
Constructing Test Suites for Interaction Testing

Myra B. Cohen
Peter B. Gibbons

Warwick B. Mugridge
Dept. of Computer Science

University of Auckland
Private Bag 92019

Auckland, New Zealand
�myra,peter-g,rick�@cs.auckland.ac.nz

Charles J. Colbourn
Dept of Computer Science and Engineering

Arizona State University
P.O. Box 875406

Tempe, Arizona 85287
charles.colbourn@asu.edu

Abstract

Software system faults are often caused by unexpected
interactions among components. Yet the size of a test suite
required to test all possible combinations of interactions
can be prohibitive in even a moderately sized project. In-
stead, we may use pairwise or �-way testing to provide a
guarantee that all pairs or �-way combinations of compo-
nents are tested together. This concept draws on meth-
ods used in statistical testing for manufacturing and has
been extended to software system testing. A covering array,
���� � �� �� ��, is an � � � array on � symbols such that
every � � � sub-array contains all ordered subsets from
� symbols of size � at least once. The properties of these
objects, however, do not necessarily satisfy real software
testing needs. Instead we examine a less studied object,
the mixed level covering array and propose a new object,
the variable strength covering array, which provides a more
robust environment for software interaction testing. Initial
results are presented suggesting that heuristic search tech-
niques are more effective than some of the known greedy
methods for finding smaller sized test suites. We present a
discussion of an integrated approach for finding covering
arrays and discuss how application of these techniques can
be used to construct variable strength arrays.

1. Introduction

Many software systems today are built using compo-
nents. Often, system faults are caused by unexpected inter-
actions among these [28]. For example, suppose we have an
Internet-based software system. Our customers may use a
variety of browsers. In addition they may be using different
operating systems, connection types and printer configura-

Component
Web Browser Operating Connection Printer

System Type Config
Netscape Windows LAN Local

IE Macintosh PPP Networked
Other Linux ISDN Screen

Table 1. Four Components, Each With Three
Configurations

tions. In order to completely test this system we want to test
our software on all of the possible supported configurations.
If we have the system shown in Table 1, we would want to
test combinations, such as (Netscape,Windows,LAN,Local)
and (Netscape,Windows,LAN,Networked). To test all pos-
sible interactions for this system we would need �� or 81
configurations.

This may be reasonable for a small system but the num-
ber of necessary tests grows large very quickly. Suppose
we had 10 possible components with four possible settings
each. We then need ���=1,048,576 test configurations. One
approach used is to guarantee that we test all pairs of inter-
actions or all n-way interactions [2, 5, 17, 12, 23, 27, 29]. In
the example shown in Table 1 we can cover all pairs of inter-
actions using only nine different configurations (see Table
2). And in the example of 10 components each with 4 pos-
sible settings we can cover all pairs of interactions using at
most 25 configurations.

Dalal et al. present empirical results to argue that the
testing of all pairwise interactions in a software system finds
a large percentage of the existing faults [10]. In further
work, Burr et al. provide more empirical results to show
that this type of test coverage is effective [3].

If we restrict ourselves to pairwise coverage, we cannot
guarantee that we will find faults that occur with three or

Test Browser OS Connection Printer

1 NetScape Windows LAN Local
2 NetScape Linux ISDN Networked
3 NetScape Macintosh PPP Screen
4 IE Windows ISDN Screen
5 IE Macintosh LAN Networked
6 IE Linux PPP Local
7 Other Windows PPP Networked
8 Other Linux LAN Screen
9 Other Macintosh ISDN Local

Table 2. Test Suite to Cover all Pairs from Ta-
ble 1

four way interactions. A trade off occurs between the time
and cost of testing and the required degree of guaranteed
coverage. Williams et al. describe a method to quantify
the coverage for a particular interaction level [28]. We can
determine how many pairs, or �-way interactions we have
covered at each stage when building a test suite. For in-
stance if we have four components, any new test case can
contribute at most

�
�
�

�
, or 6 new covered pairs. Further, if

each component has three configurations, there are a total
of
�
�
�

�
�� � �� possible pairs that must be covered. There-

fore any one new test case increases our coverage by at most
����� [28]. A similar method is described by Dunietz et al.
[12].

It could be assumed that our goal is for �		� coverage
at a particular level, such as two or three way coverage.
This can be achieved using a minimal number of test cases,
with a known combinatorial object, the covering array, de-
scribed below. Dunietz et al. [12] point out that by using
such a balanced code, we are also providing higher cover-
age for stronger interaction levels.

As it is usually too expensive to test all components using
three or four way coverage we can benefit from doing this
for part of the system. For instance, a particular subset of
components may have a higher interaction dependency or a
certain combination of components may have more serious
effects in the event of a failure. For example, consider a
subset of components that control a safety-critical hardware
interface. We want to use stronger coverage in that area.
However, the rest of our components may be sufficiently
tested using pair-wise interaction. We can assign a coverage
strength requirement to each subset of components as well
as to the whole system.

For the safety critical system, we would require that the
whole system has �		� coverage for two way interactions,
while the safety-critical subset has 100% coverage for three
way interactions. The final test suite may, however, have
80% coverage for three way interactions over all compo-
nents.

