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Abstract

Component based software development is prone to un-
expected interaction faults. The goal is to test as many
potential interactions as is feasible within time and bud-
get constraints. Two combinatorial objects, the orthogonal
array and the covering array, can be used to generate test
suites that provide a guarantee for coverage of all �-sets
of component interactions in the case when the testing of
all interactions is not possible. Methods for construction
of these types of test suites have focused on two main areas.
The first is finding new algebraic constructions that produce
smaller test suites. The second is refining computational
search algorithms to find smaller test suites more quickly. In
this paper we explore one method for constructing covering
arrays of strength three that combines algebraic construc-
tions with computational search. This method leverages
the computational efficiency and optimality of size obtained
through algebraic constructions while benefiting from the
generality of a heuristic search. We present a few examples
of specific constructions and provide some new bounds for
some strength three covering arrays.

1. Introduction

Component based software development poses many
challenges for the software tester. Interactions among com-
ponents are often complex and abundant. Since individ-
ual components may not be designed with the final product
in mind this leaves them prone to unexpected interaction

faults. Ideally we want to test all possible interactions, but
this is usually infeasible due to time or cost limitations. We
are therefore interested in generating test suites that include
as many interactions as possible.

In this paper we use the termcomponent to represent any
stand-alone portion of a software system. Each component
is a factor affecting the correctness or performance of the
software system. A component or factor can be either a
software program such as an operating system, or network
protocol, or it may be a hardware platform, i.e. a memory
module or printer model. Aconfiguration of the compo-
nent is one possible value or state for that component. In
the case of an operating system, each different operating
system is a configuration; in a hardware environment, each
printer model is a configuration. We assume that each com-
ponent has already been tested thoroughly at the unit level.
Our concern is with faults that occur due to interactions be-
tween various combinations of configurations. A product
line architecture example of this problem follows.

Suppose we are designing a new integrated RAID con-
troller for PCs. The specifications state that this controller
runs on multiple operating systems, supports a variety of
RAID levels and disk interfaces, and can be used with dif-
ferent amounts of embedded memory. The controller comes
with software that allows the purchaser to customize it for
their desired RAID environment. Table 1 shows a simpli-
fied example of this system. It has four components, RAID
level, operating system, memory configuration and disk in-
terface. Each of these has three configurations. The con-
troller is designed to support RAID 0, RAID 1, and RAID
5, to run on Novell Netware, Linux and Windows XP, to



Component
RAID Operating Memory Disk
Level System Config Interface

RAID 0 Windows XP 64 MB Ultra-320 SCSI
RAID 1 Linux 128 MB Ultra-160 SCSI
RAID 5 Novell Netware 256 MB Ultra-160 SATA

Table 1. RAID integrated controller system: 4
components, each with 3 configurations

support 64,128 and 256 MB of memory and to be used with
three hard disk interfaces, Ultra 160-SATA, Ultra 160-SCSI
and Ultra 320-SCSI.

Component
RAID Operating Memory Disk
Level System Config Interface

RAID 5 Novell 128 MB Ultra 160-SATA
RAID 1 Linux 64 MB Ultra 320
RAID 5 Novell 64 MB Ultra 320
RAID 5 Novell 256 MB Ultra 160-SCSI
RAID 1 Novell 256 MB Ultra 320
RAID 1 Linux 256 MB Ultra 160-SCSI
RAID 1 XP 128 MB Ultra 320
RAID 5 XP 256 MB Ultra 320
RAID 5 Linux 256 MB Ultra 160-SATA
RAID 5 XP 64 MB Ultra 160-SATA
RAID 1 Novell 128 MB Ultra 160-SCSI
RAID 0 Novell 256 MB Ultra 160-SATA
RAID 0 Linux 64 MB Ultra 160-SATA
RAID 0 XP 256 MB Ultra 160-SCSI
RAID 0 XP 128 MB Ultra 160-SATA
RAID 0 Linux 128 MB Ultra 160-SCSI
RAID 1 Linux 128 MB Ultra 160-SATA
RAID 1 XP 64 MB Ultra 160-SCSI
RAID 0 Novell 128 MB Ultra 320
RAID 5 XP 128 MB Ultra 160-SCSI
RAID 5 Linux 64 MB Ultra 160-SCSI
RAID 0 XP 64 MB Ultra 320
RAID 5 Linux 128 MB Ultra 320
RAID 1 Novell 64 MB Ultra 160-SATA
RAID 0 Novell 64 MB Ultra 160-SCSI
RAID 0 Linux 256 MB Ultra 320
RAID 1 XP 256 MB Ultra 160-SATA

Table 2. Test suite covering all 3-way interac-
tions for Table 1

In this example there are�� � �� possible interactions
among the component configurations. Before releasing this
product to market all 81 of these combinations should be
tested to detect interaction faults. In this particular example
it may be possible to run all 81 tests, but the problem grows

too large very rapidly. Suppose there are 20 components.
If two of these have four possible configurations, while the
rest have only three, we have�� � ��� or 6,198,727,824
possible interactions. Since many of these interactions may
involve changing hardware components, or switching to dif-
ferent operating systems the of testing all of these is impos-
sible.

