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ABSTRACT
Test suite augmentation techniques are used in regression
testing to help engineers identify code elements affected by
changes, and generate test cases to cover those elements.
Researchers have created various approaches to identify af-
fected code elements, but only recently have they considered
integrating, with this task, approaches for generating test
cases. In this paper we explore the use of genetic algorithms
in test suite augmentation. We identify several factors that
impact the effectiveness of this approach, and we present the
results of a case study exploring the effects of one of these
factors: the manner in which existing and newly generated
test cases are utilized by the genetic algorithm. Our results
reveal several ways in which this factor can influence aug-
mentation results, and reveal open problems that researchers
must address if they wish to create augmentation techniques
that make use of genetic algorithms.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Experimentation

Keywords
Regression testing, test suite augmentation, genetic algo-
rithms, empirical studies

1. INTRODUCTION
Software engineers use regression testing to validate soft-

ware as it evolves. To do this more cost-effectively, they of-
ten begin by reusing existing test cases. Existing test cases,
however, are often inadequate to retest code or system be-
havior that is affected by changes. Test suite augmentation
techniques (e.g., [1, 16, 22]) help with this, by identifying
where new test cases are needed and then creating them.

Despite the importance of augmentation, most research
on regression testing has focused instead on test suite reuse.
There has been research on algorithms for identifying where
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new test cases are needed by identifying affected elements
[1, 3, 7, 14, 16], but these approaches do not then gener-
ate the required test cases, leaving that task to engineers.
There has been research toward generating test cases given
pre-supplied coverage goals (e.g., [5, 12, 13, 17, 19]), but ap-
proaches for integrating the test generation task with reuse
of existing tests and with techniques that identify affected
elements have not been explored.

In [22], we present a directed test suite augmentation tech-
nique that uses a regression test selection algorithm [15] to
identify where new test cases are needed and existing test
cases applicable to those needs, while integrating this infor-
mation with a concolic approach [17] for test case generation.

Search-based algorithms can also be used to generate test
data. Thus, we have been researching a test suite augmenta-
tion technique that uses genetic algorithms. In the course of
this work, however, we have discovered that there are several
factors that can influence the performance of such augmen-
tation techniques beyond the normal parameters for tuning
a genetic algorithm, through effects on the algorithm’s pop-
ulation size and its diversity. These factors include: (1) the
algorithm used to identify affected elements; (2) the size and
composition of the existing test suite; (3) the order in which
program elements are considered while generating test cases;
and (4) the manner in which existing and newly generated
test cases are harnessed by the genetic algorithm.

We believe that understanding the foregoing factors is es-
sential if we wish to create cost-effective test suite augmenta-
tion techniques using genetic algorithms. To begin to build
such an understanding, we have conducted a case study ex-
ploring the fourth factor, which we believe is likely to be
the most significant in its effects. Our results show that
the factor can affect the cost and effectiveness of test suite
augmentation techniques that use a genetic algorithm for
test case generation. This has implications for researchers
wishing to create and study such techniques.

2. BACKGROUND AND RELATED WORK
Let P be a program, P ′ be a modified version of P , and

T be a test suite for P . Regression testing is concerned
with validating P ′. To facilitate this, engineers may use the
retest-all technique, re-executing all viable test cases in T
on P ′, but this can be expensive. Regression test selection
(RTS) techniques (e.g., [3, 15]) use information about P , P ′

and T to select a subset T ′ of T with which to test P ′.
Test suite augmentation techniques, unlike RTS techniques,

are not concerned with reuse of T . Rather, they are con-
cerned with the tasks of (1) identifying affected elements



(portions of P ′ or its specification for which new test cases
are needed), and then (2) creating or guiding the creation of
test cases that exercise these requirements.

Various algorithms have been proposed for identifying af-
fected elements in software systems following changes. Some
of these [4] operate on levels above the code such as on mod-
els or specifications, but most operate at the level of code,
and in this paper we focus on these. Code level techniques
[3, 7, 14] use various analyses such as slicing on program de-
pendence graphs to select existing test cases that should be
re-executed, while also identifying portions of the code that
are related to changes and should be tested. However, these
approaches do not provide methods for generating actual
test cases to cover the identified code.