In the rest of this paper we examine the combinatorial
objects that can be used in component interaction testing.
We begin with a description of relevant combinatorial ob-
jects and introduce a new model for variable strength inter-
action testing. We discuss various techniques to build these
test suites and present preliminary results using heuristic
search techniques. Lastly we discuss how the techniques
can be applied and used to build our new model for variable
strength interaction.

2. Combinatorial Models

Combinatorial objects are not new to testing. Hedayat
et al. [14] discuss the use of orthogonal arrays for statis-
tically designed experiments. These are used across many
disciplines including medicine, agriculture and manufactur-
ing [14]. More recently these ideas have been extended to
software testing.

2.1. Orthogonal Latin Squares

Mandl proposed using orthogonal Latin squares for test-
ing compilers [17]. A Latin square of order 	 is an 	 � 	

array with entries from a set
 of cardinality 	 with the
condition that for all � in
, � appears exactly once in each
row and each column. Two Latin Squares are orthogonal if,
when superimposed on each other, the ordered pairs created
in each cell cover all 	� pairs [1, 14].

In this instance, � orthogonal Latin squares of size 	 are
needed to test �
� parameters each with 	 levels. The cell
entries represent ��� elements in each test, and the column
and row indices represent the additional 2 parameters.

2.2. Orthogonal Arrays

Brownlie et al. have adapted an engineering concept,
called Robust Testing, to the task of testing software [2].
They developed the OATs system which uses orthogonal
arrays to generate test suites for a software system [2]. �

mutually orthogonal Latin squares of order 	 can be trans-
formed into an orthogonal array ����	

�� �
 �� 	� �� [1].
An orthogonal array ����� � �� �� �� is an � � � array

on � symbols such that every � � � sub-array contains all
ordered subsets of size � from � symbols exactly times
[14]. Orthogonal arrays have the property that � �

�� .
Table 2 is an example of an ����� �� �� ��.

Although the use of orthogonal arrays for testing has
been discussed in the literature [2, 27] these may be of less
interest in component testing because they could lead to
overly large test suites with � �. For cases of � and �

where an orthogonal array with � � does exist, clearly
this is the optimal test suite. However, there are many val-
ues of � and � where an orthogonal array with � � does

not exist so we must resort to a less restrictive structure;
one that requires subsets are instead covered at least once
as with covering arrays.

2.3. Covering Arrays

A covering array, ����� � �� �� ��, is an � � � array
on � symbols such that every � � � sub-array contains all
ordered subsets from � symbols of size � at least times.
When � � we use the notation ���� � �� �� ��. In such
an array, � is called the strength, � the degree and � the or-
der. A covering array is optimal if it contains the minimum
possible number of rows. We call the minimum number
the covering array number, ������ �� ��. For example,
������ �� �� � �� [4, 21].

Cohen et al. [5, 7] have developed the commercial
product, Automatic Efficient Test Generator (AETG) to
construct covering arrays for software interaction testing.
Williams et al. [27] use orthogonal arrays as well as cover-
ing arrays to design tests for the interactions of nodes in a
network. Stevens et al. [23] suggest creating a knowledge
system for the tester that contains the best known covering
arrays applicable to testing.

There are often a number of different ways to repre-
sent the same combinatorial object. For instance, sev-
eral other combinatorial objects have been defined with the
same effective properties as a covering array. A strength t
transversal cover, a qualitatively independent system and t-
surjective array [8, 21, 25] are three such objects. In the rest
of this document we will use the covering array definition
for consistency.

Covering arrays only suit the needs of software testers
when all components have the same number of configura-
tions. However, this is often not the case. For instance one
component can have four possible configurations and one
only two. Indeed, this is a normal occurrence. In addition,
constraints can exist for a test suite suggesting that certain
value combinations can never occur or that there are aggre-
gate conditions among several fields [10]. Lastly, testers of-
ten require that a set of fixed test cases are added to each test
suite, regardless of the interaction strength required. These
issues cause real testing environments to deviate from cov-
ering arrays as defined. In the first case we want to remove
these combinations from the tests. In the second case we
may need to define aggregate fields or components. In the
last case we need to build a test suite on top of already gen-
erated test cases. We restrict our subsequent discussion to
the first problem, which we feel is the most important de-
viation from a fixed level covering array; however the tech-
niques we discuss could be extended to the others.

 Mixed Level Covering Array

2 b 6 e
3 c 5 e
2 c 4 d

0 a 4 d

0 b 5 d
1 a 6 e
1 b 4 d
3 a 6 d
0 c 6 e
2 a 5 e
3 b 4 e
1 c 5 d

Figure 1. ������� �� �������

2.4. Mixed Level Covering Arrays

The variation among component levels can be handled
with the mixed level covering array. Several authors have
suggested its use for software testing (see [4, 22, 28]), but
few results are known about upper bounds and how to con-
struct these.