When it is not possible to test all interactions one can
use heuristics to choose which ones are to be tested. This
requires a trade-off between the number of tests run and
the thoroughness of testing. One method which has been
proposed for providing a defined and repeatable set of tests
arises from methods used in statistical design of experi-
ments. This method guarantees a certain amount ofinter-
action coverage in software systems [5, 6, 7, 8, 11, 12, 22,
23, 24, 25]. We defineinteraction coverage as the size of the
interaction subsets guaranteed to be tested from among all
possible component configurations. To be precise, if we se-
lect a set� of factors, and further select a configuration for
each factor in�, we obtain apartial assignment of configu-
rations to the factors. We say that such a partial assignment
is covered if at least one test of the test suite agrees with
the assignment of values to the factors of�. The interaction
coverage is�-way if for every subset� of at most� fac-
tors, every assignment of values to these factors is covered.
Two-way coverage is often referred to aspairwise coverage.
Similarly we often usetriples to indicate ’three-way’.

Mandl was the first to use statistical design of experi-
ments for testing compiler software [15]. Brownlieet al.
extended this further for an internal AT� T email system
[1]. They provide results showing the effectiveness of find-
ing faults using all two-way interactions. D. Cohenet al.
extend these ideas in the development of theAutomatic Ef-
ficient Test Generator (AETG) [5]. This is a commercially
available test case generator developed at Telcordia Tech-
nologies. Dalalet al. and Burret al. show that two-way in-
teraction coverage using AETG identifies a large number of
software interaction faults and provides good code coverage
[2, 11]. Dunietzet al. link the effectiveness of these meth-
ods to software code coverage. They show that high code
block coverage is obtained when testing all two-way inter-
actions, but higher subset sizes are needed for good path
coverage [12]. Kuhnet al. examined fault reports for three
software systems. They show that��� of faults can be dis-
covered by testing all two-way interactions, while	�� can
be detected by testing all three way interactions. Six-way
coverage was required in these systems to detect���� of
the faults reported[14]. Williamset al. suggest the use of
this method for component and network interaction testing
[23, 24].

We return to the example in Table 1. Table 2 shows
a set of test cases for this system. Each row is a test in
which each component has exactly one configuration se-



lected. The first test case, (RAID 5, Novell, 128 MB, Ultra
160-SATA), covers six two-way interactions (RAID 5 with
Novell, RAID 5 with 128 MB of memory, RAID 5 with
an Ultra 160-SATA disk interface, Novell with 128 MB of
memory, Novell with an Ultra 160-SATA interface, and 128
MB of memory with an Ultra 160-SATA interface) or four
three-way interactions (RAID 5 and Novell with 128 MB,
RAID 5 and Novell with Ultra 160-SATA, RAID 5 and 128
MB with Ultra 160-SATA, and Novell and 128 MB with Ul-
tra 160-SATA). There are a total of

�
�
�

�
� �� or 
� two-way

interactions to test. For the data in Table 1 we can test all
of these interactions with nine test cases, or all of the���
three-way interactions with the 27 test cases shown.

The test suite shown in Table 2 is equivalent to a combi-
natorial design called acovering array. A covering array,
����� �� ��, of size � is an� � � array such that every
� � � sub-array contains all ordered subsets from� sym-
bols of size� at least once. The notation���� 
 �� �� �� is
also used, in order to indicate the size explicitly. Table 2 is
an example of a�����
 �� �� ��.

At the current time there are two distinct areas of ac-
tive research on combinatorial designs for software test-
ing. The mathematics community is focusing on build-
ing smaller covering arrays of higher interaction strength
[4, 17, 19, 20]. The software testing community is focusing
on greedy search algorithms to build these in a more flexi-
ble environment, one that more closely matches real testing
needs [5, 6, 11, 12, 23, 22, 25]. Ideally we would like to
combine these ideas and build higher strength interaction
tests that are minimal and efficient to generate.

As the methods of building covering arrays for testing
are varied, a trade off must occur between computational
power and the cost of running the test suites. In some soft-
ware testing applications, the removal of a small number of
tests is not a primary goal. However, when tests are to be
run repeatedly, or there is a large setup cost in executing
the tests, it is more efficient to invest in test suite minimiza-
tion and save on test suite execution costs. In this paper we
examine some methods of combining both computational
search and algebraic construction to efficiently build opti-
mal test suites with this last idea in mind.

2. Combinatorial Objects

The problems faced in software interaction testing are
not unique. Similar problems exist for testing in other disci-
plines such as agriculture, pharmaceuticals, manufacturing
and medicine [13]. The primary combinatorial objects used
to satisfy the coverage criteria for these types of problems
areorthogonal arrays andcovering arrays. We begin with
a few definitions and then describe how these objects can be
applied to software testing.

1 2 1 1
2 0 2 1
2 1 1 0
1 1 2 2
0 2 2 0
1 0 0 0
2 2 0 2
0 1 0 1
0 0 1 2

Table 3. An
	��	
 �� �� ��

RAID 1 Novell 128 Ultra 160-SCSI
RAID 5 XP 256 Ultra 160-SCSI
RAID 5 Linux 128 Ultra 320
RAID 1 Linux 256 Ultra 160-SATA
RAID 0 Novell 256 Ultra 320
RAID 1 XP 64 Ultra 320
RAID 5 Novell 64 Ultra 160-SATA
RAID 0 Linux 64 Ultra 160-SCSI
RAID 0 XP 128 Ultra 160-SATA

Table 4. Test suite derived from
Table 3

2.1. Orthogonal Arrays

An orthogonal array	���� 
 �� �� �� is an� � � array
on� symbols such that every��� sub-array contains all or-
dered subsets of size� from � symbolsexactly 
 times. Or-
thogonal arrays have the property that
 � �

�� . When
 � �
we can leave it out of the notation, and write	��� 
 �� �� ��.
An 	��� 
 �� �� �� is a special type of���� 
 �� �� ��. Ta-
ble 3 is an example of an	��	
 �� �� ��. If we select any
two columns from this array it has the property that each
possible ordered pair from the symbols�� �� � occurs ex-
actly one time. This array uses the symbols�� �� � in all of
the columns, but since the properties we are interested in
occur onlybetween columns, the meaning of each of these
symbols in each column is different. We can remap the sym-
bols for each column arbitrarily without losing the desired
properties. For instance we can map� in the first column
to RAID 0, and 0 in the second column to Windows XP. If
we map each symbol from each column to one configura-
tion of a component we have transformed this orthogonal
array into a test suite. Table 4 is a test suite for finding all
2 way interactions from Table 1 which is derived from the
orthogonal array shown in Table 3.