Four recent papers [1, 13, 16, 22] specifically address test
suite augmentation. Two of these [1, 16] present an ap-
proach that combines dependence analysis and symbolic ex-
ecution to identify test requirements that are likely to exer-
cise the effects of changes, using specific chains of data and
control dependencies to point out changes to be exercised. A
potential advantage of this approach is a fine-grained iden-
tification of coverage needs; however, the papers present no
specific algorithms for generating test cases. A third paper
[13] presents a more general approach to program differenc-
ing using symbolic execution that can be used to identify
requirements more precisely than [1, 16], and yields con-
straints that can be input to a solver to generate test cases
for those requirements. However, this approach is not inte-
grated with reuse of existing test cases.

The test suite augmentation approach presented in [22]
integrates an RTS technique [15] with an adaptation of the
concolic test case generation approach presented in [17].
This approach leverages test resources and data obtained
from prior testing sessions to perform both the identification
of coverage requirements and the generation of test cases to
cover these. A case study shows that it can be effective and
efficient; however, the approach is applicable only in cases
in which concolic testing can be applied cost-effectively.

In other related work [23], Yoo and Harman present a
study of test data augmentation. They experiment with the
quality of test cases generated from existing test suites using
an heuristic search algorithm. While their work is similar to
the technique that we consider in this paper in that it uses
a search algorithm and starts with existing test cases, their
definition of augmentation differs from ours. They focus on
duplicating coverage in a single release in order to improve
fault detection, not on obtaining coverage of affected ele-
ments in a subsequent release.

Genetic algorithms have been used previously in regres-
sion testing [10] and for structural test case generation which
begins with an initial (often randomly generated) test data
population and evolves the population toward targets that
can be blocks, branches or paths in the CFG of a program
[8, 11, 12, 18, 20]. To apply such an algorithm to a program,
we first provide a representation of the test problem in the
form of a chromosome, and a fitness function that defines
how well a chromosome satisfies the intended goal. The al-
gorithm proceeds iteratively by evaluating all chromosomes
in the population and then selecting a subset of the fittest to
mate. These are combined in a crossover stage to generate
a new population of which a small percentage of chromo-
somes in the new population are mutated to add diversity
back into the population. This concludes a single generation

of the algorithm. The process is repeated until a stopping
criteria has been met and the solution has converged.

3. FACTORSAFFECTINGAUGMENTATION
We have identified several factors that are independent

of genetic algorithm parameters, but that could potentially
affect how well such algorithms perform by impacting both
population size and diversity. We now describe these factors.
F1: Algorithm for identifying affected elements. As
discussed in Section 2, various algorithms have been pro-
posed for identifying affected parts of software systems fol-
lowing changes. The numbers and complexity of identified
affected elements can clearly impact the cost of subsequent
test generation efforts by affecting the numbers of inputs
that genetic algorithms must generate, and the complexity
of the paths through code that the algorithms must target.
F2: Characteristics of existing test suites. Test suites
can differ in terms of size, composition, and coverage achieved.
Such differences in characteristics could potentially affect
augmentation processes. For example, the extent to which
an existing suite achieves coverage prior to modifications
can affect the number and locations of coverage elements
that must be targeted by augmentation. Furthermore, test
suite characteristics can impact the size and diversity of the
starting populations utilized by genetic algorithms.
F3: Order in which affected elements are considered.
For genetic algorithms that utilize existing test cases to gen-
erate new ones, the order in which a set of affected elements
are considered can affect the overall cost and effectiveness
of test generation, and thus, the cost and effectiveness of
augmentation. For example, if elements executed earlier in
a program’s course of execution are targeted first, and if test
cases are found to reach them, these may enlarge the size
and diversity of the population of test cases reaching other
affected elements later in execution, giving the test gener-
ation algorithm additional power when it considers those –
power that it would not have if elements were considered in
some other order.
F4: Manner in which test cases are utilized. Given a
set of affected elements, a set of existing test cases, and an
augmentation algorithm that uses existing test cases to gen-
erate new ones, there are several ways to interleave the use of
existing and newly generated test cases in the augmentation
process. Consider, for example the following approaches:

1. For each affected element, let the augmentation ap-
proach work with all existing test cases.

2. For each affected element, analyze coverage of existing
test cases to determine those that are likely to reach
it and let the augmentation approach use these.

3. For each affected element, let the augmentation ap-
proach use existing test cases which, based on their
execution of the modified program, can reach it.

4. For each affected element, let the augmentation ap-
proach use existing test cases that can reach it in the
modified program (approach 3), together with new test
cases that have been generated thus far and reach it.

5. For each affected element, begin with approach 4 but
select some subset of those test cases, and let the aug-
mentation approach use these.



