two. In V3, where the re-gen/prio
arrays miss as many as 3 faults in some runs, they perform
even worse than random arrays of the same size.

In make our results varied slightly again. Although the
code coverage based prioritization for the CIT test suites
seem to work best, there appears to be less difference in

the NAPFDs for the prioritized and un-prioritized covering
arrays than there was in flex.

Our last research question, RQ3, asks whether or not a
specification based prioritization is effective. For this ques-
tion we examine the TSL based re-gen/prio and prioritiza-
tion in the previous figures. We see in Figure 4 that the
re-gen/prio TSL finds faults earlier in flex than the prior-
itized TSL and both perform better than the un-prioritized
CIT suites.

In make (Figure 5) the re-gen/prio TSL has better
fault detection than the prioritized TSL. Even the the un-
prioritized CIT test suites find faults earlier than the priori-
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Figure 7. NAPFD for flex

tized TSL. Finally we examine the NAPFD. Looking at the
NAPFDs for flex (Figure 7) and make (Figure 8) we see
that using the re-gen/prio TSL to set weights appears to be
better than using the prioritized TSL.

6. Conclusions

In this paper we have examined the effectiveness of CIT
on regression testing in evolving programs with multiple
versions as well as studied several prioritization techniques.
Our findings suggest that the use of CIT test suites in re-
gression testing is an effective method of testing, however,
the strength that is used, must be considered. In flex we
found that both the prioritization and re-gen/prio techniques
were effective. The re-gen/prio technique tends to miss
more faults, but finds faults sooner. In make we experi-
enced mixed results which may be due to the lower branch
coverage of our test suites, or due to the small size of the
CIT test suites. We also found that the specification or TSL
weightings did no worse and in some cases better than the
interaction based weighing scheme that used code cover-
age. This is promising since we may not always have code
coverage information. The difficulty for this method will be
finding good heuristics to weight the specifications. In both
subjects we found that a standard branch based prioritiza-
tion outperformed all other techniques.

In future work we are applying these techniques to addi-
tional subjects. We are looking at other prioritization tech-
niques and at prioritizing higher strength covering arrays,
and we are formalizing heuristics for the TSL based weight-
ing. We are also examining costs of re-gen/prio vs. pure pri-
oritization to understand the tradeoffs between these two.
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