We do not need such a stringent object for software test-
ing. In fact orthogonal arrays may be too restrictive as they
only exist for certain values of�� �� �. Instead we can use a
covering array that allows some duplication of coverage.

1 1 1 0
0 0 0 0
0 1 0 1
1 0 0 1
0 0 1 1

Table 5. ���

 �� �� ��

2.2. Covering Arrays

In a covering array���� 
 �� �� ��, � is called the inter-
actionstrength, � the degree, � the order, and� the size.



Table 5 gives an example of a���

 �� �� ��. Adding one
row to this covering array yields a����
 �� �� ��. Since
covering arrays can have arbitrarily many rows, one aim is
to use the smallest possible number of rows to satisfy the
properties of a covering array. Thecovering array num-
ber, ������ �� ��, is the minimum number� for which
a���� 
 �� �� �� exists. For example,������ 
� �� � ��
[4]. Many covering array numbers are unknown, therefore
the literature usually reports the upper and lower bounds
for particular array sizes. The lower bound is the smallest
theoretical size for an array, while the upper bound is the
smallest size for which an array is known to exist. We are
interested in upper bounds for our problem since we need
to actually build these.

We can map a covering array to a software test suite as
follows. In a software test we have� components or factors.
Each of these has� configurations or levels. A test suite is
an� � � array where each row is a test case. Each column
represents a component and the value in the column is the
particular configuration. In Table 2 we have� � �,� � �,
� � �, and� � ��. Each component is represented by one
column; each row is an individual test of the test suite.

In software systems, of course, the numbers of configu-
rations for each component can vary in size. We define a
more general object to describe this variability (see [8] for
a more in-depth discussion). Amixed level covering array,
����� 
 �� �� ���� ��� ���� ����, is an��� array on� sym-
bols, where� �

��
��� ��, with the following properties:

1. Each column
 �� � 
 � �� contains only elements
from a set�� with ���� � ��.

2. The rows of each� � � sub-array cover all��tuples
of values from the� columns at least once.

We use a shorthand notation to describe mixed level cov-
ering arrays by combining equal entries in�� � � � � 
 � ��.
For example three entries each equal to 2 can be writ-
ten as��. We can write an����� 
 �� �� ������������ as
an����� 
 �� ����

� ���
� ������

� �� where� �
��

��� �� and
��� � � � � � �� � ���� ��� ���� ���.

3. Constructing Covering Arrays for Test
Suites

Most of the literature pertaining to covering arrays for
software testing involves methods for building these in an
efficient manner while obtaining small test suites. The
mathematical literature primarily presents new algebraic
constructions [4, 6, 17, 19, 20], while the software engineer-
ing literature proposes new greedy algorithms [5, 22, 25], as
well as standard heuristic search techniques such as simu-
lated annealing [7, 8]. AETG uses a greedy algorithm to
find test cases. It handles an arbitrary strength� as well as

special conditions. This includes seeding specific test cases
and avoiding particular interactions. Two other greedy algo-
rithms, In Parameter Order (IPO), and Test Case Generator
(TCG), focus only on the case when� � � [22, 25].

When� � �, the combinatorial research illustrates both
the depth of the connection with combinatorial configura-
tions and the difficulties that these pose for software testers.
The techniques applied to date when� � �, at least in the
range ofsmall covering arrays, vary greatly. They range
from very simple construction methods such as identifying
distinct symbols to form a single symbol, through to more
complexcut-and-paste constructions. These are construc-
tions that use smaller covering arrays as building blocks.
Finally sophisticated recursive constructions exist that com-
bine small covering arrays but also employ related combi-
natorial objects. While the more sophisticated constructions
yield substantially smaller covering arrays when they can be
applied, these same constructions do not apply as generally
as we require. (For a summary of known results when� � �
see [4].)

We do, however, need to be able to apply stronger inter-
action testing such as 3-way testing to software test suites
[12, 14]. In addition, Cohenet al. have suggested the need
for focusing stronger interaction testing on subsets of com-
ponents where faults are likely to occur or be too costly
[7, 8]. In the rest of this paper, therefore, we examine a
small group of constructions for the case of� � � using
augmented cut-and-paste techniques.

The true challenge facing the software tester is to deter-
mine when the construction applies, including what auxil-
iary ingredients are needed. This overhead limits the appli-
cability of the more complex constructions. We do not at-
tempt to solve that problem here but acknowledge that this
is an open and interesting problem.