Each of these approaches involves different tradeoffs. Ap-
proach 1 incurs no analysis costs but may overwhelm a ge-
netic algorithm approach by providing an excessively large
population. Approach 2 reduces the test cases used by the
genetic algorithm but in relying on prior coverage informa-
tion may be imprecise. Approach 3 passes a more precise set
of test cases on to the genetic algorithm, but requires that
these first be executed on the modified program. None of the
first three approaches takes advantage of newly generated
test cases as they are created, and thus they may experience
difficulties generating test cases for new elements due to lack
of population diversity. Approaches 4 and 5 do use newly
generated test cases along with existing ones, and also use
new coverage information, but differ in terms of the number
of new test cases used, again affecting size and diversity.

Among these four factors, we believe that F4 is of par-
ticular interest, because it provides a range of approaches
potentially differing in cost and effectiveness for using ge-
netic algorithms in augmentation tasks. We thus set out to
perform a study investigating this factor.

4. CASE STUDY
To investigate factor F4, we fix the values of other fac-

tors at specific settings as discussed below. The research
questions we address are:

RQ1: How does factor F4 affect the cost of augmentation
using a genetic algorithm?

RQ2: How does factor F4 affect the effectiveness of aug-
mentation using a genetic algorithm?

4.1 Objects of Analysis
For our experiment, we chose a non-trivial Java software

application, Nanoxml, from the SIR repository [6]. Nanoxml

has multiple versions and more than 7000 lines of code.
Nanoxml is an XML parser that reads string and charac-
ter data as input. It has many individual components which
realize different functionality. Drivers are used to execute
the various components. We focused on performing aug-
mentation as the system goes through three iterations of
evolution, from versions v0 to v1, v1 to v2, and v2 to v3. In
other words, we augmented the test suite for v1 using the
suite for v0, augmented the test suite for v2 using the suite
for v1 and augmented the test suite for v3 using the suite
for v2. The test suites for v0, v1, and v2 contain 235, 188,
and 234 specification-based test cases applicable to the fol-
lowing versions, respectively. These test cases cover 74.7%,
83.6% and 78.5% of the branches in versions v0, v1, and v2,
respectively.

4.2 Genetic Algorithm
To investigate our research questions we required an im-

plementation of a genetic algorithm tailored to fit our object
program. We used an approach suitable to the object, that
could be modified to work on other string-based programs.

Our chromosome consists of strings containing two parts:
test drivers that invoke an application and input files (XML
files) that are the target of the application. The driver is a
single gene in the chromosome. The XML files give way to
a set of genes; one for each character in the file.

We treat each part of the chromosome differently with re-
spect to crossover and mutation. For the test drivers, we
use a pool of drivers that are provided with the application.

We do not modify this population, but rather modify how
it is combined with the input files that are evolved. We
do not perform crossover on the drivers; we use only muta-
tion. When a chromosome’s driver gene is selected for mu-
tation, the entire driver is replaced with another (randomly
selected) valid driver from our pool of potential drivers. This
prevents invalid drivers from being generated.

In the XML part of our chromosome, we perform a one
point crossover by randomly selecting a line number that is
between 0 and the number of lines of the smaller file. We
then swap everything between files starting at that row to
the end of the file. We do not test the file for well-formed
XML, but rather use it as-is. During mutation, each charac-
ter in the input file is considered a unit. We randomly select
the new character from the set of all ASCII upper and lower
case letters combined with the set of special characters found
in the pool of input files, such as braces and underscores.

Our search targets are branches in the program, therefore
for our fitness function we use the approach level described
in [21]. For our initial implementation, for the sake of sim-
plicity and due to the instrumentation overhead required, we
did not combine this with branch distance. We nonetheless
achieved good convergence on these programs; still, research
suggests that branch distance is an important part of the fit-
ness function [2] and we intend to consider it in the future.

The approach level is a discrete count measuring how far
we were from the predicate controlling the target branch in
the CFG when we deviated course. The further away we
are from this predicate, the higher the fitness, therefore we
are trying to minimize this value. If we reach the predicate
leading to our target, the approach level is 0.

For selection, we select the best half of the population to
generate the next generation; we keep the selected chromo-
somes in the new generation. We rank the chromosomes and
divide them into two parts. The first chromosome in the first
half is mated with the first chromosome in the second half,
and the second chromosome in the first half with the second
chromosome in the second half, etc.

