Directed Test Suite Augmentation:
Techniques and Tradeoffs

Zhihong Xut, Yunho Kim*, Moonzoo Kim*, Gregg Rothermelf, Myra B. Cohenf

TDepartment of Computer Science and Engineering
University of Nebraska - Lincoln
{zxu,grother,myra}@cse.unl.edu

ABSTRACT

Test suite augmentation techniques are used in regressstng
to identify code elements affected by changes and to gentast
cases to cover those elements. Our preliminary work sugdjest
several factors influence the cost and effectiveness oftéstaug-
mentation techniques. These include the order in whichcetdte
elements are considered while generating test cases, theemia
which existing regression test cases and newly generatedases
are used, and the algorithm used to generate test caseis Wwotk,
we present the results of an empirical study examining tfase
tors, considering two test case generation algorithmsc@anand
genetic). The results of our experiment show that the prirfe-
tor affecting augmentation is the test case generatiomittigo uti-
lized; this affects both cost and effectiveness. The mamn&hich
existing and newly generated test cases are utilized alsa bab-
stantial effect on efficiency but a lesser effect on effestass. The
order in which affected elements are considered turns obave
relatively few effects when using concolic test case geimrabut
more substantial effects when using genetic test case @jérer

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Experimentation

1. INTRODUCTION

Software engineers use regression testing to validateaxdtas
it evolves. To do this cost-effectively, they often beginrbpning
existing test cases. Existing test cases, however, mayenatle-
quate to validate the code or system behaviors that arentriese
new version of a systenfest suite augmentation techniquesy.,
[2, 32, 42]) address this problem, by identifying where nesat t
cases are needed and then creating them.

Despite the need for test suite augmentation, most reseaneh
gression testing has focused on using existing test cabese Tias
been research on approachesidientifying affected elemengsode
components potentially affected by changes) [2, 5, 20, 2D,®it
these approaches leave the task of generating new testtoases

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

FSE-18November 7-11, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-60558-791-2/10/11 ...$10.00.

*Computer Science Department
Korea Advanced Institute of Science and Technology
kimyunho@kaist.ac.kr, moonzoo@cs.kaist.ac.kr

gineers. There has been research on automatically gangetast
cases given pre-supplied coverage goals (e.g., [13, 2873} ,but
this research has not attempted to integrate the test caseagjen
task with reuse of existing test cases for augmentation.

In principle, any test case generation technique could lee us
to generate test cases for a modified program. We believe; how
ever, that test case generation techniques that leveréggxest
cases hold the greatest promise where test suite augneentsti
concerned. This is because existing test cases providk aagtace
of data on potential inputs and code reachability, and iexjsest
cases are naturally available as a starting point in theessgrn
testing context. Further, recent research on test caseajemehas
resulted in techniques that rely on dynamic test execuéind,such
techniques can naturally leverage existing test cases.

In prior work [42] we developed directed test suite augmen-
tation technique The technique begins by using a regression test
selection algorithm [31] to identify code affected by chesgnd
existing test cases relevant to testing that code. The igobithen
uses the identified test cases to seed a concolic test casatien
approach [34] to create test cases that execute the affeotisd
A case study shows that the approach improves both the efficie
of the technique and its ability to cover affected elemehRtsther
work [41] examined a similar approach to augmentation using
genetic algorithm for test case generation.

While these initial results are encouraging, our attempisré-
ate augmentation techniques suggest that several fadarpa@
tentially influence the cost and effectiveness of thosertiegles.
Three factors in particular appear to be: (1) the order inctviaif-
fected elements are considered while generating test,d@jdbe
manner in which existing and newly generated test casessa u
and (3) the algorithm used to generate test cases.

To create effective test suite augmentation techniquesesd to
understand the influence of the foregoing factors. Baseduoh s
an understanding, we should be better able to create augtioent
techniques that leverage test cases in a cost-effectiveenakiVe
have therefore designed and conducted a controlled exgetiim-
vestigating these factors in the context of test suite augmatien.
Our experiment considers concolic and genetic test casa ajion
algorithms, two different orderings of affected elemeumtsd two
different manners of using existing test cases. We consdeh
relevant combination on these on four object programs, ureas
the effectiveness of the approaches in terms of code coveaagl
their costs in terms of the time required to perform augntenta

The results of our experiment show that among the factotts tha
we consider, the primary factor affecting augmentatiomésalgo-
rithm utilized to generate test cases; this affects botmrengation
cost and effectiveness. The manner in which existing andynew
generated test cases are utilized also has a substantie eiff ef-

ficiency but a lesser effect on effectiveness. The order iichivh
affected elements are considered turns out to have rdiafiee
effects when using concolic test case generation, but nutrstan-
tial effects when using genetic test case generation.

This work makes several contributions. (1) We provide a new
formalized algorithm for performing augmentation usingieas
test case generation algorithms and various settings ehpatly
influential factors. (2) We report results on the first coliee ex-
periment considering test suite augmentation, and thesfict ex-
periment to compare different test case generation teabsidn
the augmentation context (genetic and concolic). (3) Osulte
provide additional evidence that directed test suite augation
techniques can be effective. (4) Our results reveal fadtasre-
searchers and experimentalists should consider whenatttenio
create and study directed test suite augmentation teabsiqu

2. BACKGROUND
2.1 Test Suite Augmentation

Let P be a program, lef”’ be a modified version of’, and
let T be a test suite fo?. Regression testing is concerned with
validatingP’. To facilitate this, engineers often begin by reusing
and a wide variety of approaches have been developed foeread
such reuse more cost-effective via regression test (RT§) (28,
31]) and test case prioritization (e.g., [15, 23, 38]).

Test suite augmentatidachniques, in contrast, are not concerned
with reuse ofT. Rather, they are concerned with the tasks of
(1) identifying affected elementportions of P’ or its specifica-
tion for which new test cases are needed), and theoré2fing or
guiding the creation of test cases that exercise these aksme

Various algorithms have been proposed for identifying ciéfd
elements in software systems following changes. Some oétftd

operate on levels above the code such as on models or specifica

tions, but most operate at the level of code, and in this pager
focus on these. Code level techniques [5, 20, 30] use vasinak
yses, such as slicing on program dependence graphs, to sglec
isting test cases that should be re-executed, while alsuifdieg
portions of the code that are related to changes and shotddtesl.
However, these approaches do not provide methods for gengra
actual test cases to cover the identified code.

Four recent papers [2, 29, 32, 42] specifically address téfs s
augmentation. Two of these [2, 32] present an approach timat ¢
bines dependence analysis and symbolic execution to fgehtins
of data and control dependencies that, if tested, are likexer-
cise the effects of changes. A potential advantage of thpsosgh
is a fine-grained identification of affected elements; havethe
papers present no specific algorithms for generating testscaA
third paper [29] presents an approach to program differgnasing
symbolic execution that can be used to identify affectedhelats
more precisely than [2, 32], and yields constraints thatmaimput
to a solver to generate test cases for those requiremenigevdq
this approach is not integrated with reuse of existing tases.

As mentioned in Section 1, the test suite augmentation agpro
that we presented in [42] integrates an RTS technique [3tH an
adaptation of the concolic test case generation approasepted
in [34]. This approach leverages test resources and daténebit
from prior testing sessions to perform both the identifmatf cov-
erage requirements and the generation of test cases totbeser.
The augmentation approach presented in [41] operatesasiynil
but uses a genetic algorithm to generate test cases. Casessdf
the approaches shows that both can be effective and effiBettt
of these studies, however, are small, and neither study amsap

multiple augmentation approaches. Further, while [41fcdbss
potentially influencing factors it investigates only one.