A mixed level covering array,

������ � �� �� �������������

is an � � � array on � symbols, where � �
��

��� ��, with
the following properties:

1. Each column � �� � � � �� contains only elements
from a set
� of size ��.

2. The rows of each � � � subarray cover all �-tuples of
values from the � columns at least times.

When � � we can omit the subscript, representing the
array as ����� � �� �� ������������. We use a shorthand
notation to describe mixed covering arrays by combining
equal entries in ��� � � � � ��. For example three
entries each equal to 2 can be written as ��. Consider an
����� � �� ����

� ���
� ������

� ��. This can also be written as
an ����� � �� �� ������������ (see Figure 1). In this array
we have:

1. � �
��

��� �� and � �
��

��� ���� �
��

��� ��.

2. Each column � �� � � � �� contains only elements
from a set
� where � �����
�� � �.

6,7

DB

C

A

 8,9
3,4,5

0,1,2

MCA(N;2,4(N;3,3,2,2))

MCA(N;3,3,(3,2,2))

Figure 2. Model of Variable Strength Covering
Array.

3. The columns are partitioned into 	 groups ��� ��� �����
where group �� contains �� columns. The first ��
columns belong to the group ��, the next �� columns
belong to group ��, and so on.

4. If column � � ��, then �
�� � ��.

This notation can be used for a fixed-level covering array
as well. ���� � �� ��� indicates that there are � parameters
each containing a set of � symbols. This makes it easier
to see that the values from different components can come
from different sets.

2.5. Variable Strength Covering Arrays

Being able to guarantee that subsets of components have
higher interaction strength is appealing in a real test envi-
ronment as with the safety-critical example in Section 1. A
covering array as it is defined only guarantees a coverage of
�-subsets. We may also wish to have coverage of some sub-
sets of size �� for values of �� � �. It is for this reason that
we present a new model for interaction testing, as illustrated
in Figure 2.

Components A and B have three configurations each,
while C and D have two (the configurations are labelled
	� �� �����). The system has a total of 37 interaction pairs,
and 60 interaction triples. We require that the subset
������� be covered by 3-way coverage, while the entire
system ��������� is to have 2-way coverage. We there-
fore require a 100% 2-way coverage and a minimal 3-way
coverage of ��

�� � �	�. As we shall see, the actual 3-way
coverage of a test suite may be much higher.

A mixed level covering array to handle �		� of 2-way
interactions can be created using only 9 tests. This is shown

Component
A B C D

0 4 7 8
1 3 7 9
2 3 6 8
0 5 6 9
1 4 6 8
2 4 7 9
2 5 7 9
1 5 7 8
0 3 6 9

0 3 7 8
2 4 6 9
1 5 6 8

Table 3. Variable Strength Array for Figure 2

as the first 9 rows of Table 3. To handle all 3-way in-
teractions, as many as 18 tests are needed. To increase
the strength of this array to cover all 3-way interactions of
�������, we only need to add 3 more tests. These are
the last three rows shown in Table 3. This actually covers
��
�� � �	� of the 3-way interactions for our system while
covering all of the 3-way interactions for our subset and all
2-way interactions in the whole system.

3. Constructing Covering Arrays

In this section we begin with some known results and
present several techniques for finding covering arrays.

3.1. Known Combinatorial Results

There are several types of results known for covering
arrays. These include probabilistic bounds that provide a
value for the smallest size of � , but do not give us any
method for construction. There are constructive results
which provide a direct way to create such an object, and
finally, there are computational results which are produced
as the end product of a search. Of these, the last two are
probably the most useful, although knowing the probabilis-
tic bounds helps to guide the search for new constructions.
We give a few bounds below, but leave the readers to see
Sloane [21] for an excellent survey.

The first known results on covering array numbers are
due to Rényi [20] who determined these numbers for the
case � � � � � when� is even. Kleitman and Spencer [16]
and Katona [15] independently determined covering array
numbers for all � (and � � � � �). They showed that the

size of N grows as follows:

� �

�
� � �

��� 	

�

For a large �, this grows logarithmically. In 1990 Gargano,
Körner and Vaccaro [13] gave the following probabilistic
bound for � � �, � � �:

� �
�

�
������
 �����

Östergård [19] showed that � � �� for � � �� � � �, while
Sloane [21] mentions that Applegate showed � � �� [21].
More work has been done on these smaller cases. When
� � �, the combinatorial research illustrates both the depth
of the connection with combinatorial configurations and the
difficulties that these pose for software testers. We do not
attempt a thorough review here, but instead refer the reader
to [4].

3.2. Algebraic Constructions

We give a brief outline of an algebraic construction for
a covering array to provide a flavour of constructive tech-
niques. (For a detailed description see [24]). To begin with,
we add another condition to our definition of a covering ar-
ray; the requirement that there are � disjoint rows, i.e. each
pair has no �-sets in common.

We begin with � � � incomplete Mutually Orthogonal
Latin Squares (MOLS) of order � that have holes of size
��� ��� �����. We construct our array by filling the holes with
covers of order �� and degree �. We do this by using a set of
bijections between the groups of the MOLS and the groups
of the ����� �� ���.

Although this provides us with an array with a good
known upper bound, this is not always easy to construct.
First of all it requires that we find � � � incomplete MOLS
of order �. We may be able to find some of this information
in known tables, but in general it is not an easy task (see
[9]). Secondly, it is only useful for certain values of �� ��
and �.