3.1. Computational Search

Computational search techniques to find covering ar-
rays include greedy algorithms and standard combinatorial
search techniques such as simulated annealing [5, 8, 22, 25].
We use simulated annealing, a search technique for solv-
ing combinatorial optimization problems, that has shown to
have good general results for finding minimal test suites es-
pecially when the problem size is relatively small [8]. In [8]
simulated annealing was compared with known greedy al-
gorithms. When test suite minimization is the goal, this al-
gorithm works better than the greedy methods. Some other
heuristic search techniques have been tried in [18] for the
case of� � �, but were found to be less effective than an-
nealing [18]. Our annealing program is patterned on that of
[16].



3.2. Simulated Annealing

In simulated annealing a search problem can be specified
as a set� of feasible solutions (or states) together with a
cost���� associated with each feasible solution�. An opti-
mal solution corresponds to a feasible solution with overall
(i.e. global) minimum cost. We define a feasible solution
� � �, a set�� of transformations (or transitions), each of
which can be used to change� into another feasible solu-
tion � �. The set of solutions that can be reached from� by
applying a transformation from�� is called the neighbor-
hood���� of �.

To start, we randomly choose an initial feasible solution.
In our problem this corresponds to an� � � array with
symbols randomly chosen from the desired covering array
specification. The algorithm then generates a sequence of
trials, in which we randomly select a cell of this array and
change the symbol to a new one. If the transition results in
a feasible solution� � of lower or equal cost then� � is ac-
cepted. If it results in a feasible solution of higher cost, then
�� is accepted with probability���	�����	����
� , where�
is the controlling temperature of the simulation. The cost in
our problem is the number of uncovered�-sets. A cost of
zero indicates we have a covering array. The temperature
is lowered in small steps with the system being allowed to
approach “equilibrium” at each temperature through a se-
quence of trials at this temperature. Usually this is done by
setting� �� �� , where� (thecontrol decrement) is a real
number slightly less than one. After an appropriate stop-
ping condition is met, the current feasible solution is taken
as the solution of the problem at hand. The idea of allow-
ing a move to a worse solution helps to keep the solution
from being stuck in a bad state, while continuing to make
progress. The algorithm stops once a feasible solution of
cost zero is obtained or we are frozen.

Since� is unknown at the start of our search we se-
lect an arbitrarily large� and repeat the annealing process
multiple times using a binary search technique, keeping the
smallest� x k array that finishes without freezing. For
each of the arrays found in this paper we ran the anneal-
ing program three to five times and selected the array with
the smallest� . We used similar temperature and cooling
schedules each time which gave us a small variance in the
overall size of� for each array. We find that a starting
temperature of approximately .20 and an� between 0.9998
and 0.99999 every 2000 iterations works well for this size
problem.

Based on [8] it appears that simulated annealing does
well when the search space is small and there are abundant
solutions. As the search space increases and the density
of potential solutions becomes sparser the algorithm may
fail to find a good solution or may require extremely long
run times. Careful tuning of the parameters of temperature

and cooling can improve upon the results, but at a potential
computational cost. Cohenet al. present results suggesting
that annealing works well for covering arrays, often pro-
duces smaller test suites than other computational methods,
and sometimes improves upon algebraic constructions, but
it fails to match the algebraic constructions for larger prob-
lems, especially when� � � [8].

3.3. Algebraic Constructions

Algebraic constructions often provide a better bound in
less computational time than heuristic search. However,
they are not as general and must be tailored to the problem
at hand. An in-depth knowledge base must exist to decide
which construction best suits a particular problem. In ad-
dition, most constructions aim at proving the existence of
a class of objects. In software testing we may not always
need the absolute minimum sized test suite, but want to get
consistently good results that are close to minimum. We
also would like to obtain these results in a computationally
feasible amount of time.

4. Combining Methods

The idea of using small building blocks to construct a
larger array is used often in algebraic constructions. We re-
fer to these techniques in general ascut-and-paste methods.
Is it possible to use a combinatorial construction and aug-
ment this with heuristic search to allow one to ‘construct’
an array with limited understanding of the underlying com-
binatorics? The rest of this paper examines how one can use
such a combined approach. It presents some initial results
suggesting that this technique performs better than heuristic
search alone, while it is more flexible than a straight alge-
braic construction.

4.1. Construction Using an Ordered Design

Cohenet al. [8] found a������
 �� �� �� using simu-
lated annealing. This is smaller than the previously reported
�����

 �� �� ��, found using an algebraic construction [4].
It is one of the few cases where simulated annealing alone,
improves upon an algebraic construction. Unfortunately the
annealing process for this array takes considerable compu-
tational time. In addition, as the problems grow larger, the
less likely annealing is to find a solution close to that of an
algebraic construction. Since there is a trade-off between
the time it takes to build a test suite and the time it takes to
set up and run it, we are interested in methods that reduce
the number of tests (i.e. find smaller sized covering arrays),
and are also quicker to create.

One can improve upon both of these reported upper
bounds for����� �� �� using a construction that divides



3 1 2 0
1 2 3 0
2 3 1 0
3 2 1 0
1 3 2 0
2 1 3 0
0 1 2 3
0 2 1 3
1 2 0 3
2 1 0 3
2 0 1 3
1 0 2 3
0 2 3 1
0 3 2 1
3 2 0 1
2 3 0 1
3 0 2 1
2 0 3 1
0 3 1 2
0 1 3 2
3 1 0 2
1 3 0 2
3 0 1 2
1 0 3 2

Table 6. Ordered Design: 	���� �� ��

the problem into smaller pieces. Additionally, since we
only need to search for smaller objects the time to build
this array is also reduced. For instance we shall obtain a
������
 �� �� �� and we shall create a�������
 �� ��� ���
which is smaller than the 1331 rows reported in [4] or that
of using simulated annealing alone (2163). We develop a
general strategy, using the following result to provide an
example of the constructive technique.