2.2 Test Case Generation

While in practice test cases are often generated manuladiye t
has been a great deal of research on techniques for autoteated
case generation. For example, there has been work on gegerat
test cases from specifications, from formal models and bgiaian
or quasi-random selection of inputs (e.g., [8, 24, 27, 36]).

In this work we focus on code-based test case generation tech
nigues, many of which have been investigated in prior wonkofg
these, several techniques (e.g., [9, 12, 19]) use symbdicution
to find the constraints, in terms of input variables, that nhassat-
isfied in order to execute a target path, and attempt to saige t
system of constraints to obtain a test case for that path.

While the foregoing test case generation techniques atie,sta
other techniques make use of dynamic information. Exenutio
oriented techniques [22] incorporate dynamic executidarima-
tion into the search for inputs, using function minimizatio solve
subgoals that contribute toward an intended coverage gaadl-
oriented techniques [17] also use function minimizatiorstdve
subgoals leading toward an intended coverage goal; howiasr
focus on the final goal rather than on a specific path, conaimgr
on executions that can be determined through analysis &ilpps
influence progress toward that goal.

Several test case generation techniques use evolutionseach-
based approaches (e.g., [4, 13, 26, 37]) such as genetiithigs,
tabu search, and simulated annealing to generate test cates
work [7, 10, 18, 33, 34] combines concrete and symbolic test e
ecution to generate test inputs. This second approach isrkno
asconcolic testingor dynamic symbolic executipand has proven
useful for generating test cases for C and Java programsaghe
proach has been extended to generate test data for datadpdise a
cations [16] and for Web applications using PHP [3, 40].

3. AUGMENTATION TECHNIQUES

We now describe the augmentation techniques that we canside

3.1 Augmentation Basics

3.1.1 Coverage Criterion

We are interested in code-based augmentation technigods, a
these typically involve specific code coverage criterigthia work,
we focus on code coverage at the levelbofinches that is, out-
comes of predicate statements. While stronger than statesoe-
erage, branch coverage is more tractable than criteriaasiglath
coverage, and more likely to scale to larger systems.

3.1.2 Identifying Affected Elements

As noted in Section 1, test suite augmentation consists of tw
tasks, identifying affected elements and creating testcHsat ex-
ercise these elements. In this work the factors we are stgdyon-
cern the second of these tasks; thus, we choose a typicaraod p
tical approach for performing the first. Given progrdfand its
test suitel’, and modified versio®’ of P, to identify affected ele-
ments inP’ we execute the test casesliron P’ and measure their
branch coverage. Any branchi# that is not covered is an affected
element. This approach corresponds to the common “refiése-a
gression testing process in which existing test cases aeuted
on P’ first, and then, augmentation is performed where needed.

3.1.3 Ordering Affected Elements
Our augmentation techniques operate on lists of affected el
ments, and we believe that the order in which these elemeats a

considered can affect the techniques. In this work, we tiyate 3.2 Genetic Test Suite Augmentation
the use of a depth-first order of affected elements. Genetic algorithms for structural test case generatiombeih
The depth-first order (DFO) of nodes in a graph is the reverse gan initial (often randomly generated) test data populagiotevolve
of the order in which nodes are last visited in a preorderetrsal the population toward targets that can be blocks, branchpaths
of the graph [1]. In dataflow analysis, DFO causes nodes teat a j, 5 program [25, 35, 39]. To apply such an algorithm to a pro-
them, and can speed up the convergence of an analysis. We conmgasome, and a fitness function must be provided that defings ho
jecture that by considering affected elements in this ordermay well a chromosome satisfies the intended goal. The algonittom
be able to speed up the process of generating test casesiseeca ceeds iteratively by evaluating all chromosomes in the fzdjmn
test cases generated for elements earlier in flow may inE@tlen ang then selecting a subset of the fittest to mate. These are co
cover elements occurring later in flow, obviating the needdo- bined in a crossover stage where information from one hatfief
sider those later elements again. chromosomes is exchanged with information from the othéthia
program’s interprocedural control flow graph (ICFG). Wetfinsild the new population are mutated to add diversity back intqptie
the ICFG, then we traverse the ICFG recording the branclagsvi ulation. This concludes a single generation of the algonitfhe
visit (both forward and while backtracking). This recordatbr- process is repeated until a stopping criterion has been met.
mation lets us calculate the reverse of the order in whichdiras Algorithm 2 describes the genetic algorithm used in our expe
nated as affected to obtain our ordered list of affected efes TC, a set of affected elemenf3, ;, an uncovered target branch
b, and an iteration limiti;.-. The algorithm returns a set of new
test caseVT'C, consisting of all test cases generated that covered
any previously uncovered branchesin
Instead of using random test cases to form an initial pojmuat
we take advantage of existing test cases to seed the papulsie
run this algorithm for each target bransh As the starting pop-
ulation, we select all of the test cases reaching methgd the
method that contain ; this determines the population size.

3.1.4 Main Augmentation Algorithm

Algorithm 1 controls the augmentation process, beginniity w
an initial set of existing test case€B(, an ordered set of affected
elements (target branched}, ¢y, .., and an iteration limitse,.
The algorithm assignB.sy,,,, 10 Basy (line 1), which henceforth
contains a set of affected elements still needing to be edverhe
main loop (lines 3-16) continues until we can no longer insee
coverage (which may result due to reaching the iteratiorit im
the test case generation routines). Within this loop, fehdaanch
bt € Bayy, if b: is not covered we call a test case generation algo-
rithm to generate test cases (line 7). If the algorithm ss&ftdly
generates and returns new test cases this means that atdesest
new coverage has been achieved in the program (althbugtay
or may not have been covered in the process).

Input: a set of test caseBC, a set of affected elements
B,¢, an uncovered target branthe B,yy, and
an iteration limitn¢er

Output: a set of new test casés7'C'

TCeur = TC [l setof current target test cases

NTC =0 [/l set of new test cases generated

TC,, = {test cases ifi"C..., that reach methoth,,, the
method containing.}

NR

Input: set of existing test casd3C, ordered set of affected 8
elementsB,yy,, ,, and an iteration limit;er.

Output: T'C augmented with new test cases 4 ;P 01’6”““0” =TC,
5 1=

1 Bayy = Bajfin: 6 repeat
2 NewCoverage=true; 7 Population=CalculateFitnes${opulation)
s while NewCoverage do 8 Population=SelectPopulation)
a NewCoverage=false 0 Population=CrossoverPopulation)
5 foreach b, € B,y do 10 Population=MutatePopulation)
6 if NotCoveredhen n 1=1i4+1
7 NewTests =AUGMENT(T'C, Bayy, bt, niter) 12 foreach tc € Population do
8 if NewTests !=Emptythen 13 Execute {c)
9 | NewCoverage=true 14 if tc covers new branches i, then
10 end 15 UpdateB.yy
1 if UseNew then 16 NTC = NTC U {tc}
12 | TC=NewTests UTC . end
13 end 18 end
1 end 19 UNtil i > niger OF by is covered:
s | end o return NTC

1 end
Algorithm 1: Main Augmentation Algorithm

Algorithm 2: GENETIC-AUGMENT algorithm

To accommodate our other factor of concern — the manner in The algorithm repeats for a number of generations (set by the
which existing and new test cases are used — we allow for the variablen;...) or until b, is covered. The first step (line 7) is to cal-

possibility of adding the newly generated test cases backaar
set of available test cases. If the boolean flageNew is set to
true, this causes the algorithm to combine the newly geeértaist
cases with the original test cases (lines 11-12), and thieméwly
formedT'C is used for the next iteration of our algorithm.