We use a three stage mutation. First we select 30% of
the test cases in the population for mutation and mutate
the driver for this test case. Next we select 30% of the lines
in the file part of the chromosome for these test cases, and
then select 30% of the genes in these rows for mutation. Our
stopping criterion is coverage of the required program branch
or ten generations of our genetic algorithm, whichever is
reached first.

Note that we manually tuned the parameters used by our
algorithm so that we can cover as many branches of a pro-
gram for a straight test case generation problem before start-
ing our experiments, and this process also led us to choose
the values of 30/30/30. However, we performed this tuning
for normal test case generation, not augmentation, and we
did it on the base version of the program. This is appropri-
ate where augmentation is concerned, because in a regression
testing setting, a test generation algorithm can be tuned on
prior versions of the system before being utilized to augment
test suites for subsequent modified versions.

4.3 Factors, Variables, and Measures
We describe our factors, variables and measures next.

4.3.1 Fixed Factors
Our goal being to consider only the effects of factor F4, we



selected settings for the other factors described in Section 3
and held these constant.

For better understanding, we use the example in Figure 1
to explain factors. The figure shows portions of two ver-
sions of a program, in a control flow graph notation. The
graph on the left corresponds to an initial version a and the
graph on the right corresponds to a subsequent version b.
Nodes represent statements within methods, and root nodes
are indicated by labels m1 through m6. Solid lines represent
control flow within methods and dashed lines represent calls.
Labels on dashed lines represent test cases in which the as-
sociated method call occurs. From version a to b, changes
occur in method m3 in which one branch is added to call a
new method m6. Other methods remain unchanged.

F1: Algorithm for identifying affected elements.
As affected elements we use a set of potentially impacted

coverage elements in P ′. To calculate these, we use the
analysis at the core of the DejaVu regression test selection
technique [15]. This analysis compares control-flow graph
(CFG) representations of the methods in programs P and
P ′, where P ′ is a modified version of P , by performing a
simultaneous depth-first traversal the CFGs. This analy-
sis identifies for each method m the pairs of corresponding
edges, e ∈ CFG(m, P ) and e′ ∈ CFG(m,P ′), that reach
statements that have been modified. We call e (or e′) a dan-
gerous edge because it leads to code that may cause program
executions to exhibit different behavior. We treat methods
containing dangerous edges as “dangerous methods”, and
then apply an algorithm that walks the interprocedural con-
trol flow graph for P ′ to find the set of affected methods that
can be reached via control flow paths through one or more of
the dangerous methods. All branches contained in affected
methods are targets for augmentation.

In our example, m3′ contains a dangerous edge, so it is
a dangerous method, and m4 and m6 are reachable via in-
terprocedural control flow from the dangerous edge in m3′,
so they are affected methods. Further, m3’s return value to
m1 is affected, so m1 is also affected. Method m2 is called
along the path from m3 to the exit node of m1, so it too is
affected. Continuing to propagate impact, m5 and m4 are
called by m2, so they are both affected. In this example all
methods and all branches contained in them are affected,
but in general this may not be the case.

F2: Characteristics of existing test suites.
Our test suites T are those provided with Nanoxml. As

described above, they are specification-based and operate at
the application testing level, and they achieve branch cover-
age levels ranging from 74.7% to 83.6% on our versions.

F3: Order in which affected elements are considered.
As an ordering, we used an approach that causes individ-

ual methods to be considered in top-down fashion in control
flow, thus approximating the consideration of affected ele-
ments in such a fashion. The approach applies a depth first
ordering to all affected methods in the call graph for P ′. The
effect of this approach is to cause augmentation to be ap-
plied to a particular method only after its predecessors in the
call graph have been considered, which may allow test cases
generated earlier to cover methods addressed later. Note,
however, that this approach may be imprecise in relation
to cycles, and in the order in which it considers individual
branches within individual methods. As an example, in Fig-

ure 1, the ordering of methods in version b imposed by our
approach is m1, m3′, m2, m5, m4 and m6.

4.3.2 Independent Variables
Our independent variable is factor F4, the “treatment of

test cases” factor, and we use the five treatments described
in that section, more precisely described here. To facilitate
the description, Table 1 presents information on the disposi-
tion of test cases achieved by the treatments, applied to the
example in Figure 1.