We begin by defining another combinatorial object.
An ordered design, 	���� �� ��, is a

�
�
�

�
� �� � � ar-

ray in which each row has� distinct entries and every�
columns contains every row tuple of� distinct entries ex-
actly once. Table 6 is an example of an	���� �� ��. In
this example all ordered tuples of size three from the set
��� �� �� �� in which the three entries are different occurs
exactly once in any three columns. For instance, the tuples
���� �� ��� ��� �� ��� ��� �� ��� ��� �� ��� ��� �� ��� ��� �� ���ap-
pear in each. But the tuple��� �� �� never occurs.

Theorem 1 An ordered design of the form
	���� � � �� � � �� exists when � is a prime power [9].

To build the����� �� �� we start with an	���� �� ��.
This has 120 rows. By definition it contains all three-way
interactions between columns that are of the form��� �� ��
where� 	� � 	� � 	� �. To satisfy the conditions of a
covering array, all combinations of triples containing only
two unique symbols, i.e.��� �� ��� ��� �� ��� ��� �� ��, etc.,
must also occur. We handle that case now. We first cre-
ate a�����
 �� �� ��. We can leverage the fact that it uses
only two symbols. There are

�
�
�

�
� �
 pairs of symbols

0 0 0 0 0 0
1 1 1 1 1 1
0 1 1 0 1 0
0 0 1 1 0 1
0 0 0 0 1 1
0 1 0 1 1 1
1 1 0 1 0 0
1 1 0 0 0 1
1 0 0 1 1 0
1 0 1 0 0 1
1 0 1 0 1 0
0 1 1 1 0 0

Table 7. �����
 �� �� �� with 2 disjoint rows

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 0 0 0 0 1
1 0 1 1 0 1 0 1 0 0
1 0 0 0 1 1 1 0 0 0
0 1 1 0 0 1 0 0 1 0
0 0 1 0 1 0 1 1 1 0
1 1 0 1 0 0 1 0 1 0
0 0 0 1 1 1 0 0 1 1
0 0 1 1 0 0 1 0 0 1
0 1 0 1 1 0 0 1 0 0
1 0 0 0 0 0 0 1 1 1
0 1 0 0 0 1 1 1 0 1

Table 8. �����
 �� ��� �� with 2 disjoint rows

in this array. If we make 15 copies of this covering ar-
ray and map symbols for each so that all 15 combinations
of pairs have been used we have all of the possible triples
between columns containing two unique symbols. We ap-
pend these arrays to our ordered design which gives us
��� � ��
� ��� � ��� rows. This is a������
 �� �� ��.

A simple improvement can be made. Without changing
the structure of the covering array����� �� ��, we can re-
label the symbols in the array so that the array always con-
tains a test of the form�� �� �� �� �� � where� is the symbol
in the array with the smallest cardinality. If we then ap-
ply the above construction, the row 0,0,0,0,0,0 appears five
times and in general the row
� 
� 
� 
� 
� 
 appears at least
�

times. Consequently, ten duplicate rows can be removed to
establish that������ �� �� � �	�. An alternate method,
which improves even further upon the original size of 300,
is to use����� �� ��s containing two disjoint rows. Table
7 is such an array. Any two disjoint rows in such a cov-
ering array can be remapped to the form�� �� �� �� �� � and
�� �� �� �� �� �. Since all six symbols are covered five times
we can remove the 30 rows of this form leaving us with 270.
We must add back one row of the form�� �� �� �� �� � for
each symbol which establishes that������ �� �� � ���.

We can apply this same method to build a
������

 �� ��� ���. We begin with an	���� ��� ��� of
size 720. In the same manner as above we can append



� 0 1 2 3 4 5 6 6 8
0 0 1 2 3 4 5 6 7 8
1 1 2 0 4 5 3 7 8 6
2 2 0 1 5 3 4 8 6 7
3 3 4 5 6 7 8 0 1 2
4 4 5 3 7 8 6 1 2 0
5 5 3 4 8 6 7 2 0 1
6 6 7 8 0 1 2 3 4 5
7 7 8 6 1 2 0 4 5 3
8 8 6 7 2 0 1 5 3 4

Table 9. GF(9) addition table

� 0 1 2 3 4 5 6 6 8
0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8
2 0 2 1 6 8 7 3 5 4
3 0 3 6 7 1 4 5 8 2
4 0 4 8 1 5 6 2 3 7
5 0 5 7 4 6 2 8 1 3
6 0 6 3 5 2 8 7 4 1
7 0 7 5 8 3 1 4 2 6
8 0 8 4 2 7 3 1 6 5

Table 10. GF(9) multiplication table

45 �����
 �� ��� ��s including two disjoint blocks (see
Table 8). This gives us 1305 rows. We now remove the
90 disjoint blocks and add back in 10 blocks of the form
��� �� ���� ��, one for each symbol. This gives us a total of
1225 rows.

4.2. OD Construction

There are two problems with this construction. The first
is that we must construct the ordered design, (i.e. the ex-
istence is not enough) if we want to use this in a practical
environment. We outline a method here to do this which
has been adapted from [3]. Let� be a prime or power of a
prime. We choose a set� of � elements, which contains 0
and 1, and� � � other symbols. We add a�� ���st symbol

 to this set. Now we consider certain permutations de-
fined on� � �
� as follows. Choose in all possible ways
4-tuples of values��� �� �� �� with �� �� �� � in � subject to
the conditions that

1. � � �, � arbitrary,�� � arbitrary but� cannot be a mul-
tiple of �� � ; and

2. � � �, � � �, �� � arbitrary but� not equal to�.