We next describe two different test case generation alyost
that can be invoked at line 7 to generate new test cases.

culate the fitness of all test cases in the population. Sheéithess
of a test case depends on its relationship to the branch weyare

to cover, calculating the fitness requires that we run thiecese.
(For test cases provided initially we can use coverage imébion

obtained while performing the prior execution®, which in our
case occurred in conjunction with determining affectednelets.)
Next a selection is performed (line 8), which orders and skedhe

best half of the chromosomes to use in the next step. Thisl@opu
tion is divided into two halves (retaining the ranking) ahe first
chromosome in the first half is mated with the first chromosome
in the second half and this continues until all have been dnate
Next (line 10) a small percentage of the population is mdtaaé-

ter which all test cases in the current population are erecutf

b: is covered or the iteration limit is met we are finished (lir83,1
otherwise we iterate.

3.3 Concolic Test Suite Augmentation

Concaolic testing (concolic execution) [7, 18, 34] conchetex-
ecutes a program while carrying along a symbolic state andlsi
taneously performing symbolic execution of the path thdueimg
executed. It then uses the symbolic path constraint gathteong
the way to generate new inputs that will drive the progranmgla
different path on a subsequent iteration, by negating aiqatslin
the path constraint. In this way, concrete execution guidesym-
bolic execution and replaces complex symbolic expressiatts
concrete values when needed to mitigate the incompleteri¢iss
constraint solvers [34]. Conversely, symbolic executieiph to
generate concrete inputs for the next execution to increager-
age in the concrete execution scope.

In the traditional application of concolic testing, testeaeuse
is not considered, and the focus of test generation is onqmath
erage. First, a random input is applied to the program andlthe
gorithm collects the path condition for this execution. Neke
algorithm negates the last predicate in this path condaiwth ob-
tains a new path condition. Calling a constraint solver s plath
condition yields a new input, and a new iteration then conmasn
in which the algorithm again attempts to negate the lastipasel
If the algorithm discovers that a path condition has beememc
tered before, it ignores it and negates the second-to-fasligate.
This process continues until no more new path conditionshean
generated. Ideally, the end result of the process is a sesbEases
that cover all paths.

In this work, we alter the foregoing approach to functiontie t
context of the main augmentation algorithm presented ini@ec
3.1.4; this includes leveraging existing test cases andatipg on
an ordered list of affected elements, at the level of brantkiage.

We use the following notation:

e CFGp = (Np, Ep) is acontrol flow graph of a target pro-
gram P where Np is a set of nodes (statementsit) and
Ep is a set of edges (branchesi) betweenNp.

e A path conditionpc of a target progranP is a conjunction
bi, A biy A ...b;, Whereb;, ,...b;, are edges itfp and exe-
cuted in order. Note that can be larger thaj¥»|, since one
branch in a loop body oP may be executed multiple times
(i.e., itis possible thah;, = b;, for k #).

e DelNeg(pc, j) generates a new path condition from a path
conditionpc by negating a branch occurring at tjia posi-
tion in pc and removing all subsequent branches. For exam-
ple, DelNeg(bil A bi2 A\ bi3 s 2) = bi] A\ —|bi2.

e bis a paired branch of a branéli.e., if b is at hen branch,
bis theel se branch).

e LastPos(b, pc) returns a last positio of a branchb;; in a
path conditiorpc whereb = b;; (i.e.,Vj < k < n.b; #b).

e Solve(pc) returns a test case satisfying the path condition
if pcis satisfiable; UNSAT otherwise.

Algorithm 3 describes our concolic augmentation algoritfine
algorithm accepts the same four parameters accepted bgnietig
algorithm, and returns a sa&t7'C' of new test cases. Lines 4-23 de-
tail the main procedure of the algorithm.

Input: a set of test caseéBC', a set of affected elements
B¢, an uncovered target branthe By, and
an iteration limitn;¢e,

Output: a set of new test cas@éT'C

1 TCeur = TC [l asetof the current target test cases
2 NTC =0 // aset of all new test cases generated

3 repeat

4 NTC..~ = 0/l aset of newly generated test cases irj

the current execution of line 3to line 23
5 TCy; = { all test cases i C'...- that reactb, }

if TCy = 0 then
| return@
end
PGy, = { path conditions obtained from executing
test cases iff'Cy}
foreach pc € PCy;-do
foreach i = Lasti’:’os(b_,g7 pc) 104 — nitertl do
if ©> 0then
pc’ = DelNeg(pc,i)
tenew = Solve(pc')
if tcnew 7 UNSAT andtcne., covers
uncovered branches i, ¢ then
UpdateB,y ¢
NTCeur = NTCeur U {tcnew}
end
end

© ® N o

10
1
12
13

14
15

16
17
18
19

20 end

end

TCC’LLT' = NTCcu'r‘

NTC = NTCUNTCcyr
2 until NTCeyr = 0;

21
22
23

s return NTC
Algorithm 3: CONCOLIC-AUGMENT algorithm

Initially, the current target test cas€€’....- (from which new test
cases are generated) are the old test cagegline 1) andNTC
is empty (line 2). The start of the main procedure resetsehefs
newly generated test cas®&l'C....- (line 4) and selects test cases
that can reach, (the paired branch df;) from among the current
target test caseBC.. (line 5). If there are no such test cases, the
algorithm terminates (lines 6-8). If there are such tesesathe
algorithm obtains path conditions by executing the targetyam
with selected test cases (line 9). From each obtained pattitemn
pc, the algorithm generates;... new path conditions as follows.
Suppose the last occurrencebpfs located in thenth branch ope.
Then, the algorithm generatas... new path conditions (lines 11-
19) by negatings,, , bs,, ., .-, L and removing all fol-
lowing branches imc, respectively (line 13). If a newly generated
path conditionpc’ has a solutiortc,e., (a new test case) (line 14)
andtcnew covers uncovered branchesihyss (line 15), Bqyy is
updated to reflect the new status of coverage (line 16){and, is
added to the set of newly generated test c&€ ..., (line 17).

Note that the iteration limit.;;..- parameter is a “tuning” param-
eter that determines how far back in a path condition the amgm
tation approach will go, and in turn can affect both the efficy
and the effectiveness of the approach.

4. EMPIRICAL STUDY

Our goal is to investigate the two augmentation techniqoes c
sidered, focusing on the factors we have discussed. We thaes p
the following research questions.

RQ1: How does the order of consideration of affected elements
affect augmentation techniques?

RQ2: How does the use of existing and newly generated test cases

affect augmentation techniques?
RQ3: How do genetic and concolic test case generation tech-
niques differ in the augmentation context?

4.1 Objectsof Analysis

To facilitate techniqgue comparisons, programs must baisleit
for use by both implementations. Also, programs must beigeal
with test suites that need to be augmented. To select apat@pb-
jects we examined C programs available in the SIR reposjiatly
We selected four programs (see Table 1), each of which i-avai
able with a large “universe” of test cases, representingdases
that could have been created by engineers in practice fee -
grams to achieve requirements and code coverage [21].