Treatment 1.
For each affected element e in method m, all existing test

cases in T are used to compose the initial population for
the genetic algorithm. In this case we may have a large
population for the genetic algorithm, which may cause it
to take a relatively long time to complete the augmentation
task for P ′. However, this approach does increase the variety
in the population which could improve the effectiveness of
the search. In Figure 1, for all target branches, we use all
four test cases t1 to t4 to compose the initial population.

Treatment 2.
For each affected element e in method m, all existing (old)

test cases that used to reach m in P , denoted by Told:P , are
used to compose the initial population for the genetic algo-
rithm. In this case since we are using old coverage infor-
mation, we avoid running all existing test cases on P ′ first
and focus on the changes from P to P ′. However, if we have
new methods in P ′, since there are no existing test cases
available to reach them, we lose opportunities to perform
augmentation for them and may lose some coverage.

In Figure 1, in this case, for m1, m2, m3 and m4 we use
all test cases to form the initial population, since all the test
cases reach them in version a. For m5, we use just t1 and t2.
In this case, since there is no method m6 in version a and
there are no existing test cases that reach it in that version,
we cannot do augmentation for m6 directly.

Treatment 3.
For each affected element e in method m, all existing test

cases that reach m in P ′, denoted by Told:P ′ , are used to
compose the initial population for the genetic algorithm. In
this case we need to run all existing test cases on P ′ first
and then we use the new coverage information, which is
more precise than in treatment 2 since these test cases are
near to our target, and this helps the genetic algorithm in
its search. Also, Told:P ′ ⊆ T , so we may lose some variety in
the population, but we may save time in the entire process
since we have fewer test cases to execute in each iteration.

Considering Figure 1, when we run all existing test cases
on version b, some of them take new execution paths. Meth-
ods m3, m4 and m6 contain uncovered branches after check-
ing the coverage of all existing test cases on b. For m3, all
existing test cases still reach it in b so they are used in its
initial population. Because of the change in m3, all test
cases that used to reach m3 take different paths and reach
m6 so they are used to form the initial population for m6.
There are only two test cases, t2 and t4 from m2, that reach
m4 and they are used to form the initial population for m4.

Treatment 4.
For each affected element e in method m, all existing test

cases that reach m in P ′ (Told:P ′) and all newly generated
test cases that obtain new coverage in version b, denoted
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Figure 1: Partial control flow graphs for two versions of a program

Table 1: Disposition of Test Cases Under the Five Treatments for the Example of Figure 1

Treatment m1 m2 m3 m4 m5 m6
1 t1, t2, t3, t4 t1, t2, t3, t4 t1, t2, t3, t4 t1, t2, t3, t4 t1, t2, t3, t4 t1, t2, t3, t4
2 t1, t2, t3, t4 t1, t2, t3, t4 t1, t2, t3, t4 t1, t2, t3, t4 t1, t2
3 - - t1, t2, t3, t4 t2,t4 - t1, t2, t3, t4
4 - - t1, t2, t3, t4 t2, t4, t1′ - t1, t2, t3, t4
5 - - t1, t2, t3, t4 t2, t1′ - t1, t2, t3, t2′

by Tnew:P ′ , are used to compose the initial population for
the genetic algorithm. Here, we also need to run all exist-
ing test cases first to obtain their new coverage information.
Adding new test cases brings greater variety to the popu-
lation, which increases the size of the population but may
increase running time.

In Figure 1, the same test cases used in treatment 3 are
used to form the initial population for m3, since when we do
augmentation for m3 there have not been test cases gener-
ated. We generate a test case t1′ for m3 to cover the branch
that calls m4, so when we do augmentation for m4 we in-
clude t1′ with t2 and t4 to form the initial population for it.
For m6, t1′ does not reach it so we still use only the existing
test cases that reach it in its initial population.

Treatment 5.
For each affected element e in method m, all existing and

generated test cases generated that reach m in P ′ (Told:P ′ ∪
Tnew:P ′ ) are considered applicable, but before being utilized
they are considered further. A reasonable size of popula-
tion is determined (in our case we chose the size that would
be required by using treatment 3) and initial test cases are
selected from the applicable test cases to compose the pop-
ulation. In this case, a good selection technique should be
used to choose test cases that form a population which has
the best variety for genetic algorithm. In our case, we chose
test cases according to their branch coverage information on
P ′. More precisely, if we need to pick s test cases, we do the
following:

• Find all paths from the root of P ’s call graph to m.
• Put the methods along these paths, including m, into

set Mpre.
• Find branches in all methods in Mpre.
• Order the candidates on these branches in terms of

coverage
• Pick the first s of the ordered candidates.