For each such selection��� �� �� ��, we make a permutation
(test case) in the following way. We use symbols���������

0 1 2 3 4 5 6 7 8
NA 1 2 4 3 7 8 5 6

Table 11. GF(9) inverses

Simulated Annealing for Covering Arrays

Pre−process

Post−process

Initialization t−sets Seeded Test Cases

Joiner

Mapper

Figure 1. Augmented annealing process

to represent the elements of�. Now� � �
� indexes the
factors (or columns). For factor�, we set the value to���
if � � 
, and� 	� �, to
 if � � 
 and� � �, to
 if
��� � � �, and to���� ������� �� otherwise.

In order to do the arithmetic for both of these steps, the
set� needs some structure. The easiest case is when� is a
prime. Then� is the set of integers modulo�. Multiplying
and adding are the same as usual but the result is reduced
modulo�. To divide we just multiply by the inverse. For
example,��� is a� ���, where��� is the number which
when multiplied by� gives�. We can use the Extended
Euclidean Algorithm to find inverses modulo� when� is
prime [21].

When� is a prime power, we must use a finite field to
multiply, add and find inverses. We don’t attempt to de-
scribe the construction of a finite field here, but provide the
addition, multiplication and inverse tables used for� � 	
in Tables 9-11. We can use any of a number of algebraic
computer packages to produce a finite field, or alternatively,
we can create one by hand (see [21]).

The second problem is that we must be able to determine
the existence of two covering arrays with disjoint rows and
then construct these. There is no general proof of the exis-
tence of these arrays. We have instead used simulated an-
nealing to construct these and present them in Tables 7-8.

5. Augmented Annealing

In the previous section we described a construction us-
ing an ordered design, which can produce smaller covering
arrays than the best known algebraic constructions. There
are two problems that have been mentioned, and that may
be handled differently by a software tester and a mathemati-
cian. The software tester must actually construct these ar-
rays, not just prove they exist. In this case, the construction
to create an ordered design requires a separate algorithm



and may require the use of finite field arithmetic.
We present a method below to avoid this construction.

For some of the smaller cases such as����� �� �� this
method works very well. On larger problems using the ac-
tual construction certainly is preferred if the test suite size
is of importance, but if the only toolkit the tester has is sim-
ulated annealing then this method is one which can be em-
ployed.

The second problem, which is imperative for proof of ex-
istence is probably less worrisome for the software tester. In
this case, proving that we have a����� �� �� with two dis-
joint rows can be done using heuristic search. If the search
produces an array of slightly larger size we can nonetheless
get a nearly optimal test suite that appears to be smaller than
the one built from straight annealing. In this section we ad-
dress how to augment the simulated annealing program to
handle these two problems. In addition we provide some
constructions using the augmented annealing algorithm to
improve further upon the bounds given above.

We have augmented the simulated annealing program
with several modules as is shown in Figure 1. Our aim
is to use our annealing program to construct small build-
ing blocks which can be joined together. We have added
two methods for buildingpartial covering arrays. The first
method is an initialization method. The second method adds
a set of fixed (or seeded) test cases. We have also added
some post processing methods. The first is a mapper and
the second is a joiner.

5.1. Modules

The initialization method reads in a subset of�-sets and
counts these as covered. The annealing proceeds to build a
potentially incomplete covering array since it believes these
initialization �-sets are not needed. Therefore a move to a
feasible solution that adds one of these�-sets will not im-
prove our solution and is rarely chosen. We do not ex-
plicitly exclude these from being covered, but see this as
a potential further enhancement. We can use this to build
an ordered design of a small size, by initializing it with all
triples which have repeated symbols, i.e.��� �� �� and to
build partial arrays that cover all triples excluding those of
type��� �� �� found in the ordered design. In our experimen-
tation we have found that the second problem is easier for
annealing than the first where fewer solutions exist in the
search space. We believe this can be used in other cut-and-
paste constructions allowing us to build individual partial
arrays of other types.

The AETG system includes the ability to add seeded test
cases to a test suite [5]. These are test cases that the tester
wants to run each time, regardless of coverage. In any real
test situation, one should have the ability to choose a set of
tests that must be run. We have included the ability to add

seeded test cases to our program. It counts these as part of
the covering array to be built, but it does not alter them. The
seeds arefixed, i.e. no changes can be made to their values
during annealing. We can use seeded test cases that span
entire rows of the array or partial rows of the array. In this
case the non-fixed part of the test cases can be changed. The
covered�-sets are counted, but the program must do all of
its annealing excluding these positions. We use this module,
for example, to seed the arrays with disjoint rows.

The symbol mapping for a covering array is arbitrary and
can be remapped as long as we use� unique symbols for
each column of the covering array. We see this in Tables
3 and 4. When we build the smaller covering arrays with
disjoint rows, we may want to use the same array repeatedly,
with different symbol mappings. Therefore, a mapper is
used to translate arrays from one symbol set to another.

Lastly, when building test suites using cut and paste tech-
niques such as are presented here we end up with pieces that
must be merged together. A module that joins test suites to-
gether both horizontally and vertically has been added for
this purpose.