The object programs that we selected do not have actualseque
tial versions that can be used to model situations in whichugion
renders augmentation necessary. We were able, howevesfite d
a process by which a large number of test suites that needentgm
ing, and that possess a wide range of sizes and levels ofagwer
adequacy, could be created for the given object prograniovess
This lets us model a situation where the given versions haleed
rendering prior test suites inadequate, and require auigtiam

To create such test suites we did the following. First, fazhea
object programP we used a greedy algorithm to sam?es as-
sociated test univers¥, to create test suites that were capable
of covering all the branches coverable by test casds.inNext,
we measured the minimum siZ&,;, and maximum Sizél},,q.
for these suites. We then randomly chose a numbsuch that
Tmin < n < Thmae, and randomly selected test cases front/
to create a test suited. We measured the coverage achieved by
A on P, and if A was coverage-adequate f&r we discarded it.
We repeated this step until 100 non-coverage-adequatsuites
had been created. Statistics on the sizes and coveragesseftest
suites are given in Table 2.

4.2 Variablesand Measures

4.2.1 Independent Variables
Our experiment manipulated three independent variables:

IV1: Order in which affected elements are considered. As
orders of affected elements, we use the depth-first order de-

scribed in Section 3.2, and a baseline approach that orders

affected elements randomly.
1V2: Manner in which existing and new test cases are reused.

Table 1. Experiment Objects

Program Functions [LOC | Branches| Test Cases
printtokl 21 402 174 3052
printtok2 20 483 186 3080
repl ace 21 516 206 3174
tcas 8 138 76 1608

Table 2: Branch Coverage and Sizes of Initial Test Suites

Program Branch Coverage Test Suite Size

Avg Min | Max | Avg | Min | Max
printtokl | 141.1| 122 | 155 | 21.8 [18 25
printtok2 | 164.2| 147 | 176 | 23.1 | 17 29
repl ace 171.7] 141 | 181 | 231 19 28
tcas 61.7| 44 69 [13.0] 11 15

modified programP’. To measure the effectiveness of our
techniques, we track the number of branche#®irthat can
be covered by each augmented test suite.

DV2: Cost in terms of time. To track the cost of augmentation,
for each application of an augmentation technique we mea-
sure the wall clock time required to apply the technique.

4.3 Experiment Setup

Several steps had to be followed to establish the experisetup
needed to conduct our experiment.

4.3.1 Extended Programs

To implement our concolic test case generation technique we
created a tool based on CREST [11]. CREST transforms a pro-
gram'’s source code into an “extended” version in which eaigt o
inal conditional statement with a compound Boolean coadits
transformed into multiple conditional statements withnaitocon-
ditions without Boolean connectives (i.ef,(b1 && b2) f() is
transformed inta f (b1) { if(b2) f()}). To facilitate fair
comparisons between concolic and genetic algorithms, Venyve
we cannot apply the former to extended programs and the tatte
non-extended programs. We thus opted to create extendeidngr
of all four programs, and apply both algorithms to those ioais

4.3.2 lteration Limits

Genetic algorithms iteratively generate test cases, ariteea
tion limit governs the stopping point for this activity. Slarly, the
concolic approach that we use employs an iteration limit ¢io®-
erns the maximum number of path conditions that should bedol
to generate useful test cases.

These iteration limits can affect both the effectiveness te
cost of the algorithms. Thus, we cannot run experiments jugh

We consider two approaches to reusing test cases; namely,one jteration limit per approach, because this would résutcase

the approach in which a test case generation algorithm at-
tempts to utilize only existing test cases, and the approach
which it uses existing along with newly generated test cases
IV3: Test case generation technique. We consider two test
case generation techniques; namely, the genetic and éoncol
techniques described in Sections 3.2 and 3.3, respectively

4.2.2 Dependent Variables and Measures

We wish to measure both the effectiveness and the cost of aug-

mentation techniques under each combination of potepntidfiect-
ing factors. To do this we selected two variables and measure

DV 1. Effectivenessin termsof coverage. The test case augmen-
tation techniques that we consider are intended to work with
existing test suites to achieve higher levels of coverage in

where our comparisons might reflect iteration limits rathen dif-
ferences in techniques. For this reason, we chose multiigtion
limits for each test case generation approach, using #35er
concolic, and 5-10-15-20-25 for genetic. (The differenimers
are due to the different meanings of iterations across tbeatgo-
rithms, as explained in Sections 3.2 and 3.3.)

4.3.3 Technique Tuning

Genetic algorithms must be tuned to the object programs on
which they are to be run. This does not present a problem in a
test suite augmentation setting, because tuning can berped
on early system versions, and then the resulting tuned itigms
can be utilized on subsequent versions. For this study, wedtu
our genetic algorithms by applying them directly to the axted
object programs absent any existing suites.

4.4 Experiment Operation to indicate techniques: GDO corresponds to (Genetic, DA@), O
Given our independent variables, an individual augmenniaéich- ~ GDN to (Genetic, DFO, New+old), GRO to (Genetic, Random,
nigue consists of a triple, (G,A,M), where G is one of the testt ~ Old), GRN to (Genetic, Random, New+old), CDO to (Concolic,
case generation techniques (Genetic or Concolic), A is 6he® DFO, Old), CDN to (Concolic, DFO, New+old), CRO to (Con-
affected element orders (Random or Depth-first), and M isafne ~ €olic, Random, Old), and CRN to (Concolic, Random, New+old)
the two test case reuse approaches (Old test cases or Netgspld ~ Individual columns correspond to techniques compared, ttol-
cases). An individuahugmentation technique applicaticonsists ~ Umn 2, with header “GDO vs GRO", compares (Genetic, DFO,

of an augmentation technique applied at an iteration limivhere Old) to (Genetic, Random, Old), In each column, then, they onl
L is one of our five values. source of variance between the techniques compared isdbe or
Our experiment thus employs eight augmentation technigoés Each entry in the table summarizes the differences obsdreed
40 augmentation technique applications. Each of thesepieaito tween the two techniques, for each of the five iteration Bmitith
each of our four object programs for each of the 100 teststhiwt D" indicating that the technique using depth-first ordehiaited

we created for that program. This results in 16,000 augrtienta ~ the greater mean coverage or cost value, “R” indicating thet

technique applications, for each of which we collect ourarefent ~ technique using random order exhibited the greater meaerage

variables to obtain the data sets needed for our analysis. or cost value, and “=" indicating that techniques exhibiezial
Our experiments were run on a Linux box with an Intel Core2duo Mean coverage. For example, focas, comparing GDO and

E8400 at 3.6GHz and with 16GB RAM, running Fedora 9 as an 0S. GRO, the table contains “D D = R R”, indicating that at the Istve
two iteration levels depth-first order produced better cage, at