In Figure 1, m3 is in the same situation as with treat-
ment 4, so the same test cases are used here. For m4, when

we perform augmentation for m3 we generate thousands of
test cases, some that increase coverage such as t1′ and oth-
ers that cover branches covered by other existing test cases.
Next, we order all test cases that reach m3 and select two
that cover most of the branches in m1, m2, m3 and m4. We
select t2 and t1′ here, since they both pass through m1, cover
one branch in m2 and m3′ separately, and pass through one
of the branches in m4. The same procedure is followed on
m6. For example, t2′ and t3′ are generated and reach m6
and including these with all existing test cases we select t1,
t2, t3 and t2′ to form the initial population for m6.

4.3.3 Dependent Variables and Measures
We chose two dependent variables and corresponding mea-

sures to address our research questions. The first variable
relates to costs associated with employing the different test
case treatments and the second relates to the effectiveness
associated with the different treatments.

Cost of employing treatments.
To measure the cost of employing treatments, one ap-

proach is to measure the execution time of the augmentation
algorithm under each treatment. However, measuring time
in a manner that facilitates fair comparison requires the use
of identical machines, and for the sake of parallelism we ran
our experiments on a set of machines and under different
system loads.

An alternative approach to cost measurement involves
tracking, under each test case treatment, the number of in-
vocations by augmentation techniques of the operations that
most directly determine technique cost. For the augmenta-
tion technique that we consider the operation that matters
most involves the execution of test cases by the genetic al-
gorithm, because if that algorithm finds a target soon it will
use fewer iterations, execute fewer test cases and require less
running time. Thus, in this study, we use the number of test
cases executed by the genetic algorithm as a measure of cost.
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Figure 2: Costs of applying the five treatments, per
treatment and version

Effectiveness of employing treatments.
To assess the effectiveness of using different test case treat-

ments, we measure the progress that augmentation can make
toward its coverage goal under each treatment in terms of
the numbers of branches covered.

4.4 Experiment Setup
To conduct our study we performed the following steps.

For each vk (0 ≤ k ≤ 2) we instrumented and created the
CFG for vk using Sofya [9]. We then executed vk on the
test suite Tk for vk, collecting test coverage for use in the
next step. Next, we created the CFG for vk+1 and deter-
mined the affected methods and target coverage elements
(branches) in vk+1 using the methodology described above.
These target elements are the affected elements we attempt
to cover with our genetic test case generation algorithm un-
der the different test case treatments. Further, because a
genetic algorithm can fare differently on different runs, for
each test case treatment we executed the test case gener-
ation algorithm fifteen times, and we consider data taken
from all of these runs in our subsequent analysis.

4.5 Study Limitations
There are several limitations to our results. The first is

the representativeness of our object program, versions, and
test suites. We have examined only one system, coded in
Java, and other systems may exhibit different cost-benefit
tradeoffs. We have considered only three pairs of versions of
this subject, and others may exhibit different tradeoffs. A
second threat pertains to algorithms; we have utilized only
one variant of a genetic test case generation algorithm, hand-
tuned, and under particular settings of factors F1, F2, and
F3. Subsequent studies are needed to determine the extent
to which our results generalize.

Another limitation involves possible faults in the imple-
mentation of the algorithms and in tools we use to perform
evaluation. We controlled for this through extensive func-
tional testing of our tools.

Finally, there are other metrics that could be pertinent to
the effects studied. Given tight implementations and con-
trols over environments, time could be measured. Costs of
engineer time in employing methods could also matter.

4.6 Results and Analysis
Figures 2 and 3 present boxplots showing the data gath-

ered for our independent variables. The first figure plots the
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Figure 3: Coverage obtained in applying the five
treatments, per treatment and version

Table 2: Results of ANOVA Analysis
Df Sum Sq Mean Sq F value Pr

v1 cost 4 4.04e+10 1.01e+10 109.43 <2.2e-16
v2 cost 4 3.18e+10 7.96e+09 1027.30 <2.2e-16
v3 cost 4 6.13e+10 6.13e+10 68.40 <4.4e-12
v1 cov 4 459.15 114.79 36.84 <2.2e-16
v2 cov 4 124.86 31.21 7.83 2.9e-0.5
v3 cov 4 427.20 106.80 35.19 6.6e-16

number of test cases executed (vertical axis) against each
treatment (TR1, TR2, TR3, TR4, and TR5) per version
(v1, v2 and v3). The second figure plots the number of cov-
ered branches against each treatment per version.