6. Results

Given the augmented annealing program one can follow
the construction described above and create minimal test
suites. This can be improved upon with some slight vari-
ations. Algebraic constructions often force more coverage
than is really necessary in order to simplify the proof of the
existence of the object being constructed. In building ar-
rays for software testing, we want arrays that are as small as
possible, but are not necessarily interested in proving new
bounds in a general manner.

6.1. Constructions for CA(3,6,6)

We have applied the ordered design technique above to
some covering arrays of the form����� ���� ���� as well
as to a covering array which does not have an ordered design
and a mixed level array. In [8] the upper bound reported for
������ �� �� using straight simulated annealing was 300.
We have used the above construction in conjunction with
the augmented annealing to establish������ �� �� � ���.
This construction is described at the end of this section.

We return to the construction presented in Section 4.1.
We create the ordered design by annealing a partial cover-
ing array using the initialization module of the augmented
program. It is initialized with all triples not of the type
��� �� ��. The known bound of 120 is easily obtained. Next a
�����
 �� �� ��with two seeded rows of the type��� �� ��� ��
and ��� �� ���� �� is created. The two disjoint rows are re-
moved and this array is passed to the mapper. It creates
15 arrays of size 10, containing all of the possible symbol



combinations of type��� �� ��� ��� �� ����� �� ��� ��� �� ��, etc.
The six rows of type��� �� ���� �� are created and then all of
the pieces are joined. The final covering array is of size 276.

We can create variations on this construction since we
are not necessarily restricted to this combination of ele-
ments. An ordered design covers all triples containing three
unique symbols, so we are only concerned with covering all
combinations of pairs of symbols from����� �� ��.

We have constructed a partial����� �� �� initialized
with all of the triples of the type��� �� ��. We can get a
partial covering array of size� � ��. The bound for
a complete covering array of this size is 33 so we have
saved some rows by using the initialization method. We
can use this to cover

�
�
�

�
� � combinations of the six

pairs of symbols. There are still 12 remaining. We can
cover these using 12�����
 �� �� ��s with two disjoint rows
�� �� �� �� �� � and�� �� �� �� �� � removed. Each of these now
contains ten rows. Lastly we add back in three rows of type
�� �� �� �� �� � (we can exclude the three symbols covered
by the����� �� ��) and join these together. This gives us a
covering array of size���������������� � ���. This
is smaller than the first construction above. Of course all of
the other combinations of����� �� 
�, 
 � �, that cover all
pairs of symbol combinations can be tried in this manner.
For instance we can also use a����� �� �� combined with
nine����� �� ��s. Exploration of various combinations is
needed to determine the smallest array size. The final array
sizes using different combinations may vary. Ideally we see
the need to pre-compute various combinations of arrays so
we can choose the best decomposition.

In the case of����� �� �� we found the smallest array
using only two building blocks. We used annealing to cre-
ate an ordered design of size 120 and annealing to create
a partial����� �� �� of size 143, initialized with all triples
of type ��� �� ��. This gives us a������
 �� �� ��. It im-
proves upon the other constructions and provides us with a
new bound.

These alternate constructions can be used in all of the
cases outlined below, but we have restricted the discussion
from now on to two methods. The first method (A) uses an
ordered design and a partial����� �� �� initialized with all
triples of type��� �� ��. The second method (B), creates an
ordered design and

�
�
�

�
����� �� ��s each with two disjoint

blocks removed, plus� rows of type�� �� �� ���� �. These
two constructions are illustrated in Figure 2.

6.2. Constructions for CA(3,8,8)

In the case of����� �� �� and����� 	� 	�, it is known
that the collection of all triples can be covered exactly, i.e.
every triple is covered precisely once (this is an orthogo-
nal array of strength three which is optimal). We therefore
do not expect any improvement over the best known result

.

..

OD(3,q+1,q+1)

Method A Method B

Partial CA(N;3,q+1,q+1) q+1
2

OD(3,q+1,q+1)

CA(N;3,q+1,2) minus 2 d.j. rows

CA(N;3,q+1,2) minus 2 d.j. rows

CA(N;3,q+1,2) minus 2 d.j. rows

0   0    0    .................................0
1   1    1    .................................1

q   q    q   .................................q

Figure 2. Constructions using an ordered de-
sign

using our method. However, the smallest array we have
managed to find using simulated annealing in a reasonable
amount of computational time for the����� �� �� has 918
rows. This is considerably larger than the known orthog-
onal array size of 512 and required almost three hours to
run. We can instead create a������
 �� �� �� in signifi-
cantly less computational time. We use an	���� �� �� of
size 336 created with the direct construction given in Sec-
tion 4.2 and anneal a partial covering array of size 280
in approximately five minutes. This provides us with a
������
 �� �� �� which is smaller and computationally less
expensive than using only annealing.

6.3. Constructions for CA(3,10,10)

For the����� ��� ��� we can use the ordered design
construction from Section 4.2 to generate the first part of
this array. We can build 45�����
 �� ��� ��s minus the two
disjoint blocks and add back in 10 rows of type�� �� ��� �. If
we do this we have an array of size 1225 which improves
upon the published bound of 1331 [4]. We can also build a
partial����� ��� ��� using annealing. This gives us a par-
tial array of size 504. When combined with the ordered
design this in a test suite of size 1224. In comparison, the
smallest array we have built with straight annealing for a
����� ��� ��� is of size 2163.