45 Threatsto Validity the third level the orders produced equal coverage, ancaigther
The primary threat texternal validityfor this study involves the ~ two levels random order produced better coverage.
representativeness of our object programs and test sWiefiave For each pair of techniques compared, for each iteratioit lim
examined only four relatively small C programs, and othgects L, we applied a-testto the coverage (cost) data obtained across

may exhibit different cost-benefit tradeoffs. Furthermarar pro- all test suites augmented, to determine whether there iatiatst
grams are chosen to allow application of both genetic andaiin cally significant difference between the two techniqueseaation
testing, and thus, do not reveal cases in which program chara limitL, using a = 0.05 as the confidence level. In the table, bold-
teristics might disable one but not the other of these amhes italicized fonts indicate statistically significant difemces. For ex-
A second threat to external validity pertains to our aldwns; we ample, forpri nt t ok1, comparing GDO and GRO, the only sta-
have utilized only one variant of a genetic test case geioeratgo- tistically significant difference between techniques ooed at it-
rithm, and one variant of a concolic testing algorithm, arehave eration level 15. It is these statistical differences thatfacus on
applied both to extended versions of the object programerevh ~ With respect to our research question. ' .
the genetic approach does not require this and might fumcliie We begin by considering the results for the genetic algorith
ferently on the original source code. Subsequent studiesemded ~ Where coverage is concerned, no clear advantage residithen e
to determine the extent to which our results generalize. test case order, and results are relatively similar in tisesavhere

The primary threat tonternal validity is possible faults in the ~ ©old or new and old test cases are used. Across all iteratiitsli
implementation of the algorithms and in tools we use to perfo ~ and programs, DFO and Random orders each achieve bettésresu

evaluation. We controlled for this threat through exteeginc- than the other almost half of the time, but there are only tiatis
tional testing of our tools. A second threat involves indstest tically significant differences between the two orders. Seheccur
decisions and practices in the implementation of the tegtes onprinttokl andrepl ace at the third iteration level, with
studied; for example, variation in the efficiency of implertaions DFO exhibiting better results once and Random once.
of techniques could bias data collected. Where cost results for the genetic algorithm are concerned w
Where construct validityis concerned, there are other metrics ~See different trends. First, in the GDO vs GRO column theeelar
that could be pertinent to the effects studied. In particalar mea- cases where order causes statlstlca}lly significant diffme these
surements of cost consider only technique run-time, and awsts include all results fot cas andprinttokl. Inthe GDN vs

related to the time spent by engineers employing the appesac ~ GRN column t.here are also 11 cases, again including all daseg
Our time measurements also suffer from the potential bidses ~ tcas andprinttokl. Inall but one of these cases, Random is

tailed under internal validity, given the inherent diffigubf ob- more costly than DFO.

taining an efficient technique prototype. Turning to the concolic approach, where coverage is coeggrn
we do see an increase in the number of statistically signifidd-

5. RESULTSAND ANALYSIS ferences between techniques, to 15 cases. However, indhés c

there is no clear superiority adhering to either of the tvat tase
orders; each of Random and DFO are superior in several Gases,
there are no apparent patterns involving iteration limiggrograms
to indicate factors potentially influencing this.

Finally, considering cost results for concolic, we agamaéarge
number of statistically significant differences in coststhwi2 in
the CDO vs CRO case and 14 in the CDN vs CRN case. Here,
however, there is no clear advantage adhering to eitherd®araal

5.1 RQI: Order of Affected Elements DFO orders: each is superior a number of times.

Our first research question pertains to the effects of usiifierd ..
ent orders of affected elements; in this case, depth-fidgrorersus 5.2 RQZ: Use of EX|St|ng and New Test Cases
random. Table 7 presents data relevant to this question takie Our second research question pertains to the effects ohggus
presents results per program, with coverage results irefbé&alf existing and newly generated test cases. Table 8 presdatsatia
and cost results in the right half. Column headers use mniesion vant to this question. The table format is similar to that abl€ 7,

As an initial overview of the data, Tables 3, 4, 5 and 6 pregent
average coverage and cost values obtained per progranssaadto
test suites, for each iteration level, for each combinatiborder
of affected elements and test reuse approach. Each talsengse
results for concolic and genetic techniques under one auatibn.

We now present and analyze our data with respect to our three
research questions, in turn.

Table 3: Coverage Using DFO Order and Old Test Cases

Coverage Cost
Genetic 5 10 15 20 25 5 10 15 20 25
printtokl [158.04] 158.55| 158.94| 159.22[158.90 || 51.96 | 111.36| 180.21| 238.75| 312.82
printtok2 | 176.97 | 177.01| 177.08 | 177.09| 177.09 || 36.39 77.13 | 118.99 | 166.07 | 224.83
replace 186.10 | 187.27 | 187.48] 187.87| 188.09 [[77.96 [157.56 | 237.00 | 315.19| 387.36
tcas 70.72 70.92 70.95| 70.89(70.95 3.32 6.46 9.24 12.74(16.14
Concolic 1 3 5 7 9 1 3 5 7 9
printtokl [150.26 | 155.05| 155.83| 156.39 [156.52 1.16 2.72 4.20 5.61 7.08
printtok2 | 168.81| 172.86| 173.29| 173.78 | 174.38 0.19 0.39 0.56 0.76 0.91
replace 180.52 | 187.58 | 189.42] 189.93| 190.17 1.10 3.42 5.85 8.19| 10.62
tcas 65.92 67.32 69.03| 70.07 | 70.13 0.06 0.12 0.17 0.23 0.28
Table 4: Coverage Using DFO Order and Old and New Test Cases
Coverage Cost
Genetic 5 10 15 20 25 5 10 15 20 25
printtokl | 158.43[158.88 | 159.10 | 159.43 | 159.55(| 110.63 | 217.37 | 336.49 | 447.89 | 565.37
printtok2 | 177.07| 177.13| 177.09| 177.15| 177.17|| 65.66 | 130.14 [189.58 | 279.77 | 348.29
replace 187.46] 188.18 | 188.65| 188.80| 188.81[] 191.79 380.03 | 546.47 | 726.10| 946.33
tcas 70.79 70.96 | 70.95 70.99 70.98 4.75 8.59 12.94 | 17.08 21.02
Concaolic 1 3 5 7 9 1 3 5 7 9
printtokl | 150.44 | 155.27 | 156.17 | 156.65| 156.81 1.35 3.43 5.45 7.31 9.27
printtok2 [169.00| 173.14| 173.60 | 174.12 | 174.77 0.21 0.43 0.64 0.86 1.04
repl ace 180.69 | 188.41 | 189.98 | 190.51(190.70 1.23 4.21 7.25 10.10 12.88
tcas 66.05 | 67.78 | 69.74 | 70.82 [70.88 0.06 0.13 0.19 0.26 0.33
Table5: Coverage Using Random Order and Old Test Cases
Coverage Cost
Genetic 5 10 15 20 25 5 10 15 20 25
printtokl | 158.15[158.40 | 158.59 158.93| 159.18 |[69.40 | 147.63 [223.41| 297.22 | 395.00
printtok2 | 176.91| 177.00| 177.10| 177.10| 177.04|] 39.05| 81.08 | 122.22| 161.15 218.60
repl ace 186.22 | 187.37 | 187.92| 188.12(188.22 || 79.09 | 148.94 | 219.75| 303.07 | 385.72
tcas 70.61 | 70.82 [70.95 | 70.96 [70.98 3.84 7.04 10.63 | 14.76 | 18.78
Concolic 1 3 5 7 9 1 3 5 7 9
printtokl [150.23| 155.01| 155.75| 156.16 [156.25|| 1.18 2.80 4.27 5.52 6.86
printtok2 | 169.02 | 173.06 | 173.52| 173.95| 174.47 || 0.23 0.42 0.58 0.74 0.91
repl ace 180.52 | 187.58 | 189.42 | 189.92(190.18 || 1.06 3.43 5.88 8.19 11.07
tcas 66.32 | 6743 [68.92 | 70.01 [70.12 0.07 0.12 0.16 0.17 0.22
Table 6: Coverage Using Random Order and Old and New Test Cases
Coverage Cost
Genetic 5 10 15 20 25 5 10 15 20 25
printtokl [158.41] 158.95[159.04 | 159.18 | 159.66 || 132.93 | 253.35| 386.91 | 520.15 | 665.82
printtok2 | 177.10| 177.18| 177.14| 177.11| 177.11 (] 66.01 | 123.12(193.22 | 251.84 | 324.07
repl ace 187.58| 188.41| 188.40| 188.81| 188.89 || 171.97 | 357.44 | 488.62 | 686.36 | 832.12
tcas 70.70 [70.95 | 70.97 70.96 | 70.97 6.07 11.39 16.24 | 22.45 29.62
Concolic 1 3 5 7 9 1 3 5 7 9
printtokl [150.41] 155.23| 156.03| 156.39 [156.52 1.36 3.52 5.47 7.11 8.94
printtok2 | 169.24| 173.25| 173.75| 174.20| 174.77 0.23 0.48 0.65 0.84 1.04
replace 180.70| 188.42 | 190.00 | 190.56 | 190.76 1.22 4.28 7.35 10.29 | 1357
tcas 66.45 [67.52 | 69.64 | 70.79 70.88 0.07 0.13 0.18 0.21 0.26