4.6.1 RQ1: Costs of augmentation
To address RQ1 (cost of the treatments) we compare the

number of test cases executed by the treatments. As the
boxplots show, in all cases the number of test cases executed
by TR1 is substantially greater than the number executed
by the other four treatments. On versions v1 and v2, but
not v3, TR2 results in the execution of the fewest test cases.
TR5 appears to differ slightly from other treatments on v2

and v3, but in other cases treatment results appear similar.
We performed per version ANOVAs on the data for a sig-

nificance level of 0.05; Table 2 reports the results. The first
three rows pertain to cost comparisons. As the p−values
in the rightmost column show, there is enough statistical
evidence to reject the null hypothesis on all three versions;
that is, the mean costs of the five different treatments are
different in each case.

The ANOVA evaluated whether the treatments differ, and
a multiple comparison procedure using Bonferroni analysis
quantifies how the treatments differ from each other. Ta-
ble 3(A) presents the results of this analysis for the three
versions considering treatment cost, ranking the treatments
by mean. Grouping letters (in columns with header “Gr”)
indicate differences: treatments with the same grouping let-
ter were not significantly different. In v1 the five treatments
are classified into three groups: TR1 and TR2 are most and
least costly, respectively, while TR3, TR4 and TR5 are in
a single group intermediate in cost. In v2 the treatments
are classified into four groups; TR1 remains most costly and
TR2 least costly, but TR3, TR4, and TR5 form two over-
lapping classes in terms of cost, with TR3 significantly more



Table 3: Results of Bonferroni Means Test on Cost and Coverage

(A) cost (B) coverage
v1 v2 v3 v1 v2 v3
Mean Gr Mean Gr Mean Gr Mean Gr Mean Gr Mean Gr

TR2 11136 A TR2 29960 A TR4 46522 A TR1 31.9 A TR1 29.4 A TR1 35.0 A
TR3 43355 B TR5 49347 B TR2 46752 A TR4 30.6 A, B TR5 28.9 A TR3 29.1 B
TR4 43914 B TR4 51811 B, C TR3 47262 A TR5 29.9 B TR3 28.1 A TR4 29.1 B
TR5 45086 B TR3 52569 C TR5 48961 A TR3 29.7 B TR4 27.9 A TR2 29.0 B
TR1 84302 C TR1 93048 D TR1 149856 B TR2 24.7 C TR2 25.7 B TR5 28.6 B

costly than TR5. In v3, TR1 is most costly and other tech-
niques are classified into a single less costly group.

4.6.2 RQ2: Effectiveness of augmentation
Next we explore RQ2, which involves the effectiveness of

the five treatments in terms of achieving branch coverage
when augmenting test suites. As mentioned above, after
running all existing test cases we found that 68 branches
needed to be covered for v1, 77 for v2 and 100 for v3. Among
these, several branches are difficult to cover in each version,
since Nanoxml is a parser for XML and often requires spe-
cific characters at specific positions which can be difficult to
satisfy. Also, in v2 and v3, since the test drivers we used
are for previous versions and we did not mutate them to
trigger some methods in the new version that are important
for improving coverage, we were unable to cover 13 and 3
branches, respectively.

The boxplots in Figure 3 show the numbers of branches
covered by each treatment in the fifteen runs for the three
versions. On the three versions, TR1 covers the most branches.
For v1 and v2, TR2 covers the fewest branches and TR3,
TR4 and TR5 have similar results, while in v1, TR4 appears
better and in v2 TR5 appears better. For v3, the other four
treatments return similar results.

Table 2 displays the results of ANOVAs on coverage data
for the versions (bottom three rows). The p−values indi-
cate that the five treatments do have significant effects on
coverage for all three versions.

Table 3(B) presents the results of the Bonferroni com-
parison. The results differ somewhat across versions. In
all versions, TR1 is among the most effective treatments,
though it shares this with TR4 on v1 and with all but TR2
on v2. Similarly, TR2 is always among the least effective
treatments, though sharing this with others on v3. TR3,
TR4, and TR5 are always classified together.

5. DISCUSSION
Our results show that, for the object program and versions

considered, TR1 consistently requires significantly more time
to execute but also achieves the best coverage (in terms
of means, with significance on one version) than the other
treatments. TR2 is also significantly less costly and effective
on two of the three versions than other treatments, and on
the third version is in the equivalence class of least costly
and least effective treatments. The other three treatments
behave somewhat differently across versions and we now ex-
plore reasons for some of the observed behaviors.