What is striking from our viewpoint is that, while the
more sophisticated constructions yield substantially smaller
covering arrays when they can be applied, these same con-
structions do not apply as generally as we require. In addi-
tion, the true challenge facing the software tester is to deter-
mine when the construction applies, including what auxil-
iary ingredients are needed. This overhead limits the appli-
cability of the more complex constructions.

3.3. Heuristic Search Techniques

Computational search techniques to find fixed level cov-
ering arrays include standard techniques such as hill climb-
ing and simulated annealing. However, no results have been

produced for mixed level arrays using these methods. The
only approaches that produce mixed level arrays use greedy
methods to find test suites [5, 29, 30]. Initial results shown
in Section 5 suggest that combinatorial search techniques
have the potential to produce smaller test suites.

There are two problems to address when building cov-
ering arrays. One is that we must satisfy the constraint of
covering all �-sets of interactions. The other is that we do
not know how large our final test suite will be. Test cases
can be added incrementally, stopping when the constraints
are met, which is the greedy approach. Alternatively we can
choose a fixed size array and try to manipulate the space
until all constraints are met. This is the method used by the
other algorithms.

Other heuristic search techniques for covering arrays
have been explored, specifically tabu search and genetic
algorithms [22]. We omit them from our discussion here,
since Stardom’s research indicates that they are not as effec-
tive in general as simulated annealing. However, we present
one further variant of simulated annealing, the great deluge
algorithm (Section 3.7).

3.4. Greedy Algorithms

The AETG system and the Test Case Generator (TCG)
[5, 7, 30] use a greedy search technique. Each test suite is
built one test at a time, i.e. an � � � array is built one
row at a time. For each subsequent test case to be added,
many are created and then the best chosen (see [5, 7, 30]).
The greedy portion of these algorithms lies in the step of
determining which new symbol to add to each column of
each test. This is of course a local optimum.

In each algorithm, information is maintained about
which test case interactions are still uncovered and is used
as a heuristic to provide a better chance of finding the miss-
ing interactions. AETG uses a random approach to finding
a pool of test cases. Yu-Wen et al. [30] suggest a deter-
ministic algorithm. The authors begin with a deterministic
ordering of the parameters. Another greedy algorithm, the
In Parameter-Order (IPO), has the benefit of reusing old test
cases when new parameters are added. It does this by ex-
panding in a vertical and horizontal fashion [29].

TCG and IPO have only been tested on pairwise inter-
actions. AETG and TCG seem to be the most effective in
finding pairwise interactions, but do not always produce test
suites with known covering array numbers.

3.5. Hill Climbing

Hill climbing and simulated annealing are variants of the
state space search technique for solving combinatorial op-
timisation problems. With a general optimisation problem
the hope is that the found solution is close to an optimal one.

With many design problems we know (from the cost) when
we have reached an optimal solution. On the other hand,
approximations in these cases are of little value.

An optimisation problem can be specified as a set � of
feasible solutions (or states) together with a cost ��
� asso-
ciated with each
 � �. An optimal solution corresponds to
a feasible solution with overall (i.e. global) minimum cost.
We define, for each
 � �, a set �� of transformations (or
transitions), each of which can be used to change
 into
another feasible solution
 �. The set of solutions that can
be reached from
 by applying a transformation from � � is
called the neighbourhood��
� of
.

We start by randomly choosing an initial feasible solu-
tion and then generate a randomly chosen transformation
of the current feasible solution
. If the transformation re-
sults in a feasible solution
 � of equal or lower cost, then

� is accepted as the new current feasible solution. If
 �

is of higher cost, we reject this solution and check another
randomly chosen neighbour of the current feasible solution.
This allows us to randomly walk around �, without reduc-
ing the goodness of our current solution. Hill climbing has
the potential to get stuck in a local minimum (or freeze),
so stopping heuristics are required. To increase the chance
of forming a good solution we repeat the random walk (or
trial) a number of times, each time beginning with a random
initial feasible solution.

In the hill climbing algorithm the current feasible solu-
tion is an approximation
 to a covering array in which cer-
tain �-subsets are not covered. The cost function is based
on the number of �-subsets that are not covered, so that a
covering array itself will have a cost of zero. A potential
transformation is made by selecting one of the � sets be-
longing to
 and then replacing a random point in this �-set
by a random point not in the �-set. The number of blocks
remains constant throughout the hill climbing trial.

We have used the method described by Stardom [22] to
determine our array size. We set loose upper and lower
bounds on the size of an optimal array and then use a bi-
nary search process to find the smallest sized covering array
in this interval. An alternative method is to start with the
size of a known test suite and search for a solution. This of
course uses less computational resources, but the required
test suite size must be known ahead of time. Ideally in a
real system this is the method which we would use. For the
results in this paper we have used the first method, since we
do not yet know what size test suites are obtainable.

Clearly good data structures are required to enable the
relative cost of the new feasible solution to be calculated
efficiently, and the transition (if accepted) to be made
quickly.

3.6. Simulated Annealing

Simulated annealing has been used by Nurmela and
Östergård [18], to construct covering designs which have
a structure very similar to covering arrays.