Table 12 shows the smallest covering arrays found us-
ing the two augmented methods and provides the smallest
numbers we have obtained using straight annealing as well
as known bounds published in [4, 8]. In each case we ran
our program several times but report only the smallest ar-



Augmented Simulated Smallest Reported�

����� �� �� Annealing Annealing Array Size
A B

����� �� �� 263 276 300 300
����� �� �� 616 624 918 512
����� �� �� 940 909 1490 729
����� ��� ��� 1224 1225 2163 1331
����� �	� �	� 2339 2190 4422 2197
����� �
� �
� 4134 3654 8092 4096

Table 12. Sizes for covering arrays using aug-
mented annealing.

Method A = OD + partial array, Method B = OD +�
�

�

�
����� �� ��s

1. Source = Chateauneufet al.[4] and Cohenet al. [8]

Partial CA Size Ordered Design

����� �� �� 143 120
����� �� �� 280 336
����� �� �� 436 504
����� ��� ��� 504 720
����� �	� �	� 1019 1320
����� �
� �
� 1950 2184

Table 13. Sizes for partial CAs and ordered
designs

ray found. The variation in results was small, but due to
the randomness in annealing we do not always produce the
same size array each time. The first method, labeled A,
uses an ordered design and anneals a partial array initial-
ized with the triples covered in the ordered design. The
second method uses an ordered design and combines it with�
�
�

�
����� �� ��s each with 2 disjoint rows removed and one

row added back for each of the� symbols. The best values
we have found for arrays with disjoint rows are given in
Table 14. The ordered design for����� �� �� was created
using annealing. All of the other ordered designs were cre-
ated with a program that implements the construction given
in section 4.2. Values in bold font are new upper bounds for
these arrays.

CAs w/2 disjoint rows Size

����� �� 	� 12
����� �� 	� 12
����� �� 	� 13
����� ��� 	� 13
����� �	� 	� 15
����� �
� 	� 18

Table 14. Sizes for covering arrays with 2 dis-
joint rows

Covering Array Method Size

����� �� �� Straight Annealing 552
����� �� �� Partial Arrays 545
������ ��
�	�� Straight Annealing 317
������ ��
�	�� Partial Annealing 313
������ ��
�	�� Seeded with����� �� �� 283
������ ��
�	�� Seeded with����� �� �� 272

Table 15. Sizes for covering arrays with no
known algebraic constructions

6.4. Arrays with No Known Algebraic Construc-
tions

We end with some examples which do not have ordered
designs as part of their makeup to illustrate that we can still
these techniques when the problems are not as simple as
those given so far. Real software test environments often
do not have parameters that match known constructions and
can have different numbers of configurations per compo-
nent, i.e. they are mixed level.

The first example is a����� �� ��. We have tried us-
ing annealing to create partial arrays with and without the
triples of type��� �� �� as if an ordered design exists. We
only improve very slightly on the best bound found for this
array from straight annealing, but believe that we improve
on the computational time that is required to solve this prob-
lem. The second example is an������ �������. This
array contains a����� �� �� but has four additional com-
ponents. We have tried several techniques to build this ar-
ray. When straight annealing was used we found an array of
size 317, which is much larger than the best bound we have
found for the sub-array����� �� ��. Based on [7] we be-
lieve that the hardest problem, that of the����� �� �� drives
the final size of this array so we have tried other variations.
When we used two partial covering arrays as in Method A,
the best bound we found was 313. We tried instead to seed
this array with the harder problem already solved. We use
the seeding module to build the array by seeding and fixing
either the	���� �� �� of size 120 or the����� �� �� of size
263 and anneal to add the additional structure. Both of these
improve markedly upon the first two methods as shown in
Table 15. The smallest test suite we found was by using the
����� �� �� as a seed. We added only 9 test cases to com-
plete the missing coverage. Of course this highlights the
need for the software tester to have some sort of knowledge
base to determine which method is best for which problem.

7. Conclusions

We have presented a method for combining algebraic
constructions and simulated annealing to build covering ar-
rays of strength three for software testing. These methods



are most interesting in testing situations where the setup
costs are large and the goal is to test as many interactions
with as few tests as is possible. We have focused on strength
three covering arrays. These are harder to build using sim-
ple heuristic search techniques due to the explosion in the
search space. There are many known algebraic construc-
tions, however these are sometimes too restrictive or require
a priori knowledge about additional constructions that the
software tester may lack. For instance we have given an
example construction where anordered design is required.
In order for statistical design of experiment methods to be
useful in software testing these issues must be addressed.

This paper presents one way to bridge the gap between
algebraic and computational methods. One can relax the
proof requirements found in algebraic constructions for use
in a practical environment when it is not of interest to prove
classes of objects exist, but to build objects that are as
small as possible in a reasonable computational time. By
augmenting a simulated annealing algorithm we can build
partial covering arrays to satisfy certain conditions and
then remap and combine these to build minimal test suites.
We have improved upon a few reported upper bounds for
strength three covering arrays. The randomness in anneal-
ing, though, does force us to use this in cases where an ap-
proximation to a best solution is needed since we cannot
guarantee a final bound.

These methods are not entirely useful for interaction test-
ing on their own. The tester still requires knowledge of
which constructions and methods are best for appropriate
problem sizes. Producing such a toolkit is an open and in-
teresting problem. In order to attempt this, a knowledge
base containing a core set of construction methods and the
best fit for particular problems is required. In this paper we
have examined one more technique which can ultimately be
added to this set.

We have used only a small set of fixed level arrays as
examples for these constructions. We believe that these
techniques can be extended and used for a larger variety of
mixed level arrays and arrays for which particular construc-
tions do not exist. We also see the need for an empirical
study to assess the ease and effectiveness of our methods.
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