Table 7: Impact of Order in which Affected Elements

are Considered on Coverage and Cost.

Coverage Cost
GDOvs GRO| GDNvs GRN [[CDOvs CRO| CDNvs CRN || GDO vs GRO| GDN vs GRN [[CDO vs CRO| CDN vs CRN
printtokl RDDDR DRDDR DDDDD DDDDD RRRRR RRRRR RRRDD RRRDD
printtok2 DDRRD RRRDD RRRRR RRRR = RRRDD RDRDD RRRDD RRRDD
repl ace RRRRR RRDRR ===DR RRRRR RDDDD DDDDD DRRRR DRRRR
tcas DD=RR DDRDD RRDDD RDDD= RRRRR RRRRR RRDDD RRDDD

Table 8: Impact of Reuse of Existing Test Cases on Coverage and Cost.

Coverage Cost
GDOvs GDN [GROvs GRN|[CDOvs CDN | CROvs CRN|[GDOvs GDN | GRO vs GRN || CDO vs CDN [CRO vs CRN
printtokl NNNNN NNNNN NNNNN NNNNN NNNNN NNNNN NNNNN NNNNN
printtok2 NNNNN N'NNNN NNNNN NNNNN NNNNN NNNNN NNNNN NNNNN
repl ace NNNNN NNNNN NNNNN NNNNN NNNNN NNNNN NNNNN NNNNN
tcas NN=NN NNN=O NNNNN NNNNN NNNNN NNNNN NNNNN NNNNN

but in keeping with the goal of comparing across test cassereu

approaches the differences in terms compared all involvserap-
proaches (Old versus New-+old).

We begin by considering the results for the genetic algarith
Where coverage is concerned, in all but three cases, thef nssvo
test cases is superior to reusing only old test cases. Thewdso
many cases where test case reuse approach has a stajisiigall
nificant effect. These include eight comparisons in the edse

Table9: Comparison of Coverage: Genetic vs Concolic
Program GDO GDN GRO GRN
Program || vs CDO | vs CDN | vs CRO | vs CRN

printtokl G G G G
printtok?2 G G G G
repl ace C C C C
tcas G G G G

DFO iS used, and ten in the case Where random Ol’der iS Used. Resecondsl With our current imp|ementa’[ions this reprewWy

sults vary across programs wittepl ace exhibiting significant
differences in all cases.

Where cost results for the genetic algorithm are concerned w

see much larger effects: in all cases, the use of new test easis
to costs, and the effect of doing so is statistically sigaific

Turning to the concolic approach where coverage is conderne
here we see even stronger evidence that test case reusaappro

matters, with the use of new test cases always more effeetnc
in all but three cases statistically significantly so.

Finally, considering cost results for concolic, we notengfigant
differences in all but one case, again with greater costerauito
the use of new test cases.

5.3 RQ3: Test Case Generation Algorithm

Our third research question pertains to the effects of udifig
ferent test case generation algorithms, and we begin by aongp
effectiveness. One issue to consider in doing this invaiviesrent
differences in the test case generatagorithms In Section 4.3
we described the reasoning behind using several iteratiotsfor
each algorithm: we expect concolic and genetic algorithmet
spond differently over different limits, and using diffetdimits
lets us observe techniques independent of the threat tmaltea-
lidity that would attend the use of a single iteration limit.

Where comparisons of techniques are concerned, there is no i

herent relationship between a given iteration limit for colic and
a given iteration limit for genetic; that is, concolic limit, 3, 5, 7,

and 9 do not “correspond” in any way to genetic limits 5, 10, 15

20, and 25. It follows that we cannot validly compare aldoris
to each other on a per-iteration-limit basis. Instead, fmheobject
programP, we locate the iteration limif ; at which the genetic al-
gorithm operates most effectively @t and the iteration limif. at
which the concolic algorithm operates best®nand we compare
the algorithms at their respective optimal iteration Isnit

Table 9 presents data relevant to RQ3 with respect to dtgorit
effectiveness following the analysis procedure just dbedr The
table provides data for each object program and for eacredbilr
combinations of affected element ordering and test reusgest
gies studied. An individual table entry indicates whichhteique
achieved higher coverage, and italics indicate cases wherdif-
ference was statistically significant.

As the table shows, on every program beipl ace, the genetic
algorithm outperforms the concolic algorithm, in each gatg in
which they were compared. Qrepl ace the advantage goes to
concolic. All differences were statistically significant.

Turning to efficiency, note that this comparison is compéda
by the inherent differences in our two implementations. datf
it is quite difficult to fairly compare our two implementatie for
efficiency because they are derived from different sourtesy
cannot be said to represent “optimal” implementations efttho
algorithms. Thus we restrict ourselves to observing efficyedif-
ferences in a qualitative fashion. As data presented inetaBl6
shows, costs for the genetic algorithm range from timesértéhs
of seconds to times above 500 seconds, while costs for thelion
algorithm range from times in the tenths of seconds to tineas hO

large difference in favor of the concolic approach.

A further issue involves the effects that increasing iferatim-
its have on the respective algorithms. Here, as remarkdikrear
increases in limits seem to correspond to roughly similargases,
proportionally, in costs. This provides some post-hocifigstion
for our choice of particular iteration limits, in that thegesn some-
what comparable in terms of their effects on relative effort

6. DISCUSSION AND IMPLICATIONS

We now discuss the results presented in the prior sectiah, an
comment on their implications for research and practice.

Test Case Order

Order of affected elements is not likely to significantlyeaff algo-
rithm effectiveness because the same elements will uktipdte
considered under any order, and this is what we saw in ouy.stud

Where costs are concerned, in contrast, we do see some differ
ences. Our results show that DFO can provide savings in costs
when using the genetic algorithm. This can be explained by ob
serving that with the genetic algorithm, if we work with hagh
level branches first we can incidentally cover additionalnohes.
Also, test cases that cover branches higher in dependeraigsch
will have inputs that are close to those used to reach lovaerdires,
thereby seeding the population with inputs that help theritlyn
cover those more quickly.