Simulated annealing uses the same approach as hill
climbing but allows the algorithm, with a controlled proba-
bility, to make choices that reduce the quality of the current
solution. The idea is to avoid getting stuck in a bad configu-
ration while continuing to make progress. If the transforma-
tion results in a feasible solution
 � of higher cost, then
 �

is accepted with probability ��������������	
�� , where �
is the controlling temperature of the simulation and �� is
a constant. The temperature is lowered in small steps with
the system being allowed to approach “equilibrium” at each
temperature through a sequence of transitions (or Markov
chain) at this temperature. Usually this is done by setting
� � �� , where � (the control decrement) is a real number
slightly less than �. After an appropriate stopping condition
is met, the current feasible solution is taken as an approx-
imation to the solution of the problem at hand. Again, we
improve our chances of obtaining a good solution by run-
ning a number of trials.

Stardom [22] has recently compared simulated anneal-
ing with other types of local search, viz. tabu search and
genetic algorithms, for finding covering arrays of strength
�. Stardom has reported several new upper bounds (includ-
ing ������ ��� �� � ��� and ������ ��� ��� � ���)
using a simulated annealing algorithm. We have improved
on some of those bounds using our simulated annealing al-
gorithm. For instance we have found ������ ��� �� � ��.
(For a table of known upper bounds for � � � see [22].)

3.7. Great Deluge Algorithm

One further heuristic search technique is the great flood
or great deluge algorithm [11], and a variant thereof called
threshold accepting. These follow a strategy similar to sim-
ulated annealing but often display more rapid convergence.
Instead of using probability to decide on a move when the
cost is higher, a worse feasible solution is chosen if the cost
is less than the current threshold1. As the algorithm pro-
gresses, the threshold is reduced moving it closer to zero.
Our current research focuses on the application of these al-
gorithms to covering arrays.

3.8. Using an Integrated Approach

Finding the best covering array for a non-trivial prob-
lem is difficult. It is possible that a simulated annealing

1This threshold value is sometimes referred to as the water level which,
in a profit maximizing problem, would be rising rather than falling (as is
happening in this case).

algorithm, or a greedy method such as AETG, is the best
approach, but further comparisons need to be explored.

AETG has been attributed with the best known upper
bound of 180 for ����� �	� �	�. This array does not have
a tight bound using an algebraic construction [22]. The
AETG patent describes the use of some simple construc-
tions, the merging of smaller test suites and a post process-
ing stage to reduce test cases [6].

In general one would expect the algebraic constructions
to use less computational power than the given algorithms.
We have not extensively compared the performance of the
individual algorithms in this paper, but note that the time to
construct test suites is one factor that must be considered
and compared when evaluating methods for building these
objects. Table 6 gives some sample user CPU times for our
versions of three algorithms. Stardom [22] has compared
several methods of computational search, but his results are
restricted to fixed level arrays and he did not include the
TCG or AETG algorithms.

Given the computational efficiency of an algebraic con-
struction, it is the best method to find a covering array when
one is known to exist for the given parameters �� �� �. In-
deed this idea has been suggested by Stevens et al. [23]
who point out that this may not be a simple task. In or-
der to use an algebraic construction we often use smaller
objects which must also be constructed. The recursive na-
ture of this makes the existence question alone here quite
difficult (see [9]). If we can determine that the smaller ob-
jects exist, we first need to build these, and the information
on how to do so must be stored somewhere. In addition, we
may also need to store many small starter objects, for which
space constraints may become a problem. A further issue
is that there are many different types of constructions and
sometimes multiple ways to arrive at the same object. This
perhaps explains why commercial test generators do not yet
utilize the best known constructions, but instead search each
time from scratch.

By combining several of these techniques we expect to
be able to find a large range of arrays that can be expanded
or reduced as necessary. We could for instance, begin with
a less costly algorithm, such as the TCG and then define a
critical point in our test suite where we make a switch to a
more computationally expensive algorithm. Another possi-
bility is to simply build a starter test suite deterministically,
and then use simulated annealing to reduce its size. An ex-
ample of this technique is described in [6].

4. Constructing Variable Strength Covering
Arrays

Variable strength covering arrays can be viewed as a col-
lection of covering arrays inside of a larger covering array.
We could begin by building each individual array separately

Variable Strength Arrays
Base Array Subset of Higher Coverage Test Suite Size

���� � �� ��� �� ���� � �� �� �� 302
���� � �� ��� �� ���� � �� 	� �� 125
���� � �� ��� �� ���� � �� �� �� 33
����� � ��
��������� ����� � ��
������ 80
������ �� �����
�� ����� � �� ����
�� 100

Table 4. Test Suite Sizes for Variable Strength
Arrays Using Simulated Annealing

and then combine these in order to gain the additional cov-
erage needed for the whole system. Or we could begin with
a covering array for the whole system and alter it to ob-
tain the higher strength coverage required for the designated
component subsets.

We outline an ad hoc construction here for the exam-
ple given in Table 3, and investigate systematic methods
for handling variable strength arrays in a subsequent paper.
In order to construct the variable strength array we use our
AETG algorithm to find a strength two covering array. We
then try to remove duplicate pairs in a way that leads to new,
uncovered triples. For instance, in the diagram in Table 3
we can see that had the last row of the 2-way coverage been
(0,3,6,8) instead of (0,3,6,9), it could have been changed to
(0,3,6,9) with the resulting system still providing pairs (0,8),
(3,8), (6,8). Thus we could replace the 8 with a 9 without
reducing our pair coverage, but covering a new triple. This
step could be performed with a simulated annealing algo-
rithm. Lastly we append the missing triples with a random
choice of values for the other components.