Across all versions, TR4 works comparatively well in terms
of cost and coverage according to Table 3(A) and Table 3(B).
It uses a smaller population than TR1, and this allows it to
save time. Compared to TR3, it has more test cases which
does bring greater diversity into its population, since these

test cases improve coverage and help the genetic algorithm
find targets sooner. However, it is no more costly than TR3,
and this is arguably due to the presence of many unreach-
able branches. When the genetic algorithm tries to cover a
branch there are two stopping criteria: either finding a test
case to cover the target or reaching the maximum number
of iterations without covering the target. For these unreach-
able branches TR4 may have a larger population than TR3;
however, since the branches are unreachable the additional
test cases are not useful but require time to run. Therefore
the time consumed counteracts the time that is saved by
covering other branches sooner.

The data shows that on v3, all five treatments improve
coverage by only 30%, which leaves a lot of branches uncov-
ered. We checked all the uncovered branches. Other than
ten determinably unreachable branches, many of the uncov-
ered branches are new in v3 and no existing test cases reach
them. We believe that this relates to factor F2, the char-
acteristics of existing test suites. The existing test suite for
v3 covers a relatively small portion of v3’s code, and thus
greater effort is required to augment the test suite for that
version. At the same time, this relatively poor test suite
offers little diversity in terms of coverage of v3, and this re-
stricts the genetic algorithm’s performance. We believe this
is the reason that all treatments achieve lower coverage on
v3 than on the other versions.

The foregoing can also can explain why TR2 behaves simi-
lar to treatments TR3, TR4, and TR5 on v3. After updating
all the existing test cases’ coverage on v3, many new meth-
ods in that version are still unreachable using the existing
test cases. In this situation, TR3 is similar to TR2. Since
we do not generate many new test cases, when we use TR4,
the few new test cases do not add much diversity.

In v3, TR1 is most effective but is three times more ex-
pensive than other techniques, while on the other two ver-
sions TR1 is less than two times more expensive than other
techniques. We believe this is because the relatively poor
starting test suite leaves many affected methods unreach-
able. In TR1 for all targets in these methods, we use all
existing test cases as the base for the genetic algorithm.
Since they never reach these methods, our fitness function
treats them all equally (the fitness function measures their
performance in the method only). This leaves nothing to
guide the evolution. For these branches, TR1 just iterates
until it reaches the maximum numbers as explained above,
which potentially increases its cost. To solve this problem,
in addition to a better starting test suite, we may need to
find a fitness function that works interprocedually.

Treatment TR5 did not work as expected. We had con-
jectured that it would have strengths common to both TR3
and TR4, namely, greater diversity in initial population and
smaller size. However, its cost and effectiveness are not sig-
nificantly different than those of TR3 and TR4. We may



require a better technique for selecting test cases to compose
the initial population for the genetic algorithm. For exam-
ple, genetic algorithms require diversity in the chromosome
itself, containing all elements required in the application,
instead of simply considering its coverage on the code.

6. CONCLUSIONS AND FUTUREWORK
In this paper, we described four factors that we believe can

influence the cost-effectiveness of test suite augmentation us-
ing genetic algorithms, providing reasons for this belief. We
presented the results of a case study exploring one of those
factors, involving the treatment of existing and newly gen-
erated test cases, that we believe could be particularly sig-
nificant in its effects. Our results show that different treat-
ments of test cases can affect the augmentation task when
applying a genetic algorithm for test case generation during
augmentation.

At present, the primary implications of this work are for
researchers. Our results indicate that when attempting to
integrate genetic test case generation algorithms into the
test suite augmentation task, it is important to consider the
treatment of existing and newly generated test cases, and
it may also be important to consider the other factors that
we have presented. Furthermore, when empirically studying
such techniques, to facilitate repeatability and understand-
ing of results, researchers need to explicitly identify the set-
tings chosen for the various factors.

In future work, we intend ourselves to study the factors we
have identified more closely, both by extending the set of ob-
jects we study, and by varying different factors and studying
their influence on augmentation tasks. We also wish to im-
prove our fitness function by the including branch distance,
and to study the use of other forms of test case generation
algorithms, and compare them to genetic algorithms in the
augmentation context. Through such study we hope to in-
fluence not just research on, but also the practice of test
suite augmentation.
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