With the concolic algorithm, in contrast, cost saving resake
mixed. We suspect this is because test cases generatedeio cov
b: (lines 11-19 of Algorithm 3) may not cover other uncovered
branches unless these uncovered branches share a comnesn anc
tor branch in a short distance frabm (less tham,;;.,-) in an execu-
tion tree. In such cases, the ordering of affected elemargs dot
matter in terms of cost.

All things considered, we could argue that DFO has the piatient
to be more efficient than random ordering when using genkga: a
rithms, but the fact that this result occurs onlypori nt t ok1 and
t cas leads us to be cautious about this. Furthermore, there seems
to be no clear benefit to using either order where the coneglic
proach is concerned. Still, these results do not precluaknfin
some other orderings that are more predictably cost-@féect

Test Case Reuse Approach

Our results show that the use of new test cases in additioxigt e
ing test cases almost always significantly increases theo€dest
generation by both techniques. This result can be expldigate
correlation between technique effort and the number ofdases
used to seed the technique. Having additional test casesctsp
both techniques: it controls the population size in the gera-
gorithm, while the concolic technique must consider eashdase
supplied to it.

The use of new test cases also significantly increased test-ge
ation technique effectiveness in almost all cases in whiehcon-
colic approach was used, and in many cases where the gepetic a
proach was used. This difference in results can be explaised
follows. With the genetic algorithm, having additional tteases

to work with can increase population diversity and improke t
chances that crossover will generate chromosomes that pose
viously uncovered branches; however, changes due to thesise

First, there does appear to be an increasing trend in coverag
values as iteration limits increase. Beginning with theegienal-
gorithm, and considering the 16 cases in which limits inseg@e.,

might not be substantial when just a few test cases are added t four increases per program, progressing from 5 to 10, 10 fo 15

those that had been used previously. The concolic appraéach,
contrast, utilizes each new test case independently andyaian
from each as such.

If these results generalize we have a true cost-benefitdfiade
With both techniques there is a potential payoff for inaugrihe
additional costs involved in reusing test cases, and tliecefs
much larger for the concolic technique than for the genetiht
nique. Whether any effectiveness gain is worth the additioost,
however, must be assessed relative to the system beingederifi

Test Case Generation Techniques

Concolic and genetic test case generation techniques didrpe
statistically significantly differently in our study, witthe genetic
algorithm exhibiting greater effectiveness than the ctioago-
rithm onpri ntt ok, pri nttok2, andt cas, under all com-
binations of other factors. It appears that the geneticrilgo
is more costly (potentially by two orders of magnitude) thhaa
concolic algorithm in doing this, although again this comigzn
is complicated by the presence of several potentially aomding
factors. These observations prompt us to explore possilees
for differences.

Generally speaking, concolic testing can generate tessaafs
fectively as long as a target program does not contain mamy co
plex symbolic expressions, or utilize pointer arithmetion-linear
arithmetic, and external library calls on symbolic varesl etc.

15 to 20, and 20 to 25) coverage values for GDO increase as lim-
its increase in 13 of 16 cases, coverage values for GRO iserea
as limits increase in 14 of 16 cases, coverage values for GDN i
crease as limits increase in 13 of 16 cases, and coveragesvalu
GRN increase as limits increase in 11 of 16 cases. The cowerag
increases, however, are small overall — never more than two —
and only eight are statistically significant, which indesithat our
genetic algorithm is converging.

Iteration trends occur for the concolic algorithm as wellthw
values generally increasing by small amounts in all 64 cases
this case, 63 of these increases are statistically signifisaggest-
ing that iteration plays a more measurable role for the clinep-
proach than for the genetic approach, and that furtheraseemay
provide opportunities to increase effectiveness.

Where algorithm costs are concerned iteration limits haxgelr
effects. For the genetic algorithm, costs differ acrosaiten limits
by relatively substantial amounts (i.e., by factors ragdiom four
to six from iteration limits 5 to 25). Where the concolic algiom
is concerned we also see increases in costs as iteratics fimi
crease. The increases are smaller numerically than thees\atal
with the genetic algorithm, but they are similar in termstaf fac-
tors involved (i.e., they increase by factors ranging frdweé to
ten from iteration limits 1 to 9).

This is because new test cases can be generated by the concoli7, CONCLUSIONSAND FUTURE WORK

approach only if a generated path condition can be solvedéy t
underlying constraint solver.

Genetic algorithms may be more flexible than concolic, int tha
the chromosome and fitness can be adapted to many input type

and data structures. The quality of the test cases genexatethe
algorithm cost, however, will be dependent on how well figniss
defined, and how well the parameters of the algorithm arediune
and these will be application specific. For instance, if wecse
mutation rate too high, or if our crossover, selection orefthare
not carefully designed, then we may fail to converge quideys-
ing longer run times. Similarly, since we must run all of oestt
cases to calculate fitness, if we use a population that isaaye)
this will negatively impact cost.

In the case of our study, our object programs do not containco
plex symbolic expressions, but all of the programs exdeys
take strings as inputs. Faced with string inputs, genegjorahms
can easily mutate these, covering additional branchesheydcan
attempt to use quite a few different mutants. Concolic aigors
cannot as easily address these programs, because theprmans
test cases only locally; that is, given a target brahichnd a base
path conditiorpe (line 10 of Algorithm 3), the concolic algorithm
transforms a number of branches no greater than-.

The inherent differences between concolic and geneticigthgos,
and the observed differences in our study, suggest that entgm
tion techniques which combine both approaches, eithegusith
on a particular target, or differentially applying one oe tither de-
pending on characteristics of a target, might be more dstteve
than approaches that utilize just single techniques.

Iteration Limits

We did not consider iteration limit to be an independentalaig;
rather, we blocked our analyses per iteration limit valirges this
is our stopping criterion. We did examine our data, howeter,
assess iteration limit effects.

In this work we have focused on test suite augmentation, and o
results have several implications for the creation anchéurstudy
of augmentation techniques. The results also have imitst

ﬁwowever, for engineers creating initial test suites fogpams. This

is because such engineers often begin, at least at the systém
level, with black box requirements-based test cases. Iidvap

been recommended that such test suites be extended to grovid
some level of coverage. The techniques we have presented can
conceivably serve in this context too, working with initlalack-

box test cases and augmenting these.

There are additional factors that influence augmentatiahwie
have not examined directly in this work. Program charasties
certainly play a role, because they can impact the abilitgstfcase
generation techniques to function cost-effectively, ascdbed in
Sections 3.2 and 3.3. Characteristics of existing tesesuatso
matter. Arguably, larger test suites, or test suites tratrare com-
prehensive in the inputs that they provide or the coveragettiey
achieve, might be more cost-effective to augment. We attednp
to control for such characteristics in our experiment byhgsni-
tial test suites with varying sizes and coverage charatitesi but
a more formal study of this factor could be helpful.

Acknowledgments

This work was supported in part by NSF under Awards CNS-08342
and CCF-0747009 and by the AFOSR through award FA9550-09-
1-0129, to the University of Nebraska - Lincoln. Also, thisnk

was supported in part by the ERC of Excellence Program of Ko-
rea MEST/NRF (Grant 2010-0001727), the ITRC support progra
supervised by NIPA (NIPA-2010-(C1090-1031-0001)), andiBa
Science Research Program through the Korea NRF funded by the
MEST (2010-0005498). We thank Yuyang Liu for her valuable in
put on concolic testing of the object programs.