Another way to approach this is to begin by enumerat-
ing all of the interactions for the higher strength subsets.
For instance, we could build a mixed level covering array
of strength three for components B, C and D and then fill
horizontally by adding a column and the symbols needed so
that all missing pairs are covered.

Lastly we might simply extend our simulated annealing
algorithm to compute the cost as a function of both levels of
interaction and build the suite directly in that manner. We
are currently working on a program that uses annealing to
build these arrays. Table 4 provides some preliminary test
suite sizes for variable strength arrays with two different
strengths.

The best method for building a variable strength test suite
is still open and the discovery of good algorithms and con-
structions for these is an interesting problem.

5. Computational Results

We have implemented our own versions of the TCG al-
gorithm for pair-wise coverage and the AETG algorithm for
�-way coverage. In addition we have implemented both a

Minimum Test Cases in Test Suite
TCG� AETG� Our-TCG Our-AETG HC SA

MCA-1 20 19 18 20 16 15
MCA-2 45 45 42 44 42 42
MCA-3 30 30 25 28 23 21
MCA-4 33 34 32 35 30 30

Table 5. Comparisons for 2-way Coverage
1. Source = Yu-Wen et al.[30]
MCA-1. ����� � �� �������

MCA-2. ����� � �� �������������

MCA-3. ����� � �� ����������

MCA-4. ����� � �� �����������

CPU User Time in Seconds
Our-TCG Our-AETG SA

MCA-1 6 58 214
MCA-2 57 489 874
MCA-3 33 368 379
MCA-4 42 376 579
CA-1 1,333 6,001 10,833
CA-2 NA 359 13,495

Table 6. Comparisons of Runtimes
MCA-1. ����� � �� �������

MCA-2. ����� � �� �������������

MCA-3. ����� � �� ����������

MCA-4. ����� � �� �����������

CA-1. ���� � �� �	�
	�

CA-2. ���� � �� �� ��

hill climbing and simulated annealing program for handling
�-way coverage. These algorithms use standard combina-
torial techniques to store a �-set as a rank (an integer rep-
resentation of a subset), which provide a generic way of
representing different size sets. The simulated annealing
program is based on that of [18]. While our techniques are
fully general, we have emphasized the fixed level cases in
our reporting so that we can make comparisons with results
in the literature. Sample performance results for the TCG,
AETG and simulated annealing algorithms are included to
give a flavour for the time required to run each of these. All
of the programs are written in C

 and run on Linux using
an INTEL Pentium IV 1.8 GHZ processor with 512 MB of
memory. Variation in the runtimes of these algorithms de-
pends on parameter settings and number of iterations per-
formed.

Although the implementation of our AETG algorithm is
as described in the literature [5], it should be acknowledged
that the actual commercial product is patented and may in-
clude some simple construction techniques as well as post-
processing stages. These are not included in our implemen-
tation. One additional heuristic has been added in our ver-
sion of the AETG algorithm, for the case of � � �. In the
algorithm described in [5], it is unclear what happens when

Minimum Test Cases in Test Suite
IPO� AETG� Our-TCG Our-AETG HC SA

CA-1 9 9 9 9 9 9
MCA-1 19 15 17 17 16 16
MCA-2 36 41 34 37 30 30
MCA-3 29 28 26 27 21 21
CA-2 66 NA 56 56 47 45
CA-3 218 180 213 198 189 183

Table 7. Comparisons for 2-way Coverage
1. Source = Yu et al.[29]
CA-1. ���� � �� �� ��

MCA-1. ����� � �� ����

MCA-2. ����� � �� ��������	�

MCA-3. ����� � �� ����	����

CA-2. ���� � ��
		� ��

CA-3. ���� � �� �	�
	�

choosing a symbol between 2 and � � �. The first symbol
is always chosen as one of the symbols found in the most
uncovered �-sets. We maintain this first step, then continue
to choose from a symbol in the same set until we have the
first � � � symbols filled in. We then continue to follow
the algorithm as stated. Our results for � � � seem to im-
prove on those reported in the literature for the commercial
AETG program (see Table 9). Our AETG algorithm runs
three hundred times reporting only the smallest array found
at the end. All of these iterations were counted as part of
the total time reported in Table 6.

For our version of the TCG algorithm, a few minor re-
finements were applied. The TCG algorithm as described in
[30] does not fully describe how ties are handled. We chose
to break these randomly in our version of the algorithm.
In addition, TCG uses the least used symbols as a heuris-
tic when choosing which symbol to include in the test suite.
We tightened this definition to count a symbol as being used
only in the case of it contributing to a new uncovered inter-
action pair. Our algorithm runs 5,000 times keeping only
the best array at the end. All 5,000 iterations were included
in the total time reported in Table 6.

The performance results presented for simulated anneal-
ing reflect the total time taken to find all arrays through a
binary search process. Therefore the numbers reported in
Table 6 may be reduced if tighter bounds are used as a start-
ing point.