8. REFERENCES

[1] A. Aho, R. Sethi, and J. UllmarCompilers, Principles,
Techniques, and Tool&ddison-Wesley, Boston, MA, 1986.

[2] T. Apiwattanapong, R. Santelices, P. K. Chittimalli, @rso,
and M. J. Harrold. Matrix: Maintenance-oriented testing
requirements identifier and examiner.Tiest.: Acad. Ind.
Conf. Pract. Res. Techrpages 137-146, Aug. 2006.

[3] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar,
and M. D. Ernst. Finding bugs in dynamic web applications.
In Proc. Int'l Symp. Softw. Test. and Analuly 2008.

[4] A. Baresel, D. Binkley, M. Harman, and B. Korel.
Evolutionary testing in the presence of loop-assigned flags
testability transformation approach. Rroc. Int’l. Symp.
Softw. Test. Analpages 108-118, July 2004.

[5] D. Binkley. Semantics guided regression test cost reédngc
IEEE Trans. Softw. Eng23(8), Aug. 1997.

[6] S. Bohner and R. ArnoldSoftware Change Impact Analysis
IEEE Computer Society Press, Los Alamitos, CA, 1996.

[7] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. Exe: Automatically generating inputs of death. In
Proc. Conf. Comp. Comm. Sepages 322-335, Oct 2006.

[8] T.Y.Chen and R. Merkel. Quasi-random testitilgEE
Trans. Rel.56(3):562-568, 2007.

[9] L. Clarke. A system to generate test data and symbayicall

execute program$EEE Trans. Softw. Eng2(3):215-222,

Sept. 1976.

L. Clarke and D. Richardson. Applications of symbolic

evaluationJ. Sys. Softw5(1):15-35, Jan. 1985.

CREST - automatic test generation tool for C.

http://code. googl e.com p/crest/.

R. DeMillo and A. Offutt. Constraint-based automagst

data generatiodEEE TSE 17(9):900-910, Sept. 1991.

[13] E. Diaz, J. Tuya, R. Blanco, and J. Javier Dolado. A tabu

search algorithm for structural software testi@gmp. Op.

Res, 35(10):3052—-3072, 2008.

H. Do, S. G. Elbaum, and G. Rothermel. Supporting

controlled experimentation with testing techniques: An

infrastructure and its potential impa&mp. Softw. Eng.:

Int'l J., 10(4):405-435, 2005.

S. Elbaum, A. Malishevsky, and G. Rothermel. Test case

prioritization: A family of empirical studiedEEE Trans.

Softw. Eng.28(2):159-182, 2002.

[16] M. Emmi, R. Majumdar, and K. Sen. Dynamic test input
generation for database applicationsPhoc. Int'l Symp.
Softw. Test. Analpages 151-162, July 2007.

[17] R. Ferguson and B. Korel. The chaining approach for
software test data generatichCM Trans. Softw. Eng. Meth.
5(1):63-86, Jan. 1996.

[18] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. Rroc. Conf. Prog. Lang. Des.
Impl., pages 213-223, June 2005.

[19] A. Gotlieb, B. Botella, and M. Reuher. Automatic testala
generation using constraint solving techniquefioc. Int’l.
Symp. Softw. Test. Anghages 53-62, Mar. 1998.

[20] R. Gupta, M. Harrold, and M. Soffa. Program slicing-&es
regression testing techniquds Softw. Test., Verif., Rel.
6(2):83-111, June 1996.

[21] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments on the effectiveness of dataflow- and
controlflow-based test adequacy criteriaPioc. Int’l. Conf.
Softw. Eng.pages 191-200, May 1994.

[10]
[11]

[12]

[14]

[15]

[22] B. Korel. Automated software test data generatl&fE
Trans. Softw. Eng16(8):870-897, Aug. 1990.

[23] z.Li, M. Harman, and R. Hierons. Search algorithms for
regression test case prioritizatidBEE Trans. Softw. Eng.
33(4):225-237, Apr. 2007.

[24] D. Marinov and S. Khurshid. TestEra: A novel framework
for automated testing of Java programsPhoc. Int’l. Conf.
Auto. Softw. EngNov. 2001.

[25] P. McMinn. Search-based software test data generafion
survey.J. Softw. Test. Verif. Relighl4(2):105-156, 2004.

[26] C. Michael, G. McGraw, and M. Shatz. Generating sofewvar
test data by evolutiodlEEE Trans. Softw. Eng.
27(12):1085-1110, Dec. 2001.

[27] J. Offutt and A. Abdurazik. Generating tests from UML
specifications. IfProc. Int’l. Conf. UML, Oct. 1999.

[28] A. Orso, N. Shi, and M. J. Harrold. Scaling regressicsiitey
to large software systems. Rroc. Int'l. Symp. Found. Softw.
Eng, Nov. 2004.

[29] S. Person, M. B. Dwyer, S. Elbaum, and C. Gs#eanu.
Differential symbolic execution. IRroc. Int’l. Symp. Found.
Softw. Eng.pages 226-237, Nov. 2008.

[30] G. Rothermel and M. J. Harrold. Selecting tests and
identifying test coverage requirements for modified sofewa
In Proc. Int'l Symp. Softw. Test. Anghug 1994.

[31] G. Rothermel and M. J. Harrold. A safe, efficient regi@ss
test selection techniquACM Trans. Softw. Eng. Meth.
6(2):173-210, Apr. 1997.

[32] R. Santelices, P. K. Chittimalli, T. Apiwattanapong, @rso,
and M. J. Harrold. Test-suite augmentation for evolving
software. InProc. Int'l Conf. Auto. Softw. EngSept. 2008.

[33] K. Sen and G. Agha. JCUTE: Concolic unit testing and
explicit path model-checking tools. Froc. Int'l Conf.
Comp. Aided Verifpages 419-423, Aug 2006.

[34] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for C. IProc. Int'l Symp. Found. Softw. Eng.
pages 263-272, Sept. 2005.

[35] P. Tonella. Evolutionary testing of classes!mti. Symp.
Softw. Test. Analpages 119-128, 2004.

[36] W. Visser, C. Pasareanu, and S. Khurshid. Test input
generation with Java Pathfinder.Pmoc. Int'l Symp. Softw.
Test. Anal.pages 97-107, July 2004.

[37] H. Waeselynck, P. Thévenod-Fosse, and
0. Abdellatif-Kaddour. Simulated annealing applied td tes
generation: Landscape characterization and stoppingyierit
Emp. Softw. Eng12(1):35-63, 2007.

[38] A. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos.
Time-aware test suite prioritization. Proc. Int'l. Conf.
Softw. Test. Analpages 1-12, July 2006.

[39] S. Wappler and F. Lammermann. Using evolutionary

algorithms for the unit testing of object-oriented softedn

Conf. Gen. Evol. Comppages 1053-1060, 2005.

G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inasur

and Z. Su. Dynamic test input generation for web

applications. IrProc. Int'l Symp. Softw. Test. Anghages

249-260, July 2008.

[41] Z. Xu, M. Cohen, and G. Rothermel. Factors affecting the
use of genetic algorithms in test suite augmentatioGén.
Evol. Comp. Confluly 2007.

[42] Z. Xu and G. Rothermel. Directed test suite augmentatio
Proc. Asia-Pacific Softw. Eng. Conbec. 2009.

[40]