For all of the algorithms we ran a series of trials, but re-
port only the best test suite obtained (the one with the small-
est number of rows). We use the abbreviations HC for hill
climbing and SA for simulated annealing in Tables 5-9. Ta-
ble 5 compares our results with those reported in [30]. Our
TCG and AETG algorithms produce similar results to those
reported. In all of the four test suites, however both our
hill climbing and simulated annealing algorithms improve
significantly on the bounds given by these other algorithms.

Minimum Test Cases in Test Suite
Stardom� Our-AETG SA

CA-1 65 70 62
CA-2 88 94 87
CA-3 113 120 112
CA-4 116 123 114

Table 8. Comparisons for 2-way Coverage
1. Source = Stardom[22]

CA-1. ���� � ��
�� ��

CA-2. ���� � ��
�� ��

CA-3. ���� � ��
�� ��

CA-4. ���� � ��
�� ��

The hill climbing and simulated annealing algorithms both
produced similar lower bounds, but in our experimentation
we found that quite often the simulated annealing produced
these in fewer trials. More experimentation is needed here.

Table 7 compares our results with those reported in [29].
For these examples our algorithms produce arrays at least
as small as those produced by the IPO algorithm, although
in two cases the reported commercial AETG results are
smaller than ours.

Simulated annealing consistently does as well or better
than hill climbing, so we report only those results for the
next two tables. Table 8 compares results for some fixed
level arrays reported in [22]. We have done as well or bet-
ter than these. Since the results in [22] were obtained from
a similar algorithm, we attribute this to the need for bet-
ter tuning of the parameters of an annealing algorithm. We
have not yet fine tuned the cooling schedule which plays a
role in the quality of the final results. We plan to do this in
the next phase of our investigation.

Lastly, Table 9 compares our results against some known
strength-three algebraic constructions reported in [4]. In
this case the expectation was that it would be difficult to
match the known results in an initial implementation of
these algorithms. Here the surprise was that our AETG al-
gorithm found smaller arrays than those reported using the
commercial AETG product. This may be due to the addi-
tional heuristic added when choosing the first ��� symbols
for each test suite. As expected, our simulated annealing
algorithm did not perform as well as most of the algebraic
constructions. In the case of a ���� � �� �� ��, however,
we have found a smaller array using simulated annealing.
Further experimentation is needed with a more refined al-
gorithm. Of course, in many cases constructions are not
known (or may not exist) such as is true in the last two
entries of this table. For these arrays, simulated anneal-
ing finds an optimal solution. There are very few known
constructions for mixed-level covering arrays. Therefore
a fixed level array of a larger size would need to be con-
structed and used in its place. This may require more

Minimum Test Cases in Test Suite
Construction� AETG� Our-AETG SA

CA-1 33 47 38 33
CA-2 64 105 77 64
CA-3 125 NA 194 152
CA-4 305 343 330 300
CA-5 1331 1508 1473 1426
CA-6 185 229 218 201
MCA-1 NA NA 114 100
MCA-2 NA NA 377 360

Table 9. Comparisons for 3-way Coverage
1. Source = Chateauneuf et al.[4]
CA-1. ���� � �� �� ��

CA-2. ���� � �� �� ��

CA-3. ���� � �� �� ��

CA-4. ���� � �� �� ��

CA-5. ���� � �� ��
	�

CA-6. ���� � �� �� ��

MCA-1.����� � �� �������

MCA-2.����� � ��
	��������

test cases than a mixed level array found by computational
search. Additionally, a real test suite may include special
test cases for particular configurations. Once again cur-
rent constructions do not handle this issue. For this reason,
it is interesting to return to the need for an integrated ap-
proach, perhaps one that combines algebraic constructions
with more sophisticated search methods.

6. Conclusions

We have discussed some of the uses of combinatorial ob-
jects in testing interactions among software components,
have raised several questions about the types of combi-
natorial objects that may be useful for the software tester
and have suggested some ways to build these objects using
known constructions and search techniques.

Preliminary results on hill climbing and simulated an-
nealing for mixed level covering arrays are presented, al-
though more experimentation and tuning of these algo-
rithms is required. In addition, performance measures need
to be applied to determine the overall usefulness of each
approach.

We have presented a variable strength covering array
which handles multiple levels of interactions. These arrays
allow us to assign interaction weights to subsets of compo-
nents. We have provided an ad hoc method to build these
but have left the development of formal methods for future
work. It is not entirely clear that even variable strength cov-
ering arrays will provide the flexibility that is really needed
for testing combinatorial systems. We may want to allow
some components to be involved in more than one group-
ing, or perhaps to test individual groupings alone and then

to combine these while retaining the original tests.
Lastly, we may think about how this model can be ex-

tended to a broader definition of component testing. In this
paper we have restricted ourselves to the idea of finding
faults when components are tested in combination. We may
find we can use this model for quantitative testing, such as
determining which combinations cause performance barri-
ers.

Acknowledgments

Research is supported by the Consortium for Embed-
ded and Internetworking Technologies and by ARO grant
DAAD 19-1-01-0406.

References

[1] I. Anderson. Combinatorial Designs and Tourna-
ments. Oxford University Press, New York, 1997.

[2] R. Brownlie, J. Prowse, and M. S. Padke. Robust
testing of AT&T PMX/StarMAIL using OATS.
AT&T Technical Journal, 71(3):41–7, 1992.

[3] K. Burr and W. Young. Combinatorial test tech-
niques: Table-based automation, test generation
and code coverage. In Proc. of the Intl. Conf. on
Software Testing Analysis & Review, 1998, San
Diego.

[4] M. Chateauneuf and D. Kreher. On the state of
strength-three covering arrays. Journal of Combi-
natorial Designs, 10(4):217–238, 2002

[5] D. M. Cohen, S. R. Dalal, M. L. Fredman, and
G. C. Patton. The AETG system: an approach
to testing based on combinatorial design. IEEE
Transactions on Software Engineering, 23(7):437–
44, 1997.

[6] D. M. Cohen, S. R. Dalal, M. L. Fredman, and
G. C. Patton. Method and system for automatically
generating efficient test cases for systems having
interacting elements United States Patent, Num-
ber 5,542,043, 1996.

[7] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C.
Patton. The combinatorial design approach to au-
tomatic test generation. IEEE Software, 13(5):83–
8, 1996.

[8] D. M. Cohen and M. L. Fredman. New techniques
for designing qualitatively independent systems.
Journal of Combinatorial Designs, 6(6):411–16,
1998.

[9] C. Colbourn and J. Dinitz. Making the MOLS ta-
ble. In Computational and Constructive Design
Theory, 1996. (W.D.Wallis, ed.) Kluwer Academic
Press, 67-134.

[10] S. R. Dalal, A. J. N. Karunanithi, J. M. L. Leaton,
G. C. P. Patton, and B. M. Horowitz. Model-based
testing in practice. In Proc. of the Intl. Conf. on
Software Engineering,(ICSE ’99), 1999, pp. 285-
94, New York.

[11] G. Dueck. New optimization heuristics - the
great deluge algorithm and the record-to-record
travel. Journal of Computational Physics, 104:86–
92, 1993.

[12] I. S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L.
Mallows, and A. Iannino. Applying design of ex-
periments to software testing. In Proc. of the Intl.
Conf. on Software Engineering, (ICSE ’97), 1997,
pp. 205-215, New York.

[13] L. Gargano, J. Körner, and U. Vaccaro. Capacities:
from information theory to extremal set theory. J.
Combin. Theory Ser. A, 68(2):296–316, 1994.

[14] A. Hedayat, N. Sloane, and J. Stufken. Orthogonal
Arrays. Springer-Verlag, New York, 1999.

[15] G. Katona. Two applications (for search theory and
truth functions) of Sperner type theorems. Period-
ica Math., 3:19–26, 1973.

[16] D. Kleitman and J. Spencer. Families of k-
independent sets. Discrete Math, 6:255–262,
1973.

[17] R. Mandl. Orthogonal latin squares: an application
of experiment design to compiler testing. Commu-
nications of the ACM, 28(10):1054–8, 1985.

[18] K. Nurmela and P. R. J. Östergård. Constructing
covering designs by simulated annealing. Tech-
nical report, Digital Systems Laboratory, Helsinki
Univ. of Technology, 1993.

[19] P. R. J. Östergård. Constructions of mixed cover-
ing codes. Technical report, Digital Systems Lab-
oratory, Helsinki Univ. of Technology, 1991.

[20] A. Réyni. Foundations of Probability. Wiley, New
York, 1971.

[21] N. Sloane. Covering arrays and intersecting codes.
Journal of Combinatorial Designs, 1(1):51–63,
1993.

[22] J. Stardom. Metaheuristics and the search for cov-
ering and packing arrays. Master’s thesis, Simon
Fraser University, 2001.

[23] B. Stevens and E. Mendelsohn. Efficient software
testing protocols. In Proc. of Center for Advanced
Studies Conf. (Cascon ’98), 1998, pp. 270-293,
Ontario.

[24] B. Stevens and E. Mendelsohn. New recursive
methods for transversal covers. Journal of Com-
binatorial Designs, 7(3):185–203, 1999.

[25] B. Stevens, L. Moura, and E. Mendelsohn. Lower
bounds for transversal covers. Designs Codes and
Cryptography, 15(3):279–299, 1998.

[26] K. C. Tai and L. Yu. A test generation strategy for
pairwise testing. IEEE Transactions on Software
Engineering, 28(1):109-111, 2002.

[27] A. W. Williams and R. L. Probert. A practical strat-
egy for testing pair-wise coverage of network in-
terfaces. In Proc. Seventh Intl. Symp. on Software
Reliability Engineering, 1996, pp. 246-54.

[28] A. W. Williams and R. L. Probert. A measure
for component interaction test coverage. In Proc.
ACS/IEEE Intl. Conf. on Computer Systems and
Applications, 2001, pp. 301-311.

[29] L. Yu and K. C. Tai. In-parameter-order: a test
generation strategy for pairwise testing. In Proc.
Third IEEE Intl. High-Assurance Systems Engi-
neering Symp., 1998, pp. 254-261.

[30] T. Yu-Wen and W. S. Aldiwan. Automating test
case generation for the new generation mission
software system. In Proc. IEEE Aerospace Conf.,
2000, pp. 431-437.

